Panasonic ideas for life

RELAY CATALOG PART 1

ELECTROMECHANICAL RELAYS

Notes and Guidelines

Panasonic is part of a large worldwide group selling relays and associated switching products under different brand names in different territories. The conditions of use in some territories may differ from those customary in Europe. In particular there are often major differences in regard to national and international specifications, such as UL, CSA, VDE, SEV, EVE, SEMKO, etc. Thus, when considering contact loads as stated in this catalogue (e.g. 10 A , 30 VDC for the SP relay) it should be understood that these values are not necessarily an absolute maximum but tested ratings. Mostly the stated value has been tested for a certain life expectancy as stated by the manufacturer or the respective test house. Thus, under different conditions, the stated "maximum" may, in practice, be safely exceeded.

Therefore consideration should be given to each specific application for:

- rating and type of load
- switching frequency - cycles per second (or minute)
- environmental conditions

A general statement of compliance on data sheets, publicity, etc. concerning industrial standards, approvals or certification may imply compliance to a certain standard is available. However, because of the multiplicity of types available, in general not all types within the product family are covered to the same extent by the standard. Thus, in the event of a specific query regarding a particular product and its compliance with the standard, users are asked to refer to Panasonic for detailed information.

In case of uncertainty, contact should be made with Panasonic locally to ascertain the likelihood of the relay meeting the required life expectancy in the specific planned operational circumstances. It is also pointed out that in this book, and in deviation from EN / IEC 61810-1, operational life data is given under a normal ambient temperature of about $25^{\circ} \mathrm{C}$.

The features and specifications quoted have been carefully tested using modern methods and represent the values which are to be expected with a product in new condition at room temperature. They
are not guaranteed values and may change during operational life or due to ambient influences. Statistical test information covering major operating features is available on request. Panasonic reserves the right to make alterations and changes to specifications without notice from time to time as may be deemed necessary.

Application of the EC Directives to All-or-Nothing Relays

1 EMC Directive

The EMC Directive concerns primarily the finished products. In applying the Directive to components, the Guidelines ${ }^{1}$ should be consulted to determine whether the component in question has a "direct function". Electric motors, power supply units or temperature controls represent examples of such components with "direct function". These types of components must be provided with a CE marking.

Components which are integrated into a device, such as relays, do not have an independent function of their own. A given relay may perform differing functions in different devices. Consequently, all-or-nothing relays must be considered components without "direct function" which are not subject to the EMC Directive.

All-or-nothing - be they electro-mechanical relays or solid state relays - shall not be labeled with a CE marking nor shall a declaration of conformity be issued within the scope of the EMC Directive.

2 Low Voltage Directive

Relays with terminals for printed boards/plug-andsocket connections do not come within the purview of the Low Voltage Directive.

The Low Voltage Directive concerns electrical equipment intended for incorporation into a device as well as equipment intended for direct use. In the case of electrical equipment which is considered a basic component intended for incorporation into other electrical equipment, the properties and safety of the final product will be largely dependent on how it is integrated: as such, these components do not fall within the Low Voltage Directive and shall not be CE marked. The Guidelines ${ }^{2}$ specifically cite electro-mechanical basic components such as connectors, relays with terminals for printed circuit boards and micro switches. They are therefore not subject to the scope of the Low Voltage Directive.

Except for larger relays which may, for example, find application in switching cabinets, the same considerations apply to common-place relays with plug-in connections available also with printed board terminals. Here again, safety is a function of the individual application. In evaluating these relays' performance from the perspective of the Low Voltage Directive, the same conclusion is reached as with the printed board relay. As such, CE marking is not mandatory for this type of relay.

3 Machinery Directive

The Machinery Directive differentiates between machines, machine parts and safety components. Relays are not part of any of these categories. The listing of safety components in Appendix IV is conclusive and does not include relays.

Consequently, a CE marking shall not be affixed nor shall a declaration of conformity or manufacturer's declaration be issued under the Machinery Directive.

As of this moment, none of the aforementioned directives require CE marking for all-or-nothing relays ${ }^{3}$.

4 RoHS Directive

The substances prohibited by the RoHS Directive ($\mathrm{Pb}, \mathrm{Hg}, \mathrm{Cd}, \mathrm{Cr}^{+6}, \mathrm{PBB}, \mathrm{PBDE}$) concern 10 categories of devices that are mostly, but not entirely, intended for private use. Components such as relays are not listed in these categories. Therefore they do not directly fall within the scope of this directive. However, if the user employs relays in devices that fall within the scope of this directive, the user must also acknowledge the substances prevented. In order to adapt to this situation in good time, all Panasonic relays are generally RoHS compliant.

1. Guidelines (version dated March 22, 2007) for the Application of the Council Directive 2004/108/EC.
2. Guidelines (version dated August 2007) for the Application of the Council Directive 2006/95/EC.
3. This writing deals exclusively with "non-specified-time all-or-nothing relays". The abbreviated term "all-or-nothing relay" has been introduced merely for purposes of convenience. The term includes solid state all-or-nothing relays.

Table of Contents

Alphabetical List of Relays 4
Übersicht 5
Signalrelais 47
DS RELAYS 48
DS2Y RELAYS 54
GN RELAYS (AGN) 57
GQ RELAYS (AGQ) 62
HY RELAYS 67
SX RELAYS (ASX) 71
TK RELAYS 76
TN RELAYS 82
TQ RELAYS 87
TX RELAYS 99
TX-D RELAYS 107
TX-S RELAYS 119
TX RELAYS TH types 126
Gepolte Leistungsrelais 131
DE RELAYS (ADE) 132
DJ RELAYS (ADJ) 136
DK RELAYS 145
DQ RELAYS (ADQ) 152
DQ-M RELAYS (ADQM) 155
DS-P RELAYS 159
DY RELAYS (ADY) 166
EP RELAYS 171
S RELAYS 179
SP RELAYS 185
ST RELAYS 192
Ungepolte Leistungsrelais 197
HC RELAY PRODUCT TYPES 198
HE RELAYS 225
HE RELAYS PV Type 233
HG RELAYS 239
HJ RELAYS 248
HL RELAYS 259
HN RELAYS (AHN) 267
HP RELAYS 277
JC RELAYS 290
JC RELAYS (Special Type) 295
JM RELAYS 296
JQ RELAYS 301
JS RELAYS 306
JT-V RELAYS 309
JV-N RELAYS 312
JW RELAYS 315
LA RELAYS (ALA) 320
LD RELAYS (ALD) 323
LD-P RELAYS (ALDP) 326
LE RELAYS (ALE) 330
LF RELAYS (ALF) 335
LF-G RELAYS (ALFG) 339
LK RELAYS 344
LK-F RELAYS 347
LK-G RELAYS 353
LK-P RELAYS 357
LK-Q RELAYS 360
LK-S RELAYS 364
LK-T RELAYS 367
LS RELAYS (ALS) 371
LZ RELAYS (ALZ) 374
PA RELAYS 378
PF RELAYS (APF) 382
PQ RELAYS 388
Hochfrequenzrelais 391
RA RELAYS (ARA) 392
RD COAXIAL SWITCHES (ARD) 397
RE RELAYS (ARE) 411
RJ RELAYS (ARJ) 415
RK RELAYS 420
RP RELAYS 425
RS RELAYS (ARS) 430
RV COAXIAL SWITCHES (ARV) 441
RX RELAYS (ARX) 447
RX-P RELAYS (ARXP) 45
KFZ-Relais 457
CA RELAYS 458
CB RELAYS 464
CJ RELAYS (ACJ) 475
CM RELAYS 481
CN-H RELAYS (ACNH) 486
CN-M RELAYS (ACNM) 490
CP RELAYS 495
CP RELAYS <POWER TYPE> 499
CQ RELAYS 503
CT RELAYS (ACT) 507
CT RELAYS <POWER TYPE> 513
CV RELAYS (ACV) 518
CW RELAYS (ACW) 523
EB RELAYS (AEB) 526
EV RELAYS (AEV) 530
JJ-M RELAYS 538
JJ-M RELAYS (Double make type) 542
JS-M RELAYS 546
JT-N RELAYS 549
Sicherheitsrelais 553
SF2D RELAY 554
SF3 RELAY 557
SF4D RELAY 560
SFN4D RELAY 563
SF-RELAYS Slim type 571
Technische Informationen 581
Configuration and Construction 582
Definition of Relay Terminology 584
General Application Guidelines 587
Reliability 604
Applications of Relays in Electronic Circuits 606
Relay Soldering and Cleaning Guidelines 613
SMT Soldering Guidelines 615

Alphabetical List of Relays

CA RELAYS 458
CB RELAYS 464
CJ RELAYS (ACJ) 475
CM RELAYS 481
CN-H RELAYS (ACNH) 486
CN-M RELAYS (ACNM) 490
CP RELAYS <POWER TYPE> 499
CP RELAYS 495
CQ RELAYS 503
CT RELAYS (ACT) 507
CT RELAYS <POWER TYPE> 513
CV RELAYS (ACV) 518
CW RELAYS (ACW) 523
DE RELAYS (ADE) 132
DJ RELAYS (ADJ) 136
DK RELAYS 145
DQ RELAYS (ADQ). 152
DQ-M RELAYS (ADQM) 155
DS RELAYS 48
DS2Y RELAYS 54
DS-P RELAYS 159
DY RELAYS (ADY) 166
EB RELAYS (AEB) 526
EP RELAYS 171
EV RELAYS (AEV) 530
GN RELAYS (AGN) 57
GQ RELAYS (AGQ) 62
HC RELAY PRODUCT TYPES 198
HE RELAYS PV Type 233
HE RELAYS 225
HG RELAYS 239
HJ RELAYS 248
HL RELAYS 259
HN RELAYS (AHN) 267
HP RELAYS 277
HY RELAYS 67
JC RELAYS (Special Type) 295
JC RELAYS 290
JJ-M RELAYS (Double make type) 542
JJ-M RELAYS 538
JM RELAYS 296
JQ RELAYS 301
JS RELAYS 306
JS-M RELAYS 546
JT-N RELAYS 549
JT-V RELAYS 309
JV-N RELAYS 312
JW RELAYS 315
LA RELAYS (ALA) 320
LD RELAYS (ALD) 323
LD-P RELAYS (ALDP) 326
LE RELAYS (ALE) 330
LF RELAYS (ALF) 335
LF-G RELAYS (ALFG) 339
LK RELAYS 344
LK-F RELAYS 347
LK-G RELAYS 353
LK-P RELAYS 357
LK-Q RELAYS 360
LK-S RELAYS 364
LK-T RELAYS 367
LS RELAYS (ALS) 371
LZ RELAYS (ALZ) 374
PA RELAYS 378
PF RELAYS (APF) 382
PQ RELAYS 388
RA RELAYS (ARA) 392
RE RELAYS (ARE) 411
RJ RELAYS (ARJ) 415
RK RELAYS 420
RP RELAYS 425
RS RELAYS (ARS) 430
RX RELAYS (ARX) 447
RX-P RELAYS (ARXP) 451
S RELAYS 179
SF2D RELAY 554
SF3 RELAY 557
SF4D RELAY 560
SFN4D RELAY 563
SF-RELAYS Slim type 571
SP RELAYS 185
ST RELAYS 192
SX RELAYS (ASX) 71
TK RELAYS 76
TN RELAYS 82
TQ RELAYS 87
TX RELAYS TH types 126
TX RELAYS 99
TX-D RELAYS 107
TX-S RELAYS 119

About the Selector Chart
This selector chart is designed to help you quickly select a relay
best suited for your needs. Please note: the values given for
switching current and switching voltage do not necessarily indi-
switching current and switching voltage do not necessarily indi-
cate standard operating conditions. For the nominal switching ca-

Type \star = Popular Type (Picture scale: DIN A4)	Features	Switching current	Max. switching voltage voitage	$\begin{gathered} \text { Contact } \\ \text { arrangement } \end{gathered}$	Coil voltage
	- Compact flat body saves space - Outstanding surge resistance - The use of twin crossbar contacts ensures high contact reliability - High sensitivity 100 mW type available	Max.: 1A Min.: $10 \mu \mathrm{~A}$	-110V DC - 125 V AC	2c	$\begin{gathered} \text { (DC) } 1.5,3,4.5,6, \\ 9,12,24 \mathrm{~V} \end{gathered}$
	- Compact slim body saves space - Outstanding surge resistance - The use of twin crossbar contacts ensures high contact reliability - High sensitivity 100 mW type available	Max.: 1A Min.: $10 \mu \mathrm{~A}$	-110V DC - 125 V AC	2 c	$\begin{gathered} \text { (DC) } 1.5,3,4.5,6, \\ 9,12,24 \mathrm{~V} \end{gathered}$
	- Ultra low profile 5.8 mm - Surge withstand $2,500 \mathrm{~V}$ - 3 types of surface-mount terminals available	Max.: 2A Min.: $10 \mu \mathrm{~A}$	- 220V DC - 125 V AC	2 c	$\begin{aligned} & \text { (DC) } 1.5,3,4.5,5, \\ & 6,9,12,24, \\ & 48 \mathrm{~V} \end{aligned}$
	- 1,500V FCC - 4-pole model available	Max.: 1A Min.: $10 \mu \mathrm{~A}$	$\begin{aligned} & \text { - } 110 \mathrm{~V} \text { DC } \\ & \cdot \\ & \hline \end{aligned}$	2c, 4c	$\begin{gathered} \text { (DC) } 3,4.5,5,6,9, \\ 12,24,48 \mathrm{~V} \end{gathered}$

Coil power	Breakdown voltage			Surge withstand voltage	Mounting method (bottom view)	$\begin{gathered} \text { Page } \\ \text { Approvals } \end{gathered}$
	Between open contacts	Between contact sets	Contacts to coil			
Single side stable: 140mW (1.5-12V DC) 230 mW (24 V DC) 1 coil latching: 100mW (1.5V - 12V DC) 120 mW (24 V DC)	750 Vrms	1000 V rms	1500 V rms	1,500V FCC 2,500V Telcordia		$\stackrel{62}{\text { UL, CSA, BSI }}$
Single side stable: 140mW (1.5-12V DC) 230 mW (24 V DC) 1 coil latching: 100mW (1.5V - 12V DC) 120 mW (24V DC)	750 Vrms	1000 V rms	1500 V rms	$\begin{aligned} & 1,500 \mathrm{VFCC} \\ & 2,500 \mathrm{~V} \end{aligned}$		$\stackrel{57}{\text { UL, CSA, BSI }}$
Single side stable: 140 mW (up to 12 V DC) 200mW (24 V DC) 300 mW (48V DC) 1 coil latching: 70 mW (up to 12 V DC) 100 mW (24 V DC) 2 coil latching: 140 mW (up to 12 V DC) 200mW (24 V DC)	1000 V rms	1500 V rms	1500 V rms	1,500V FCC 2,500V Telcordia		$\begin{gathered} 87 \\ \text { UL, CSA } \end{gathered}$
Single side stable: 140mW (3-12V DC) 200 mW (24V DC) 300 mW (48V DC) 1 coil latching: 100mW (3-12V DC) 150mW (24V DC) 2 coil latching: 200mW (3-12V DC) 300 mW (24V DC)	750 Vrms	1000 V rms	1000Vrms	1,500V FCC		$\begin{gathered} 87 \\ \text { UL, CSA } \end{gathered}$

Coil power	Breakdown voltage			Surge withstand voltage	Mounting method (bottom view)	$\begin{gathered} \text { Page } \\ \text { Approvals } \end{gathered}$
	Between open contacts	Between contact sets	Contacts to coil			
Single side stable: 140 mW (up to 24 V DC) 270mW (48V DC) 1 coil latching: 100 mW 2 coil latching: 200 mW	1000 V rms	1000 V rms	2000Vrms	1,500V FCC 2,500V Telcordia		$\begin{gathered} 99 \\ \text { UL, CSA, BSI } \end{gathered}$
Single side stable: 140 mW (up to 24 V DC 270 mW (48 V DC) 1 coil latching: 100 mW (up to 24 V DC) 2 coil latching: 140 mW (up to 24 V DC)	1000 V rms	1000 V rms	2000Vrms	1,500V FCC 2,500V Telcordia		$\begin{gathered} 126 \\ \text { UL, CSA, BSI } \end{gathered}$
Single side stable: 200mW (1.5-12V DC) 230 mW (24 V DC) 1 coil latching: 150 mW (1.5-12V DC) 170 mW (24V DC)	1000 V rms	1000Vrms	3000 V rms	6,000V for fax machines \& lighting ballasts		$\begin{gathered} 107 \\ \text { UL, CSA, BSI } \end{gathered}$
Single side stable: 50mW (1.5-12V DC) 70 mW (24V DC) 1 coil latching: 35 mW (1.5-12V DC) 50 mW (24V DC) 2 coil latching: 70 mW (1.5-12V DC) 150 mW (24V DC)	750Vrms	1000Vrms	1800Vrms	1,500V FCC 2,500V Telcordia		$\begin{gathered} 119 \\ \text { UL, CSA, BSI } \end{gathered}$
Single side stable: 50mW (1.5-12V DC) 70 mW (24V DC) 1 coil latching: 35 mW (1.5-12V DC) 50 mW (24 V DC) 2 coil latching: 70mW (1.5-12V DC) 150 mW (24V DC)	750Vrms	1000 V rms	1000Vrms	-		$\begin{gathered} 71 \\ \text { UL, CSA, BSI } \end{gathered}$

Coil power	Breakdown voltage			Surge withstandvoltage	Mounting method (bottom view)	$\begin{gathered} \text { Page } \\ \text { Approvals } \end{gathered}$
	Between open contacts	Between contact sets	Contacts to coil			
Single side stable: 140mW (up to 12V DC) 200mW (24 V DC) 300 mW (48V DC) 1 coil latching: 100mW (3-12V DC) 150 mW (24 V DC) 2 coil latching: 200mW (3 - 12V DC) 300 mW (24 V DC)	750 Vrms	1000 Vrms	1000 Vrms	1,500V FCC		$\begin{gathered} 82 \\ \text { UL, CSA } \end{gathered}$
Single side stable: 140 mW (up to 12 V DC) 270 mW (24 V DC) 1 coil latching: 100mW (3-12V DC) 150 mW (24 V DC) 2 coil latching: 200mW (1.5-9V DC) 250mW (12V DC) 400 mW (24 V DC)	750 V rms	1000 V rms	1500 V rms	1,500V FCC 2,500V Telcordia		$\begin{gathered} { }^{76} \\ \text { UL, CSA } \end{gathered}$
M type: Single side stable: 400 mW 1 coil latching: 180 mW 2 coil latching: 360mW S type: Single side stable: 200 mW 1 coil latching: 90 mW 2 coil latching: 180mW	1000Vrms (DS1-S: 500 Vrms)	1000 V rms	1500 V rms (DS1-S: 1000Vrms)	1,500V FCC		$\begin{gathered} 48 \\ \text { UL, CSA } \end{gathered}$
Single side stable: 200mW (up to 24V DC) 300 mW (48 V DC)	750 Vrms	1000 Vrms	1000Vrms	1,500V FCC		$\begin{gathered} 54 \\ \text { UL, CSA } \end{gathered}$
Standard: 200 mW High sensitivity: 150 mW	500 Vrms	-	1000 V rms	-		$\begin{gathered} 67 \\ \text { UL, CSA } \end{gathered}$

Polarized Power Relays

Type * = Popular Type (Picture scale: DIN A4)	Features	Switching current (Min.: see data sheet)	Max. switching voltage	$\begin{gathered} \text { Contact } \\ \text { arrangement } \end{gathered}$	Coil voltage
$\star_{\text {DE }}$ 1:2 $25 \times 12.5 \times 12.5 \mathrm{~mm}$	- Conforms to VDE0631 - Low operating power - Compact body saves space - Creepage \& clearance distance $>$ Min 8 mm	Max.: 10/16A (1a) \square 10A \square 16A 8A (1a1b, 2a) \square 8A	- 230V DC - 440 V AC	$\begin{gathered} \text { 1a, } 1 \mathrm{a} 1 \mathrm{~b}, \\ 2 \mathrm{a} \end{gathered}$	$\begin{aligned} & \text { (DC) } 1.5,3,4.5,5, \\ & 6,9,12,24, \\ & 48 \mathrm{~V} \end{aligned}$
DJ	- Latching type - Compact with high capacity - Creepage \& clearance distance $>8 \mathrm{~mm}$ - Optional available with manual test button	Max.: 16A \square 16A	- 125V DC - 400 V AC	1a, 1b, 1c, 1a1b, 2a, 2b, 2c	$\begin{gathered} \text { (DC) } 5,6,12,24, \\ 48 \mathrm{~V} \end{gathered}$
$\begin{aligned} & \text { DK } \\ & 1: 2 \\ & 20 \times 15 \times 10 \mathrm{~mm} \end{aligned}$	- Large capacity in small size - High sensitivity - High breakdown voltage	Max.: 10A (1a) \square 10A 8A (1a1b, 2a) \square 8A	- 125 V DC - 400 V AC	$\begin{aligned} & 1 \mathrm{a}, 1 \mathrm{a} 1 \mathrm{~b}, \\ & 2 \mathrm{a} \end{aligned}$	$\begin{aligned} & \text { (DC) } 3,5,6,9,12, \\ & 24 \mathrm{~V} \end{aligned}$
DQ	- Latching type - Compact with high capacity - High insulation	Max.: 30A \square 30A	- 250V DC - 250 V AC	1 a	$\begin{aligned} & \text { (DC) } 4.5,6,9,12, \\ & 24 \mathrm{~V} \end{aligned}$
	- 60A Miniatur-Starkstromrelais - Latching type - High insulation	Max.: 60A \square	- 250 V AC	1 a	$\begin{aligned} & \text { (DC) } 4.5,6,9,12, \\ & 24 \mathrm{~V} \end{aligned}$
	- High switching capacity - High sensitivity - High contact welding resistance - High breakdown voltage	Max.: 8 A (1a) \square 8A 5A (1a1b, 2a) \square 5A	- 220 V DC - 400V AC	$\begin{gathered} 1 \mathrm{a}, 1 \mathrm{a} 1 \mathrm{~b}, \\ 2 \mathrm{a} \end{gathered}$	$\begin{aligned} & \text { (DC) } 3,5,6,9,12, \\ & 24 \mathrm{~V} \end{aligned}$

Selector Chart

Coil power	Breakdown voltage			Surge withstandvoltage	Mounting method (bottom view)	$\begin{gathered} \text { Page } \\ \text { Approvals } \end{gathered}$
	Between open contacts	Between contact sets	Contacts to coil			
Single side stable: 200 mW 1 coil latching: 100 mW 2 coil latching: 200 mW	1000 Vrms	4000 V rms (1a1b, 2a)	5000 Vrms	12,000V	$\begin{array}{c}\text { PCB } \\ \text { Grid } 2.54 \mathrm{~mm} \\ \bullet \\ \bullet \\ \bullet \\ \bullet\end{array}$	$\begin{gathered} 132 \\ \text { UL, CSA, } \\ \text { VDE, TÜV } \end{gathered}$
Single side stable: 250 mW 1 coil latching: 150 mW 2 coil latching: 250 mW	1000 V rms	-	4000Vrms	10,000V		136 VDE, TÜV, UL, CSA, SEV
Single side stable: 200mW 2 coil latching: 200 mW	1000 Vrms	4000 Vrms	4000Vrms	10,000V		145 VDE, TÜV, UL, CSA, SEV
1 coil latching: 500 mW 2 coil latching: 1000 mW	1500 V rms	-	4000 Vrms	10,000V		$\begin{gathered} 152 \\ \text { UL, CSA } \end{gathered}$
1 coil latching: 500 mW 2 coil latching: 1000 mW	1500 V rms	-	4000Vrms	10,000V		155
Single side stable: 300 mW 1 coil latching: 150 mW 2 coil latching: 300 mW	1000Vrms	2000 V rms	3000 V rms	5,000V		$\begin{gathered} 159 \\ \text { TÜV, UL, } \\ \text { CSA, SEV } \end{gathered}$

Polarized Power Relays

Selector Chart

Coil power	Breakdown voltage			Surge withstand voltage	Mounting method (bottom view)	PageApprovals
	Between open contacts	Between contact sets	Contacts to coil			
Single side stable: 200mW 2 coil latching: 200 mW	1000 V rms	4000 Vrms	4000 Vrms	10,000V		$\begin{gathered} 166 \\ \text { TÜV, UL, CSA } \end{gathered}$
Single side stable: ~200mW (3V-24V DC) 271mW (48V DC) 1 coil latching: ~100mW (3V-24VDC) 144mW (48V DC) 2 coil latching: $\sim 200 \mathrm{~mW}$ (3V-24V DC) 355 mW (48V DC)	750Vrms	1000 V rms	1500 V rms	-		$\begin{gathered} 179 \\ \text { UL, CSA } \end{gathered}$
Single side stable: 300 mW 2 coil latching: 300 mW	1500 V rms	3000 V rms	3000 V rms	-	PCB, Plug-in Grid 2.54 mm \qquad 2c \qquad	$\begin{gathered} 185 \\ \text { UL, CSA, } \\ \text { TUUV } \end{gathered}$
Single side stable: 240mW 1 coil latching: 130 mW 2 coil latching: 240mW	1200 V rms	2000 Vrms	3750 V rms	6,000V		192 UL, CSA, SEV, VDE, TV rating

Type * = Popular Type (Picture scale: DIN A4)	Features	Switching current (Min.: see data sheet)	Max. switching voltage	Contact arrangement	Coil voltage
JC	- Class B coil type available - TV-rated type available - High dielectric withstanding 10,000V surge - Special type with blow-out magnet for high DC loads available	Max.: 15A \square 15A	- 250V AC Blow-out magnet type: - 250V DC	1a, 2a	$\begin{aligned} & \text { (DC) } 5,6,12,24, \\ & 48 \mathrm{~V} \end{aligned}$
$1: 2$	- Super welding resistance - High surge resistance - Compact high capacity relay for inductive load	Max.: 20A \square 20A	- 100V DC - 250 V AC	1a	$\begin{aligned} & \text { (DC) } 5,6,9,12,24, \\ & 48 \mathrm{~V} \end{aligned}$
	- High electrical noise immunity - High switching capacity - High surge voltage $8,000 \mathrm{~V}$	Standard: Max.: 5A \square 5A Power type: Max.: 10A 10A	- 277V AC	1a, 1 c	$\begin{aligned} & \text { (DC) } 3,5,6,9, \\ & 12,18,24,48 \mathrm{~V} \end{aligned}$
$\begin{aligned} & \text { JS } \\ & 22 \times 16 \times 16 \mathrm{~mm} \end{aligned}$	- Ultra-miniature size with universal terminal footprint - High switching capacity 10A	Max.: 10A \square 10A	- 100V DC - 277 V AC	1a, 1 c	$\begin{gathered} \text { (DC) } 5,6,9,12,18, \\ 24,48 \mathrm{~V} \end{gathered}$

Coil power	Breakdown voltage			Surge withstand voltage	Mounting method (bottom view)	Page Approvals
	Between open contacts	Between contact sets	Contacts to coil			
900 mW (1a) 1000mW (2a)	2000Vrms	2000Vrms (2a)	4000 Vrms	10,000V		$\begin{gathered} 290 \\ \text { UL, VDE, } \\ \text { SEV, SEMKO } \\ \text { CSA, com- } \\ \text { plies with TV5 } \end{gathered}$
900 mW	1000 Vrms	-	5000 Vrms	10,000V		$\begin{gathered} 296 \\ \text { TÜV, UL, } \\ \text { CSA, VDE } \end{gathered}$
$\begin{aligned} & 200 \mathrm{~mW}(1 \mathrm{a}) \\ & 400 \mathrm{~mW}(1 \mathrm{c}) \end{aligned}$	$\begin{aligned} & \text { 1000Vrms (1a) } \\ & 750 \mathrm{Vrms} \text { (1c) } \end{aligned}$	-	4000 Vrms	8,000V		301 UL, CSA, TÜV, VDE, SEMKO
360 mW	750 Vrms	-	1500 V rms	-		$\begin{aligned} & 306 \\ & \text { TÜV, VDE, } \\ & \text { UL, CSA, } \\ & \text { complies with } \\ & \text { Tv5 } \end{aligned}$

Coil power	Breakdown voltage			Surge withstandvoltage voltage	Mounting method (bottom view)	Page Approvals
	Between open contacts	Between contact sets	Contacts to coil			
1000 mW		1200 Vrms	3500 Vrms	6,000V	РCB Top-mounting 1a 6.2 \qquad 	$\begin{gathered} 309 \\ \text { UL, C-UL } \end{gathered}$
(DC) $200 \mathrm{~mW}(4.5 \mathrm{~V}$ - 48V) (DC) $600 \mathrm{~mW}(100 \mathrm{~V})$	1000Vrms	-	2500 Vrms	4,500V		$\begin{gathered} 312 \\ \text { UL, CSA, } \\ \text { TÜV } \end{gathered}$
530 mW	1000 V rms	$\begin{gathered} 3000 \mathrm{Vrms} \\ (2 \mathrm{a}, 2 \mathrm{c}) \end{gathered}$	5000 Vrms	10,000V		$\begin{gathered} 315 \\ \text { TÜV, VDE, } \\ \text { UL, CSA, } \\ \text { SEV, com- } \\ \text { plies with } \\ \text { TV5, SEMKO } \end{gathered}$

$\begin{gathered} \text { Type } \\ \star=\text { Popular Type } \end{gathered}$ (Picture scale: DIN A4)	Features	Switching current (Min.: see data sheet)	Max. switching voltage	Contact arrangement	Coil voltage
	- Slim type: 2 Form A - High insulation resistance between contact and coil	Standard: Max.: 3A (3A rated) \square 3A Power type: Max.: 5A (5A, TV-4 rated) 5 A	- 30V DC - 277V AC	2a	(DC) 12, 24V
	- Slim type: width 7 mm	Max.: 3A \square 3 A	- 30V DC - 277V AC	1a	$\begin{gathered} \text { (DC) } 4.5,5,6,9,12, \\ 18,24 \mathrm{~V} \end{gathered}$
$\begin{aligned} & \text { LD-P } \\ & 20.3 \times 7 \times 15 \mathrm{~mm} \end{aligned}$	- Slim (7mm) power relay - 200 mW coil power	Max.: 5A \square 5A	- 30V DC - 277V AC	1 a	$\begin{gathered} \text { (DC) } 5,6,9,12,18, \\ 24 \mathrm{~V} \end{gathered}$
	- Ideal for magnetron and heater loads - Excellent heat resistance - High sensitive version available	Max.: 16A \square 16A	- 277/400V AC	1 a	$\begin{gathered} \text { (DC) } 5,6,9,12,18, \\ 24,48 \mathrm{~V} \end{gathered}$
	- Ideal for compressor and inverter loads - High insulation resistance	Max.: 25A \square 25A	- 250 V AC	1 a	$\begin{aligned} & \text { (DC) } 5,6,9,12,18, \\ & 24 \mathrm{~V} \end{aligned}$
$\star_{\text {LF-G1/LF-G2 }}$ 1:2 $30.1 \times 15.7 \times 23.3 \mathrm{~mm}$	- Ideal for compressor and inverter loads - High insulation resistance	Max.: 22A \square 22A Max.: 31A \square 31A	- 250 V AC	$1{ }^{1}$	(DC) 9, 12, 18, 24V

Coil power	Breakdown voltage			Surge withstand voltage	Mounting method (bottom view)	Page Approvals
	Between open contacts	Between contact sets	Contacts to coil			
530 mW	1000 V rms	1000 V rms	4000Vrms	10,000V		$\begin{gathered} 320 \\ \text { TÜV, UL, } \\ \text { CSA, SEV, } \\ \text { SEMKO } \end{gathered}$
200mw	750 Vrms	-	4000Vrms	10,000V		$\begin{gathered} 323 \\ \text { TUV, UL, } \\ \text { CSA, VDE } \end{gathered}$
200 mW	750 Vrms	-	4000Vrms	10,000V		UL, C-UL, VDE
Standard: 400mW High sensitivity: 200 mW	1000 Vrms	-	4000 Vrms	10,000V		TÜV, UL, CSA, VDE
900 mw	1000 Vrms	-	5000 Vrms	10,000V	PCB, Top-mounting	
1400 mW	2500 Vrms	-	4000Vrms	6,000V		$\begin{gathered} 339 \\ \text { UL, } \\ \text { C-UL,VDE } \end{gathered}$

$\begin{gathered} \text { Type } \\ \star=\text { Popular Type } \\ \text { (Picture scale: DIN A4) } \end{gathered}$	Features	Switching current (Min.: see data sheet)	Max. switching voltage	Contact arrangement	Coil voltage
$\begin{aligned} & \text { LK } \\ & 24 \times 11 \times 25 \mathrm{~mm} \end{aligned}$	- High inrush current capability - High insulation resistance between contact and coil	Max.: 5A \square 5A	- 30V DC - 277 V AC	1 a	(DC) 5, 9, 12, 24V
LK-F 1:2 $26.3 \times 10 \times 26.1 \mathrm{~mm}$	- Low profile relay (10 mm height) The height has been reduced 60% compared with other LK relays. - High sensitivity: 250 mW - Silent version available (approx. reduction of 10 dB) - TV standards compatible:TV5 and TV-8	Max.: TV-5: 5A (AC) \square 5A TV-8: 8A (AC) \square 8A	- 277V AC	1 a	(DC) 5, 9, 12, 24V
LK-G	- Contact gap: 1 mm - Wide lineup / 3 types available - High insulation resistance - Slim profile - High noise immunity	Max.: 10A \square 10A Max.: 16A \square 16A	- 277 V AC	1 a	(DC) 5, 9, 12, 24V
	- High switching capacity 10A 277V AC - High insulation - High inrush current capability	Max.: 10A \square 10A	- 30V DC - 277V AC	1 a	(DC) $12,24 \mathrm{~V}$
	- Reduced noise (10 dB quieter than previous LK relay) - High sensitivity (nominal operating power 250 mW) - Compliant with TV standards (TV-5 and TV-8) - Slim shape	Max.: TV-5: 5A (AC) \square 5A TV-8: 8A (AC) \square 8A	- 30V DC - 277V AC	1 a	(DC) 5, 9, 12, 24V
	- High sensitivity 250 mV - High inrush current capability - High insulation resistance between contact and coil	Max.: 5A \square 5A	- 30V DC - 277 V AC	1 a	(DC) 5, 9, 12, 24V

Coil power	Breakdown voltage			Surge withstandvoltage	Mounting method (bottom view)	$\begin{gathered} \text { Page } \\ \text { Approvals } \end{gathered}$
	Between open contacts	Between contact sets	Contacts to coil			
530 mW	1000 V rms	-	4000Vrms	10,000V		$\begin{gathered} 344 \\ \text { UL, CSA, } \\ \text { TUVV, SEV, } \\ \text { SEMKO, VDE } \end{gathered}$
250 mW	1000 Vrms	-	4000Vrms	10,000V		347 UL, TÜV, SEMKO
530 mW	1000 Vrms	-	4000 Vrms	10,000V		$\begin{gathered} 353 \\ \text { UL, COAA, } \\ \text { TÜV } \end{gathered}$
530 mW	1000 Vrms	-	4000Vrms	10,000V		$\begin{gathered} 357 \\ \text { UL, CSA, } \\ \text { TÜV, SEV, } \\ \text { SEMKO, } \\ \text { VDE, TV rat- } \\ \text { ing } \end{gathered}$
250mW	1000 Vrms	-	4000 Vrms	10,000V		$\begin{gathered} 360 \\ \text { UL, CSA, } \\ \text { TUVV, SEV, } \\ \text { SEMKO, } \\ \text { vDE, TV rat- } \\ \text { ing } \end{gathered}$
250mW	1000 Vrms	-	4000 Vrms	10,000V		364 UL, CSA, TÜV, SEV, SEMKO, VDE, TV rating

$\begin{gathered} \text { Type } \\ \star=\text { Popular Type } \end{gathered}$ (Picture scale: DIN A4)	Features	Switching current (Min.: see data sheet)	Max. switching voltage	Contact arrangement	Coil voltage
$1: 2^{\text {LK-T }}$	- High inrush current capability - High insulation resistance - High noise immunity realized by the card separation structure between contact and coil	Max.: 8A \square ${ }^{8 A}$	- 277 V AC	1 a	(DC) 5, 9, 12, 24V
	- 10A compact cube power relay - Universal footprint - EN60335/4 compliant	Max.: 10A \square 10A	- 277V AC	1a, 1c	$\begin{gathered} \text { (DC) } 5,6,9,12,18, \\ 24,48 \mathrm{~V} \end{gathered}$
${ }_{1: 2}^{{ }^{{ }_{\mathrm{L}}^{\mathrm{Lz}}}}$	- Low profile relay (15.7 mm) - Low operating power (400 mV) - High temperature resistant $\left(105^{\circ} \mathrm{C}\right)$	Max.: 16A \square ${ }^{16 A}$	$\begin{array}{r} \cdot 250 \mathrm{~V} \text { DC } \\ \cdot 440 \mathrm{AC} \end{array}$	1a, 1c	$\begin{gathered} \text { (DC) } 5,9,12,18, \\ 24,48 \mathrm{~V} \end{gathered}$
	- High capacity to cut off DC voltage in a compact relay - No arc space required - Safety construction - Low operating noise - High contact reliability		- 400V DC	$1{ }^{1}$	$\begin{aligned} & \text { (DC) } 12,24,48, \\ & 100 \mathrm{~V} \end{aligned}$

Coil power	Breakdown voltage			Surge withstand voltage	Mounting method (bottom view)	$\begin{gathered} \text { Page } \\ \text { Approvals } \end{gathered}$
	Between open contacts	Between contact sets	Contacts to coil			
250mW	1000 V rms		4000Vrms	10,000V		${ }^{367}$ TÜV, SEV, SEMKO, VDE, TV rating
360 mW	750 Vrms		1500 Vrms			$\begin{gathered} 371 \\ \text { UL, CSA, } \\ \text { VDE } \end{gathered}$
400 mw	1000 Vrms	-	5000 Vrms	10,000 V		$\begin{gathered} 3 / 4 \\ \text { VDE, UL, } \end{gathered}$ CSA
Max.: 1.4W (10A) 4.5W (80A) 4-40W (300A)	2500 Vrms	-	2500 Vrms	-		171

Type 夫 = Popular Type (Picture scale: DIN A4)	Features	Switching current (Min.: see data sheet)	Max. switching voltage	Contact arrangement	Coil voltage
	- Wide applications - Versatile range - Foot print compatible with competitive types	Max.: 10A Min.: 1mA	- 30V DC - 250 V AC	$\underset{4 \mathrm{c}}{1 \mathrm{c}, 2 \mathrm{c}, 3 \mathrm{c},}$	$\begin{aligned} & \text { (DC) } 6,12,24,48, \\ & 110 \mathrm{~V}, \\ & \text { (AC) } 6,12,24, \\ & 48,120,240 \mathrm{~V} \end{aligned}$
	- High dielectric withstanding 10,000V surge - High inrush resistance (TV-15: 1 form A) (TV-10: 2 form A)		- 100V DC - 277V AC	1a, 2a	$\begin{aligned} & \text { (DC) } 6,12,24,48, \\ & 111 \mathrm{~V}, \\ & \text { (AC) } 12,24,48,120, \\ & 240 \mathrm{~V} \end{aligned}$
	- High capacity 20A	Max.: 20A \square 20A	- 125V DC - 250 V AC	2c, 3c, 4c	$\begin{gathered} \hline \text { (DC) } 6,12,24,48, \\ 110 \mathrm{~V} \\ \text { (AC) } 6,12,24,48, \\ 115,220,240 \mathrm{~V} \end{gathered}$
	- 2 contact arrangements same footprint as our popular HC relay - Coil breakdown detectionfunction (AC type with LED only) - Convenient screw terminal sockets with finger protection also available - Test button type available	Max.: 7A \square	- 30V DC - 250 V AC	2c, 4c	$\begin{aligned} & \text { (DC) } 12,24,48, \\ & 110 \mathrm{~V} \\ & \text { (AC) } 12,24,48, \\ & 100,120,200, \\ & 220 / 240 \mathrm{~V} \end{aligned}$
	- Large capacity - Compact size - Footprint compatible with competitive types	Max.: 15A Min.: 1mA	-30V DC - 250 V AC	1c, 2 c	$\begin{aligned} & \text { (DC) } 6,12,24,48, \\ & 110 \mathrm{~V} \\ & \text { (AC) } 6,12,24,48, \\ & 120,240 \mathrm{~V} \end{aligned}$

Coil power	Breakdown voltage			Surge withstand voltage	Mounting method (bottom view)	$\begin{gathered} \text { Page } \\ \text { Approvals } \end{gathered}$
	Between open contacts	Between contact sets	Contacts to coil			
(DC) 900 mW (AC) 1.2VA	700Vrms	700Vrms	2000Vrms	-		198 VDE, UL, CSA, SEV TV rating
(DC) 1920 mW (AC) 1.7-2.7VA	2000 V rms	4000 Vrms	5000 Vrms	10,000V		225 TÜV, UL, CSA, VDE, TV rating
2c: (DC): ~1400mW (AC): ~3.6VA 3c: (DC): ~1600mW (AC): ~5.2VA 4c: (DC): ~2000mW (AC): ~7.6VA	2000Vrms	2000 V rms	2000Vrms	-		$\begin{gathered} 239 \\ \text { UL, CSA } \end{gathered}$
$\begin{aligned} & \text { (DC) } 900 \mathrm{~mW} \\ & \text { (AC) } 1.2-1.5 \mathrm{VA} \end{aligned}$	1000 Vrms	2000 V rms	2000Vrms	-		248 VDE, UL, CSA, SEV TV rating
(DC) $900-1000 \mathrm{~mW}$ (AC) $1.2-1.3 \mathrm{VA}$	1000 V rms	1500 V rms	2000Vrms	-	PCB, Plug-in, Topmounting	$\begin{gathered} 259 \\ \text { UL, CSA, } \\ \text { comples with } \\ \text { TV5 } \end{gathered}$

$\begin{gathered} \text { Type } \\ \star=\text { Popular Type } \\ \text { (Picture scale: DIN A4) } \end{gathered}$	Features	Switching current (Min.: see data sheet)	Max. switching voltage	Contact arrangement	Coil voltage
	- Slim and compact size - High reliability	Max.: 5A \square 5A	- 30V DC - 250 V AC	1c, 2c	$\begin{aligned} & \text { (DC) } 5,6,12,24, \\ & 48 \mathrm{~V}, \\ & \text { (AC) } 100,120,240 \mathrm{~V} \end{aligned}$
	- High reliability	Max.: 10A \square 10A	- 125V DC - 250 V AC	2c, 3c, 4c	(DC) 12, 24, 48, 110 V (AC) 12, 24, 48, $115,220,240 \mathrm{~V}$
$\begin{aligned} & \text { PA } \\ & 20 \times 5 \times 12.5 \mathrm{~mm} \end{aligned}$	- Slim size permits higher density mounting - Wide switching capacity - High surge voltage $4,000 \mathrm{~V}$ - High breakdown voltage $2,000 \mathrm{~V}$	Max.: 5A \square 5A	$\begin{aligned} & \text { - } 110 \mathrm{~V} \text { DC } \\ & \cdot \\ & \hline \end{aligned}$	1 a	$\begin{aligned} & \text { (DC) } 5,6,9,12,18, \\ & 24 \mathrm{~V} \end{aligned}$
$\begin{aligned} & 1: 2^{\star_{\mathrm{PF}}} \\ & 28 \times 5 \times 15 \mathrm{~mm} \end{aligned}$	- Slim size permits higher density mounting - Wide switching capacity - High surge voltage $6,000 \mathrm{~V}$ - High breakdown voltage $4,000 \mathrm{~V}$ - Creepage \& clearance distance $>8 \mathrm{~mm}$	Max.: 6A \square 6A	-300V DC - 400 V AC	1a, 1c	(DC) 4.5, 5, 6, 12, $18,24,48,60 \mathrm{~V}$
	- High electrical noise immunity - High sensitivity 200 mW - High surge voltage $8,000 \mathrm{~V}$	Max.: 5A \square	$\begin{aligned} & \text { - } 110 \mathrm{~V} \text { DC } \\ & \cdot \\ & \hline \end{aligned}$	1 a	$\begin{gathered} \text { (DC) } 3,5,6,9,12, \\ 18,24 \mathrm{~V} \end{gathered}$

Coil power	Breakdown voltage			Surge withstand voltage	Mounting method (bottom view)	PageApprovals
	Between open contacts	Between contact sets	Contacts to coil			
(DC) 530 mW (AC) 0.9 VA	1000 V rms	3000 V rms	5000 Vrms	-	Plug-in, Screw terminal -	$\begin{gathered} 267 \\ \text { UL, C-UL, } \end{gathered}$ (VDE)
2c: (DC): ~1500mW (AC): ~2.0VA 3c: (DC): ~1500mW (AC): ~3.1VA 4c: (DC): ~1500mW (AC): ~4.8VA	2000 V rms	2000 Vrms	2000Vrms	-		$\begin{gathered} 277 \\ \text { VDE, UL, } \\ \text { CSA, SEV } \end{gathered}$
$\begin{aligned} & 120 \mathrm{~mW}(5-18 \mathrm{~V}) \\ & 180 \mathrm{~mW}(24 \mathrm{~V}) \end{aligned}$	1000 V rms	-	2000Vrms	4,000V		$\begin{gathered} 378 \\ \text { TÜV, UL, CSA } \end{gathered}$
170mW (5-24V) 217 mW (48V) 175mW (60V)	1000 V rms	-	4000Vrms	6,000V		382 UL, C-UL, VDE
200 mW	1000 V rms	-	4000Vrms	8,000V		$\begin{gathered} 388 \\ \text { UL, CSA, } \\ \text { TUV, SEV, } \\ \text { SEMKO, VDE } \end{gathered}$

Coil power	Breakdown voltage			Surge withstandvoltage	Mounting method (bottom view)	$\begin{gathered} \text { Page } \\ \text { Approvals } \end{gathered}$
	Between open contacts	Between contact sets	Contacts to coil			
700mw	500 Vrms	500 Vrms	500Vrms			397
Single side stable: 840-970mW (4.5, 12, 24 V) 2 coil latching: $700-900 \mathrm{~mW}$ (4.5, 12, 24 V) Latching with TTL driver (self cut-off function): 5, 12, 24V	500Vrms	500Vrms	500Vrms	-	SMA	397
Single side stable: 1540-1670mW (4.5, 12, 24V) 2 coil latching: 1200-1400mW (4.5, 12, 24V) Latching with TTL driver (self cut-off function): $5,12,24 \mathrm{~V}$	500 Vrms	500 Vrms	500 Vrms	-	SMA	${ }^{397}$
Single side stable: 840 mW ($4.5,12 \mathrm{~V}$) 970mW (24V) Latching: 700mW (SET 4.5V) 750 mW (SET 12V) 900mW (SET 24V)	500Vrms	500 Vrms	500Vrms	-	SMA	397

Type 夫 = Popular Type (Picture scale: DIN A4)	Features	Switching current	Max. switching voltage	$\begin{aligned} & \text { Contact } \\ & \text { arrangement } \end{aligned}$	Coil voltage
${ }^{1: 1}{ }^{\star}{ }^{\mathrm{RJ}(\mathrm{SMD})}$	- Shielded HF relay - Up to 8 GHz - Impedance 50Ω HF Characteristics at 5 GHz : - Isolation min. 35 dB - Insertion loss max. 0.5 dB - V.S.W.R. max.1.25	DC: 0.3 A HF: 1W (5 GHz)	- 30V DC	2 c	(DC) 3, 4.5, 12, 24V
	- HF relay in SMT version - Up to 1 GHz - Impedance 50Ω HF Characteristics at 1 GHz : - Isolation min. 20dB - Insertion loss max. 0.3dB - V.S.W.R. max. 1.2	DC: 1A HF: 3 W (1GHz, carrying point to carrying current)	- 30V DC	2c	$\begin{gathered} \text { (DC) } 1.5,3,4.5,5, \\ 6,9,12,24, \\ 48 \mathrm{~V} \end{gathered}$
	- HF relay - Up to 2.6 GHz - Impedance 50/75 - SMT and PCB version available HF Characteristics at 2.6 GHz - Isolation min 30dB - Insertion loss max. 0.7dB - V.S.W.R. max. 1.7	DC: 0.5 A HF: 1W (2.6 GHz)	- 30V DC	1 c	$\begin{gathered} \text { (DC) } 3,4.5,6,9,12 \text {, } \\ 24 \mathrm{~V} \end{gathered}$
${ }^{\star_{\text {RS }} \text { (SMD) }}$	- HF relay - Up to 3 GHz - Impedance 50/75 - Silent type available HF Characteristics at 3 GHz : - Isolation min. 30dB - Insertion loss max. 0.3dB - V.S.W.R. max. 1.4	DC: 0.5 A HF: 10W (3GHz, contact carrying)	-30V DC	1 c	$\begin{gathered} \text { (DC) } 3,4.5,9,12, \\ 24 \mathrm{~V} \end{gathered}$

Coil power	Breakdown voltage			Surge withstandvoltage	Mounting method (bottom view)	$\begin{gathered} \text { Page } \\ \text { Approvals } \end{gathered}$
	Between open contacts	Between contact sets	Contacts to coil			
Single side stable: 200 mW 2 coil latching: 150mW	500 Vrms	500 Vrms	500Vrms	-		415
Single side stable: 140mW (1.5-12V) 200mW (24V) 300 mW (48V) 1 coil latching: 70mW (1.5-12V) 100 mW (24V) 2 coil latching: 140mW (1.5-12V) 200mW (24V)	750 Vrms	1000 Vrms	1000 Vrms	-		392
Single side stable: 200 mW	500 V rms	-	1000Vrms	-		411
Single side stable: 200 mW 1 coil latching: 200mW 2 coil latching: 400mW	500 V rms	-	1000Vrms	-		430

$\begin{gathered} \text { Type } \\ \begin{array}{c} \star \text { Popular Type } \\ \text { (Picture scale: DIN A4) } \end{array} \end{gathered}$	Features	Switching current	Max. switching voltage	Contact arrangement	Coil voltage
$\begin{aligned} & \text { RK } \\ & 20.2 \times 11.2 \times 9.7 \mathrm{~mm} \end{aligned}$	- HF relay for broadcasting - Up to 1.5 GHz - Impedance 50/75 HF Characteristics: - Isolation min. 60dB (at 1.5 GHz) - Insertion loss max. 0.3dB (at 900 MHz) - V.S.W.R. max. 1.5dB (at 900MHz) - Latching types available	DC: 0.5 A HF: 10W	- 30V DC	1 c	$\begin{aligned} & \text { (DC) } 3,4.5,5,6,9 \text {, } \\ & 12,24 \mathrm{~V} \end{aligned}$
	- Low profile HF relay - Up to 1.8 GHz - Impedance 50Ω HF Characteristics at 1.8 GHz : - Isolation min. 10dB - Insertion loss max. 1dB - V.S.W.R. max. 1.3	DC: 0.1 A HF: 1W (1.8GHz)	- 30V DC	1 c	$\begin{gathered} \text { (DC) } 1.5,3,4.5,5, \\ 6,9,12,24 \mathrm{~V} \end{gathered}$
	- Shielded HF-Relay - Up to 3 GHz - Impedance 50Ω HF Characteristics at 2.5 GHz - Isolation min. 60dB - Insertion loss max. 0.2dB - V.S.W.R. max. 1.2	DC: 0.5 A HF: $10 \mathrm{~W}(2.5 \mathrm{GHz})$	- 30V DC	1 c	$\begin{aligned} & \text { (DC) } 3,4.5,6,9,12, \\ & 24 \mathrm{~V} \end{aligned}$
	- Shielded HF-Relay - 60W contact carrying power - Up to 2.5 GHz - Impedance 50Ω HF Characteristics at 2.5 GHz - Isolation min. 60dB - Insertion loss max. 0.2dB - V.S.W.R. max. 1.2	DC: 0.5A HF: 40W (2.5 GHz)	- 30V DC	1 c	$\begin{aligned} & \text { (DC) } 3,4.5,6,9,12, \\ & 24 \mathrm{~V} \end{aligned}$

Coil power	Breakdown voltage			Surge withstand voltage	Mounting method (bottom view)	$\begin{gathered} \text { Page } \\ \text { Approvals } \end{gathered}$
	Between open contacts	Between contact sets	Contacts to coil			
Single side stable: 200mW 1 coil latching: 200mW 2 coil latching: 400 mW	500 Vrms	-	1000Vrms	-		420
Single side stable: 140mW (1.5-12V) 270 mW (24V)	750 Vrms	-	1500 Vrms	-		425
Single side stable: 200 mW 1 coil latching: 200mW 2 coil latching: 400mW	500 Vrms	-	1000 V rms	-		447
Single side stable: 200mW 1 coil latching: 200 mW 2 coil latching: 400 mW	500 Vrms	-	1000 Vrms	-		451

Type 夫 = Popular Type (Picture scale: DIN A4)	Features	Switching current (Min.: see data sheet)	Max. switching voltage	$\begin{aligned} & \text { Contact } \\ & \text { arrangement } \end{aligned}$	Coil voltage
Twin					
${ }^{\star}{ }_{C J}$ 1:2 8 Pin Print: $13.7 \times 12.2 \times 13.5 \mathrm{~mm}$ PiP: $13.7 \times 12.2 \times 13.8 \mathrm{~mm}$ 10 Pin Print: $14.4 \times 12.2 \times 13.5 \mathrm{~mm}$ PiP: $14.4 \times 12.2 \times 13.8 \mathrm{~mm}$	- Super miniature size - High capacity in a compact body - H-bridge type available - Pin in Paste available	Max.: 20A (N.O.) \square 20A 10A (N.C.) \square 10A	- 16 V DC	$\begin{gathered} 1 \mathrm{c}, \\ 1 \mathrm{c} \times 2 \end{gathered}$	(DC) 12 V
	- Ultra small size - Twin (1 Form C x 2) - H-bridge type available - Pin in Paste available	Max.: 20A (N.O.) \square 20A 10A (N.C.) \square 10A	- 16 V DC	$\begin{gathered} 1 \mathrm{c}, \\ 1 \mathrm{c} \times 2 \end{gathered}$	(DC) 12 V
${ }^{\star}$ CT POWER $17.4 \times 14 \times 13.5 \mathrm{~mm}$	- Ultra small size - Twin (1 Form C x 2) - Footprint same as CT standard type - 30A switching capacity (motor load) - Silent operation - Pin in Paste available - H-bridge type available	Max.: 30A (N.O.) \square 30A 10A (N.C.) \square 10A	- 16 V DC	$\begin{gathered} 1 \mathrm{c}, \\ 1 \mathrm{c} \times 2 \end{gathered}$	(DC) 12 V
Single					
	- 40 A rating at $85^{\circ} \mathrm{C}\left(185^{\circ} \mathrm{F}\right)$ - ISO type terminals - High shock resistance for drop test requirements - Low temperature rise	Max.: 70A (N.O. H type) \square 40A (1a, 1c N.O.) \square 40A 30A (1c N.C.) \square 30A	$\begin{aligned} & \cdot 16 \mathrm{~V} D C \\ & \text { (12V DC type) } \\ & \cdot 32 \mathrm{~V} D \mathrm{C} \\ & \text { (24V DC type) } \end{aligned}$	1a, 1c	(DC) $12,24 \mathrm{~V}$

Coil power	Breakdown voltage			Surge withstandvoltage	Mounting method (bottom view)	$\begin{gathered} \text { Page } \\ \text { Approvals } \end{gathered}$
	Between open contacts	Between contact sets	Contacts to coil			
Standard: 800mW High sensitivity: 640 mW	500Vrms		500Vrms			475
800 mW	500Vrms		500Vrms			507
1000mW	500 Vrms	-	500Vrms	-		513
1400 mW (12V DC type) 1800 mW (24V DC type) 1800 mW (12V DC, H type)	500 V rms	-	500 V rms	-		464

Type * = Popular Type (Picture scale: DIN A4	Features	Switching current (Min.: see data sheet)	Max. switching voltage	$\begin{aligned} & \text { Contact } \\ & \text { arrangement } \end{aligned}$	Coil voltage
	- Half the size, replaces Mini-ISO relay - Wide line-up - Micro-ISO terminal type	Max.: 35A (N.O.) \square 35 A 20 A (N.C.) \square 20A	- 16V DC (12V DC type) -32V DC (24V DC type)	1a, 1c	(DC) 12, 24V
1:2	- Low profile - Low temperature rise - Low sound pressure level - Wide line-up - Micro-ISO terminal type	Max.: 20A (N.O.) \square 20A 10A (N.C.) \square 10A	- 16 V DC	1a, 1c	(DC) 12 V
	- Best space savings in its class - Replaces micro ISO relay - High current-carrying capacity - Sealed type	Max.: \square 30A	- 16 V DC	1 a	(DC) 12 V
	- Space-saving design - High switching capacity (up to 30A) - Pin in Paste type available	Max.: 30A (N.O.) \square 30 A 25A (N.C.) \square 25A	- 16 V DC	1a, 1c	(DC) 12 V
$1: 2{ }_{14 \times 13 \times 9.5 \mathrm{~mm}}^{\star_{\mathrm{CP}}}$	- Low profile - High capacity - Simple footprint enables ease of PC board layout - 24 V DC type available on request	Max.: 20A (N.O.) \square 20A 10A (N.C.) \square 10A	- 16 V DC	1a, 1c	(DC) $12 \mathrm{~V}, 24 \mathrm{~V}$
CP POWER 1:2 $14 \times 13 \times 10.5 \mathrm{~mm}$	- Low profile - High capacity type: 45A maximum carrying current	Max.: 20A (N.O.) \square 20A 10A (N.C.) \square 10A	- 16 V DC	1a, 1c	(DC) 12 V
$\begin{aligned} & { }^{{ }^{2} \text { CP (SMD) }}{ }^{2}{ }^{2} \times 13 \times 9.5 \mathrm{~mm} \end{aligned}$	- Low profile - High capacity - Simple footprint enables ease of PC board layout	Max.: 20A (N.O.) \square 20A 10A (N.C.) \square 10A	- 16 V DC	1 c	(DC) 12 V

Coil power	Breakdown voltage			Surge withstandvoltage	Mounting method (bottom view)	$\begin{gathered} \text { Page } \\ \text { Approvals } \end{gathered}$
	Between open contacts	Between contact sets	Contacts to coil			
1500mW (12V DC type) 1800mW (24V DC type)	500 Vrms	-	500 Vrms	-		481
800 mw	500 Vrms	-	500Vrms	-		518
$\begin{aligned} & 450 \mathrm{~mW} \\ & 640 \mathrm{~mW} \end{aligned}$	500 V rms	-	500Vrms	-		486
640 mW	500 Vrms	-	500Vrms	-		490
640 mW	500 Vrms	-	500 Vrms	-		495
$\begin{aligned} & 450 \mathrm{~mW} \\ & 640 \mathrm{~mW} \end{aligned}$	500 V rms	-	500 V rms	-		499
640 mW	500 Vrms	-	500 Vrms	-		495

Type \star = Popular Type (Picture scale: DIN A4)	Features	Switching current (Min.: see data sheet)	Max. switching voltage	$\begin{aligned} & \text { Contact } \\ & \text { arrangement } \end{aligned}$	Coil voltage
	- Super miniature size - High capacity in a compact body - Pin in Paste type available	Max.: 20A (N.O.) \square ${ }^{20 \mathrm{~A}}$ 10A (N.C.) \square 10A	- 16 V DC	1c, 1c $\times 2$	(DC) 12 V
	- Ultra small size - Twin (1 Form C x 2) - H-bridge type available - Pin in Paste type available	Max. 20A (N.O.) \square 20A 10A (N.C.) \square 10A	- 16 V DC	1c, 1c $\times 2$	(DC) 12 V
	- Ultra small size - Twin (1 Form C x 2) - Footprint same as CT standard type - 30A switching capacity (motor load) - Silent operation - H-bridge type available - Pin in Paste type available	Max.: 30A (N.O.) \square 30A 10A (N.C.) \square 10 A	- 16 V DC	1c, 1c $\times 2$	(DC) 12 V
$\begin{aligned} & 17 \times 13 \times 16.6 \mathrm{~mm} \\ & \hline \text { CQ } \end{aligned}$	- Quiet - Less space required	Max.: 20A (N.O.) \square 20A 10A (N.C.) \square 10A	- 16 V DC	1 c	(DC) 12 V
$\star_{\text {JJM }}$ 1:2 $15.5 \times 12 \times 13.9 \mathrm{~mm}$	- Compact (half-size) - Perfect for automobile electrical systems	Max.: 20A (N.O.) \square 20A 10A (N.C.) \square 10A	- 16 V DC	1a, 1c	(DC) 12 V
JJM-DM 1:2 $15.5 \times 12 \times 13.9 \mathrm{~mm}$	- Small size - Standard terminal pitch employed - Double make contact arrangement	$\begin{aligned} & \text { Max.: } 2 \times 6 \mathrm{~A} \\ & \begin{array}{c} 6 \mathrm{~A} \\ \text { (}{ }^{6 \mathrm{~A}} \end{array} \end{aligned}$	- 16 V DC	$\begin{gathered} \text { Double } \\ \text { make con- } \end{gathered}$ tact	(DC) 12 V
$1: 2$	- Low pick-up voltage for high ambient use	Standard: Max.: 10A \square 10A High capacity: Max.: 15A 15A	- 16 V DC	1a, 1c	(DC) 9, 12V

Coil power	Breakdown voltage			Surge withstand voltage	Mounting method (bottom view)	Page Approvals
	Between open contacts	Between contact sets	Contacts to coil			
Standard: 800mW High sensitivity: 640mW	500 Vrms	-	500Vrms	-		475
800 mW	500 V rms	-	500Vrms	-		507
1000 mW	500 Vrms	-	500Vrms	-		$\stackrel{513}{-}$
640 mW	500 Vrms	-	500Vrms	-		503
640mw	500 Vrms	-	500 V rms	-		538
1000 mW	500 Vrms	-	500 Vrms	-		542
640mw	750 Vrms	-	1500 Vrms	-		546

Type * = Popular Type (Picture scale: DIN A4)	Features	Switching current (Min.: see data sheet)	Max. switching voltage voltage	Contact arrangement	Coil voltage
$21.5 \times 14.4 \times 37 \mathrm{~mm}$	- Small size - Light weight - Completely water tight - Automotive direct plug-in	Max.: 20A (1a, 1.4W type) \square 20A 30A (1a, 1.8W type) \square 30A 20A (1b, 1c) \square 20A	- 15V DC (1c-12V DC type) -16V DC (1a, 1b-12VDC type) - 30V DC (1c-24V DC type)	1a, 1b, 1c	(DC) $12,24 \mathrm{~V}$

	- Small size \& light weight - No arc space is required - Safety construction - Low operating noise - High contact reliability	Max.: 10A (1a) \square 10A 20A (1a) \square 20A 80A (1a)	- 400 V DC	1 a	(DC) $12,24 \mathrm{~V}$
	- High switching capacity - Charging of electric vehicles $115 \mathrm{~V} / 230 \mathrm{~V}$ AC	Max.: 30A (1a) \square 30 A 20A (1c N.O.) \square 20A 10A (1c N.C.) \square 10A	- 30V DC - 277V AC	1a, 1c	$\begin{gathered} \text { (DC) } 5,6,9,12,15, \\ 18,24 \mathrm{~V} \end{gathered}$
1:2	- Ideal relay for high output, 3-phase motors (Electric Power Steering) - High cut-off current capability - High carrying current	Max.: \square	- 14V DC	2a	(DC) 12 V
	- Automotive high-capacity DC cutoff relay - Supports even 42 V vehicles	Max.: 100A (1a) \square	- 42 V DC	1 a	(DC) 12, 24, 36V

Coil power	Breakdown voltage			Surge withstand voltage	Mounting method (bottom view)	Page Approvals
	Between open contacts	Between contact sets	Contacts to coil			
$\begin{aligned} & 1800 \mathrm{~mW} \\ & 1400 \mathrm{~mW} \text { (type S) } \end{aligned}$	500 Vrms	-	500 Vrms	-		458
Stable: -1240mW (10A, 12/24V) - 3900 mW (20A, 12V) - 4200 mW (80A/120A, 12/24V) - 3600mW (300A, 12V) -3800mW (300A, 24V) Inrush: -37.9W (300A, 12V) -44.4W (300A, 24V)	2500 V rms	-	2500 V rms	-	Screw terminal or TM with terminal protection cover	530
800 mW	1200 V ms	-	2500 Vrms	-	PCB, Top-mounting 1a 6 1c	$\begin{gathered} 549 \\ \text { UL, CSA } \end{gathered}$
1400mW	500 Vrms	-	500 Vrms	-		523
5000 mW	1500 Vrms	-	2500 Vrms	-	Screw terminal	526

Type * = Popular Type (Picture scale: DIN A4)	Features	Switching current	Max. switching	Contact arrangement	Coil voltage
	- Polarised relay with forcibly guided contacts according to EN50205, Type B - Safety double contact - Extremely small total power loss - Relay height: 14.5 mm	Max.: 8A Min.: 10 mA	- 500V DC - 500 V AC	4a, 2b	$\begin{aligned} & \text { (DC) } 5,9,12,16, \\ & 18,21,24,36, \\ & 48,60 \mathrm{~V} \end{aligned}$
	- Polarised relay with forcibly guided contacts according to EN50205, Type B - Safety double contact	Max.: 8A Min.: 10 mA	- 400V DC - 400 V AC	4a, 4b	$\begin{aligned} & \text { (DC) } 5,9,12,18, \\ & 21,24,36,48, \\ & 60 \mathrm{~V} \end{aligned}$
$53.3 \times 25 \times 16.5 \mathrm{~mm}$	- Polarised relay with forcibly guided contacts according to EN 50205, Type A - Safety double contact - For applications according to EN 50155 - IEC/EN 60335-1 (GWT) compliant	Max.: 8A Min.: 10 mA	$\cdot 400 \mathrm{VDC}$ - 400 V AC	2a, 2b	$\begin{aligned} & \text { (DC) } 5,9,12,18, \\ & 21,24,36,48, \\ & 60 \mathrm{~V} \end{aligned}$
 $53.3 \times 25 \times 16.5 \mathrm{~mm}$	- Polarised relay with forcibly guided contacts according to EN 50205, Type A - For applications according to EN 50155 - IEC/EN 60335-1 (GWT) compliant	Max.: 8A Min.: 10 mA	- 400V DC - 400 V AC	3a, 1b	$\begin{aligned} & \text { (DC) } 5,9,12,18, \\ & 21,24,36,48, \\ & 60 \mathrm{~V} \end{aligned}$
	- Polarised relay with forcibly guided contacts according to EN 50205, Type A - 4 -pole and 6 -pole type with various contact arrangements - Slim profile reduces mounting area - PC board sockets and DINrail terminal socket available	Max.: 6A Min.: 1mA	$\cdot 30 \mathrm{VDC}$ $\text { - } 250 \mathrm{~V} \text { AC }$	$\begin{gathered} \text { 2a2b, } \\ \text { 3ab, } \\ \text { 4a2b, } \\ \text { 5a1b, 3a3b } \end{gathered}$	$\begin{gathered} \text { (DC) } 12,16,18,21, \\ 24,48 \mathrm{~V} \end{gathered}$

Coil power	Breakdown voltage			Surge withstand voltage	Mounting method (bottom view)	$\begin{gathered} \text { Page } \\ \text { Approvals } \end{gathered}$
	Between open contacts	Between contact sets	Contacts to coil			
$\begin{aligned} & 390 \mathrm{~mW}(5-24 \mathrm{~V}) \\ & 420 \mathrm{~mW}(36-60 \mathrm{~V}) \end{aligned}$	2500 Vrms	4000 Vrms	5000 Vrms			$\begin{gathered} 563 \\ \text { UL, CSA, } \\ \text { SEV, TÜV } \end{gathered}$
500 mw	2500Vrms	2500Vrms	2500 Vrms			$\begin{gathered} 560 \\ \text { UL, CSA, } \\ \text { SEV, TUVV } \end{gathered}$
500 mW	2500 Vrms	2500 Vrms	2500 Vrms	-	PCB Grid 2.5 mm 2 c 2 azb	UL, CSA, SEV, TÜV
500 mW	2500 Vrms	2500 Vrms	2500 Vrms	-		UL, CSA, SEV, TÜV
360 mW (4 poles) 500 mW (6 poles)	1500 V rms	$2500 \mathrm{Vrms} /$ 4000 Vrms	4000Vrms	-		$\begin{gathered} 571 \\ \text { UL, CSA, } \\ \text { TÜV } \end{gathered}$

$\overline{\text { Signal Relays }}$

Panasonic ideas for life

Long seller, backed

 by product variety and high reliability
FEATURES

1. Breakthrough height of 9.8 mm .386 inch beats the 10 mm .394 inch limit 1 c and 2 c all have the same height (9.8 mm .386 inch). The width of the relay is also the same (9.9 mm .390 inch). Since the only size variable is the length, the shared form makes mounting on printed printing wiring boards easy.
2. Suitable for use in difficult environments
Epoxy resin seals the parts and cut off the external atmosphere, thus enabling use in difficult environments.
3. Can be used with automatic solder and automatic wash systems Automatic soldering and automatic washing can be carried out once the parts are mounted on PC boards.
4. Gold-clad twin contacts ensure high reliability
Highly stable gold cladding on the contacts ensures that contact resistance changes little over time. Furthermore, the use of twin contacts, a configuration that performs with superior contact reliability, ensures extremely low contact failure rates even under low level loads.
5. Polarized magnetic circuits realize resistance to shock and vibration High-performance polarized magnetic circuits that utilize the energy of permanent magnets have made it possible to create relays with strong resistance to shock and vibration.
6. DIL terminal array enables use of IC sockets
7. Widening scope of application with multicontact latching
In addition to single side stable types, you can take advantage of the memory of functions of convenient 1 coil or 2 coil latching relays.

TYPICAL APPLICATIONS

Besides telecommunications, measuring devices, office equipment, computers and related equipment, DS relays are also recommended for a broad range of applications including business devices, audio systems, and industrial equipment.

ORDERING INFORMATION

DS E
Contact arrangement 1: 1 Form C 2: 2 Form C
Sensitivity M: 400 mW nominal operating power S: 200 mW nominal operating power
Operating function Nil: Single side stable L2: 2 coil latching
Nominal coil voltage $\text { DC } 3,5,6,9,12,24,48 \mathrm{~V}$
Nil: Standard polarity type R: Reverse polarity type

[^0]
TYPES

1. Standard type

Contact arrangement	Nominal coil voltage	Single side stable type	2 coil latching type
		Part No.	Part No.
1 Form C	1.5 V DC	DS1E-M-DC1.5V	DS1E-ML2-DC1.5V
	3V DC	DS1E-M-DC3V	DS1E-ML2-DC3V
	5V DC	DS1E-M-DC5V	DS1E-ML2-DC5V
	6V DC	DS1E-M-DC6V	DS1E-ML2-DC6V
	9V DC	DS1E-M-DC9V	DS1E-ML2-DC9V
	12 V DC	DS1E-M-DC12V	DS1E-ML2-DC12V
	24 V DC	DS1E-M-DC24V	DS1E-ML2-DC24V
	48 V DC	DS1E-M-DC48V	DS1E-ML2-DC48V
2 Form C	1.5 V DC	3 DS2E-M-DC1.5V	\% DS2E-ML2-DC1.5V
	3V DC	DS2E-M-DC3V	DS2E-ML2-DC3V
	5V DC	DS2E-M-DC5V	DS2E-ML2-DC5V
	6 V DC	DS2E-M-DC6V	DS2E-ML2-DC6V
	9V DC	DS2E-M-DC9V	DS2E-ML2-DC9V
	12 V DC	DS2E-M-DC12V	DS2E-ML2-DC12V
	24 V DC	DS2E-M-DC24V	DS2E-ML2-DC24V
	48 V DC	DS2E-M-DC48V	DS2E-ML2-DC48V

Standard packing: Tube: 50 pcs.; Case: 500 pcs.

2. High sensitivity type

Contact arrangement	Nominal coil voltage	Single side stable type	2 coil latching type
		Part No.	Part No.
1 Form C	1.5 V DC	DS1E-S-DC1.5V	DS1E-SL2-DC1.5V
	3 V DC	DS1E-S-DC3V	DS1E-SL2-DC3V
	5 V DC	DS1E-S-DC5V	DS1E-SL2-DC5V
	6 V DC	DS1E-S-DC6V	DS1E-SL2-DC6V
	9 VDC	DS1E-S-DC9V	DS1E-SL2-DC9V
	12 V DC	DS1E-S-DC12V	DS1E-SL2-DC12V
	24 V DC	DS1E-S-DC24V	DS1E-SL2-DC24V
	48 V DC	DS1E-S-DC48V	DS1E-SL2-DC48V
2 Form C	1.5 V DC	3 DS2E-S-DC1.5V	3 DS2E-SL2-DC1.5V
	3 V DC	DS2E-S-DC3V	DS2E-SL2-DC3V
	5 V DC	DS2E-S-DC5V	DS2E-SL2-DC5V
	6V DC	DS2E-S-DC6V	DS2E-SL2-DC6V
	9V DC	DS2E-S-DC9V	DS2E-SL2-DC9V
	12 V DC	DS2E-S-DC12V	DS2E-SL2-DC12V
	24 V DC	DS2E-S-DC24V	DS2E-SL2-DC24V
	48 V DC	DS2E-S-DC48V	DS2E-SL2-DC48V

Standard packing: Tube: 50 pcs.; Case: 500 pcs.
Notes: 1.1 coil latching type are manufactured by lot upon receipt of order. $\&$
2. Reverse polarity types available (add suffix-R)

RATING

1. Coil data
1) Single side stable type

Type	Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating current $[\pm 10 \%$] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{aligned} & \text { Coil resistance } \\ & {[\pm 10 \%]} \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \\ & \hline \end{aligned}$	Nominal operating power	Max. applied voltage (at $50^{\circ} \mathrm{C} 122^{\circ} \mathrm{F}$)
Standard (M) type	1.5 V DC	$70 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$10 \% \mathrm{~V}$ or more of nominal voltage (Initial)	266.7 mA	5.63Ω	400 mW	1 Form C: $120 \% \mathrm{~V}$ of nominal voltage 2 Form C: $150 \% \mathrm{~V}$ of nominal voltage
	3V DC			133.3 mA	22.5Ω		
	5V DC			80.0 mA	62.5Ω		
	6V DC			66.7 mA	90Ω		
	9V DC			44.4 mA	203Ω		
	12 V DC			33.3 mA	360Ω		
	24V DC			16.7 mA	1,440 Ω		
	48 V DC			8.3 mA	$5,760 \Omega$		
High sensitivity (S) type	1.5 V DC	1 Form C: $80 \% \mathrm{~V}$ or less of nominal voltage 2 Form C: $70 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$10 \% \mathrm{~V}$ or more of nominal voltage (Initial)	133.3 mA	11.3Ω	200 mW	1 Form C: $160 \% \mathrm{~V}$ of nominal voltage
	3V DC			66.7 mA	45Ω		
	5V DC			40.0 mA	125Ω		
	6V DC			33.3 mA	180Ω		
	9V DC			22.2 mA	405Ω		2 Form C:
	12 V DC			16.7 mA	720Ω		200\% V of
	24 V DC			8.3 mA	2,880 Ω		nominal voltage
	48 V DC			4.2 mA	11,520		

2) 2 coil latching type

Type	Nominal coil voltage	$\begin{aligned} & \text { Set voltage } \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating current [$\pm 10 \%$] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		$\begin{aligned} & \text { Coil resistance } \\ & {[\pm 10 \%]} \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$		Nominal operating power		Max. applied voltage (at $50^{\circ} \mathrm{C} 122^{\circ} \mathrm{F}$)
				Set coil	Reset coil	Set coil	Reset coil	Set coil	Reset coil	
Standard (M) type	1.5 V DC	$70 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$70 \% \mathrm{~V}$ or less of nominal voltage (Initial)	240 mA	240 mA	6.25Ω	6.25Ω	360 mW	360 mW	1 Form C: $120 \% \mathrm{~V}$ of nominal voltage 2 Form C: $150 \% \mathrm{~V}$ of nominal voltage
	3V DC			120 mA	120 mA	25Ω	25Ω			
	5 V DC			72 mA	72 mA	69.4Ω	69.4Ω			
	6V DC			60 mA	60 mA	100Ω	100Ω			
	9V DC			40 mA	40 mA	225Ω	225Ω			
	12V DC			30 mA	30 mA	400Ω	400Ω			
	24 V DC			15 mA	15 mA	1,600	1,600			
	48 V DC			7.5 mA	7.5 mA	$6,400 \Omega$	6,400			
High sensitivity (S) type	1.5 V DC	1 Form C: $80 \% \mathrm{~V}$ or less of nominal voltage 2 Form C: $70 \% \mathrm{~V}$ or less of nominal voltage (Initial)	1 Form C: $80 \% \mathrm{~V}$ or less of nominal voltage	120 mA	120 mA	12.5Ω	12.5Ω	180 mW	180 mW	1 Form C: nominal voltage 2 Form C: 200% V of nominal voltage
	3V DC			60 mA	60 mA	50Ω	50Ω			
	5V DC			36 mA	36 mA	139Ω	139Ω			
	6V DC			30 mA	30 mA	200Ω	200Ω			
	9V DC		2 Form C:	20 mA	20 mA	450Ω	450Ω			
	12 V DC			15 mA	15 mA	800Ω	800Ω			
	24 V DC			7.5 mA	7.5 mA	3,200	3,200			
	48 V DC			3.75 mA	3.75 mA	12,800	12,800 Ω			

2. Specifications

*1This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.
(SX relays are available for low level load switching [10V DC, 10mA max. level])
*2Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$
*3Refer to "6. Usage, Storage and Transport Conditions" in AMBIENT ENVIRONMENT (page 599).

REFERENCE DATA

1. Maximum switching capacity

4-(1). Coil termperature rise
(2 Form C single side stable type)
Tested sample: DS2E-M-DC12V
Point measured: Inside the coil
Ambient temperature: 18° to $19^{\circ} \mathrm{C} 64^{\circ}$ to $66^{\circ} \mathrm{F}$

2. Life curve (Resistive load)

4-(2). Coil temperature rise
(2 Form C 2 coil latching type)
Tested sample: DS2E-ML2-DC12V
Point measured: Inside the coil
Ambient temperature: 20° to $21^{\circ} \mathrm{C} 68^{\circ}$ to $70^{\circ} \mathrm{F}$

3. Contact reliability for AC loads Tested sample: DS2E-M-DC24V 10 pcs. Operating speed: 20 cpm Detection level: $200 \mathrm{~m} \Omega$

6-(1). Influence of adjacent mounting (1 Form C)

6-(2). Influence of adjacent mounting (2 Form C)

5. Operate and release time characteristics (2 Form C single side stable type) Test condition: Without diode connected to coil in parallel

DIMENSIONS (mm inch) Interested in CAD data? You can obtain CAD data for all products with a CAD Data mark from your local Panasonic Electric Works representative.

DS (1 Form C)

Single side stable, 2 coil latching
External dimensions

CAD Data

General tolerance: $\pm 0.3 \pm .012$
Note: External dimensions of 1 coil latching types are same as single side stable type.

Single side stable

PC board pattern (Bottom view)
Single side stable
2 coil latching

Schematic (Bottom view)
Single side stable

(Deenergized condition) 2 coil latching

(Reset condition)
Tolerance: $\pm 0.1 \pm .004$

External dimensions

CAD Data

General tolerance: $\pm 0.3 \pm .012$
Note: External dimensions of 1 coil latching types are same as single side stable type.

PC board pattern (Bottom view)

Schematic (Bottom view)

(Deenergized condition)

Tolerance: $\pm 0.1 \pm .004$

External dimensions

CAD Data

General tolerance: $\pm 0.3 \pm .012$

PC board pattern (Bottom view)

Schematic (Bottom view)

NOTE

Coil connection
When connecting coils, refer to the wiring diagram to prevent mis-operation or malfunction.

For Cautions for Use, see Relay Technical Information (page 582).

Panasonic ideas for life

FEATURES

1. 2 Form C contact
2. High sensitivity- $\mathbf{2 0 0} \mathrm{mW}$ nominal operating power
3. High breakdown voltage

1500 V FCC surge between open contacts
4. DIP-2C type matching 16 pin IC socket
5. Sealed construction

TYPICAL APPLICATIONS

1. Telecommunication equipment
2. Office equipment
3. Computer peripherals
4. Security alarm systems
5. Medical equipment

ORDERING INFORMATION

Notes: 1. Reverse polarity types available (add suffix-R)
2. UL/CSA approved type is standard.

TYPES

Contact arrangement	Nominal coil voltage	Single side stable type
		Part No.
2 Form C	1.5 V DC	DS2Y-S-DC1.5V
	3 V DC	DS2Y-S-DC3V
	5V DC	DS2Y-S-DC5V
	6V DC	DS2Y-S-DC6V
	9V DC	DS2Y-S-DC9V
	12 V DC	DS2Y-S-DC12V
	24V DC	DS2Y-S-DC24V
	48 V DC	DS2Y-S-DC48V

[^1]
RATING

1. Coil data

Single side stable type

Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating current $[\pm 10 \%]\left(\right.$ at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Coil resistance } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$	Nominal operating power	Max. applied voltage (at $50^{\circ} \mathrm{C} 122^{\circ} \mathrm{F}$)
1.5 V DC	$70 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$10 \% \mathrm{~V}$ or more of nominal voltage (Initial)	132.7 mA	11.3Ω	200 mW	$200 \% \mathrm{~V}$ of nominal voltage
3V DC			66.7 mA	45Ω		
5 V DC			40 mA	125Ω		
6V DC			33.3 mA	180Ω		
9V DC			22.2 mA	405Ω		
12 V DC			16.7 mA	720Ω		
24 V DC			8.3 mA	2,880 ${ }^{\text {a }}$		
48 V DC			6.3 mA	7,680	300 mW	

2. Specifications

Characteristics	Item		Specifications
Contact	Arrangement		2 Form C
	Initial contact resistance, max.		Max. $50 \mathrm{~m} \Omega$ (By voltage drop 6 V DC 1A)
	Contact material		Ag+Au clad
Rating	Max. switching power		$60 \mathrm{~W}, 62.5 \mathrm{VA}$ (resistive load)
	Max. switching voltage		220 V DC, 250 V AC
	Max. switching current		2 A
	Max. carrying current		3 A
	Minimum operating power		Approx. 98 mW (147 mW : 48 V)
	Nominal operating power		Approx. 200 mW (300 mW : 48 V)
Electrical characteristics	Insulation resistance (Initial)		Min. $100 \mathrm{M} \Omega$ (at 500 V DC) Measurement at same location as "Initial breakdown voltage" section.
	Breakdown voltage (Initial)	Between open contacts	750 Vrms for 1 min . (Detection current: 10 mA .)
		Between contact sets	$1,000 \mathrm{Vrms}$ for 1 min . (Detection current: 10 mA .)
		Between contact and coil	$1,000 \mathrm{Vrms}$ for 1 min . (Detection current: 10 mA .)
	FCC surge breakdown voltage between contacts and coil		1,500 V
	Temperature rise (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. $65^{\circ} \mathrm{C}$ with nominal coil voltage across coil and at nominal switching capacity
	Operate time [Set time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Approx. 4 ms [approx. 3 ms] (Nominal coil voltage applied to the coil, excluding contact bounce time.)
	Release time [Reset time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Approx. 3 ms [approx. 3 ms] (Nominal coil voltage applied to the coil, excluding contact bounce time.) (without diode)
Mechanical characteristics	Shock resistance	Functional	Min. $490 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$.)
		Destructive	Min. $980 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 6 ms .)
	Vibration resistance	Functional	10 to 55 Hz at double amplitude of 3.3 mm (Detection time: $10 \mu \mathrm{~s}$.)
		Destructive	10 to 55 Hz at double amplitude of 5 mm
Expected life	Mechanical		Min. 10^{8}
	Electrical		5×10^{5} (1 A 30 V DC), 10^{5} (2 A 30 V DC)
Conditions	Conditions for operation, transport and storage*		Ambient temperature: $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+158^{\circ} \mathrm{F}$ Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature)
	Max. operating speed (at rated load)		60 cpm
Unit weight			Approx. 4g . 140 oz

* Refer to "6. Usage, Storage and Transport Conditions" in AMBIENT ENVIRONMENT (page 599).

REFERENCE DATA

1. Maximum switching capacity

4-(1) Influence of adjacent mounting Tested sample: DS2Y-S-DC12V, 10 pcs.
Ambient temperature: $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$
TEST METHOD

1. Apply nominal voltage to No. (1) and (3) DS2Y relays.
2. Measure pick-up voltage and drop-out voltage of No. (2) relay when inter-relay distance (ℓ) changes.
3. Coil temperature rise (Single side stable)

Tested sample: DS2Y-S-DC12V, 5 pcs.
Measured portion: Inside the coil
Ambient temperature: $21^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C} 70^{\circ} \mathrm{F}$ to $77^{\circ} \mathrm{F}$

3. Operate/release time for single side stable (Without diode)
Tested sample: DS2Y-S-DC12V, 10 pcs. Ambient temperature: $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$

4-(2) Influence of adjacent mounting
Tested sample: DS2Y-S-DC12V, 10 pcs.
Ambient temperature: $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$
TEST METHOD

1. Apply nominal voltage to No. (1) and (3) DS2Y relays.
2. Measure pick-up voltage and drop-out voltage of No. (2) relay when inter-relay distance (ℓ) changes.

DIMENSIONS (mm inch) Interested in CAD data? You can obtain CAD data for all products with a CAD Data mark from your local Panasonic Electric Works representative.

Single side stable

CAD Data

External dimensions

General tolerance: $\pm 0.3 \pm .012$

PC board pattern (Copper-side view)

matching 16 pin IC socket
Tolerance: $\pm 0.1 \pm .004$

Schematic (Bottom view) (Deenergized position)

For Cautions for Use, see Relay Technical Information (page 582).

Panasonic ideas for life

High sensitivity of nominal operating power 100 mW is achived. Compact slim body saves space.

FEATURES

 designs.

1. Compact slim body saves space. Thanks to the small surface area of 5.7 $\mathrm{mm} \times 10.6 \mathrm{~mm} .224$ inch $\times .417$ inch and low height of 9.0 mm .354 inch, the packaging density can be increased to allow for much smaller
2. High sensitivity single side stable type (Nominal operating power: 100 mW) is available.
3. Outstanding surge resistance Surge breakdown voltage between contacts and coil:
$2,500 \mathrm{~V} 2 \times 10 \mu \mathrm{~s}$ (Telcordia)
Surge breakdown voltage between open contacts:
$1,500 \vee 10 \times 160 \mu \mathrm{~s}$ (FCC part 68)
4. The use of twin crossbar contacts ensures high contact reliability. AgPd contact is used because of its good sulfide resistance. Adopting lowgas molding material. Coil assembly molding technology which avoids generating volatile gas from coil.
5. Increased packaging density Due to highly efficient magnetic circuit design, leakage flux is reduced and changes in electrical characteristics from components being mounted
close-together are minimized. This all means a packaging density higher than ever before.
6. Nominal operating power: 140 mW
7. Outstanding vibration and shock resistance
Functional shock resistance: $750 \mathrm{~m} / \mathrm{s}^{2}$
Destructive shock resistance:
$1,000 \mathrm{~m} / \mathrm{s}^{2}$
Functional vibration resistance:
10 to 55 Hz (at double amplitude of 3.3 mm .130 inch)

Destructive vibration resistance: 10 to 55 Hz (at double amplitude of 5 mm .197 inch)
8. Sealed construction allows automatic washing.

TYPICAL APPLICATIONS

1. Telephone switchboard
2. Telecommunications equipment
3. Security
4. Measurement equipment
5. Consumer electronic and audio visual equipment

ORDERING INFORMATION

GN（AGN）

TYPES

1．Standard PC board terminal

Nominal coil voltage	Single side stable	1 coil latching	High sensitivity single side stable
	Part No．	Part No．	Part No．
1．5V DC	AGN2001H	AGN2101H	AGN2601H
3V DC	AGN20003	AGN21003	AGN26003
4．5V DC	AGN2004H	AGN2104H	AGN2604H
6V DC	AGN20006	AGN21006	AGN26006
9V DC	AGN20009	AGN21009	AGN26009
12V DC	AGN20012	AGN21012	AGN26012
24V DC	AGN20024	AGN21024	AGN26024

Standard packing：Tube： 50 pcs．；Case：1，000 pcs．

2．Surface－mount terminal

1）Tube packing

Nominal coil voltage	Single side stable	1 coil latching	High sensitivity single side stable
	Part No．	Part No．	Part No．
1.5 V DC	AGN200］1H	AGN21001H	AGN260］1H
3V DC	AGN200］03	AGN210】03	AGN260］03
4.5 V DC	AGN200］4H	AGN210］4H	AGN260］4H
6 V DC	AGN200］06	AGN210】06	AGN260］06
9V DC	AGN200］09	AGN210】09	AGN260］09
12 V DC	AGN200］12	AGN210】12	AGN260］12
24V DC	AGN200］24	AGN210－24	AGN260］24

■．For each surface－mounted terminal identification，input the following letter．A type：\underline{A}, S type：\underline{S}
Standard packing：Tube： 50 pcs．；Case：1，000 pcs

2）Tape and reel packing

Nominal coil voltage	Single side stable	1 coil latching	High sensitivity single side stable
	Part No．	Part No．	Part No．
1.5 V DC	AGN200］1HZ	AGN210］1HZ	AGN260］1HZ
3V DC	AGN200】03Z	AGN210】03Z	AGN260］03Z
4.5 V DC	AGN200ロ4HZ	AGN210】4HZ	AGN260】4HZ
6V DC	AGN200］06Z	AGN210■06Z	AGN260］06Z
9 V DC	AGN200－09Z	AGN210－09Z	AGN260］09Z
12 V DC	AGN200－12Z	AGN210】12Z	AGN260－12Z
24V DC	AGN200］24Z	AGN210］24Z	AGN260］24Z

］：For each surface－mounted terminal identification，input the following letter．A type：\underline{A}, S type：\underline{S}
Standard packing：Tape and reel： 500 pcs．；Case：1，000 pcs．
Notes：1．Tape and reel packing symbol＂$-Z$＂is not marked on the relay．＂X＂type tape and reel packing（picked from $1 / 2 / 3 / 4-$ pin side）is also available．
2．Please inquire if you require a relay，between 1.5 and 24 V DC，with a voltage not listed．

RATING

1．Coil data

1）Single side stable type

Nominal coil voltage	Pick－up voltage （at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$ ）	Drop－out voltage （at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$ ）	Nominal operating current $[\pm 10 \%]$（at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$ ）	$\begin{gathered} \text { Coil resistance } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right. \text {) }} \end{gathered}$	Nominal operating power	Max．applied voltage （at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$ ）
1.5 V DC	$75 \% \mathrm{~V}$ or less of nominal voltage＊ （Initial）	$10 \% \mathrm{~V}$ or more of nominal voltage＊ （Initial）	93.8 mA	16Ω	140 mW	$150 \% \mathrm{~V}$ of nominal voltage
3V DC			46.7 mA	64.2Ω		
4.5 V DC			31 mA	145Ω		
6V DC			23.3 mA	257Ω		
9V DC			15.5 mA	579Ω		
12 V DC			11.7 mA	1，028 Ω		
24V DC			9.6 mA	2，504 Ω	230 mW	$120 \% \mathrm{~V}$ of nominal voltage

2） 1 coil latching type

Nominal coil voltage	$\begin{aligned} & \text { Set voltage } \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Reset voltage （at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$ ）	$\begin{gathered} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%] \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) }} \end{gathered}$	$\begin{gathered} \text { Coil resistance } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right. \text {) }} \end{gathered}$	Nominal operating power	Max．applied voltage （at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$ ）
1.5 V DC	$75 \% \mathrm{~V}$ or less of nominal voltage＊ （Initial）	$75 \% \mathrm{~V}$ or less of nominal voltage＊ （Initial）	66.7 mA	22.5Ω	100mW	$150 \% \mathrm{~V}$ of nominal voltage
3V DC			33.3 mA	90Ω		
4.5 V DC			22.2 mA	202.5Ω		
6 V DC			16.7 mA	360Ω		
9V DC			11.1 mA	810Ω		
12 V DC			8.3 mA	1，440 Ω		
24 V DC			5.0 mA	4，800 Ω	120 mW	

[^2]
3) High sensitivity single side stable type

Nominal coil voltage	$\begin{aligned} & \text { Set voltage } \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating current $[\pm 10 \%]$ (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Coil resistance } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$	Nominal operating power	Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
1.5 V DC	$80 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	$10 \% \mathrm{~V}$ or more of nominal voltage* (Initial)	66.7 mA	22.5Ω	100 mW	$150 \% \mathrm{~V}$ of nominal voltage
3V DC			33.3 mA	90Ω		
4.5 V DC			22.2 mA	202.5Ω		
6 V DC			16.7 mA	360Ω		
9V DC			11.1 mA	810Ω		
12 V DC			8.3 mA	1,440 Ω		
24V DC			5.0 mA	4,800 ${ }^{\text {a }}$	120 mW	$120 \% \mathrm{~V}$ of nominal voltage

2. Specifications

Characteristics	Item		Specifications
Contact	Arrangement		2 Form C
	Initial contact resistance, max.		Max. $100 \mathrm{~m} \Omega$ (By voltage drop 6 V DC 1A)
	Contact material		Stationary contact: AgPd+Au clad Movable contact: AgPd
Rating	Nominal switching capacity		1 A 30 V DC, $0.3 \mathrm{~A} 125 \mathrm{~V} \mathrm{AC} \mathrm{(resistive} \mathrm{load)}$
	Max. switching power		30 W (DC), 37.5 V A (AC) (resistive load)
	Max. switching voltage		110 V DC, 125 V AC
	Max. switching current		1 A
	Min. switching capacity (Reference value)*1		$10 \mu \mathrm{~A} 10 \mathrm{mV}$ DC
	Nominal operating power	Single side stable	140 mW (1.5 to 12 V DC), 230 mW (24 V DC)
		High sensitivity single side stable type	100 mW (1.5 to 12 V DC), 120 mW (24 V DC)
		1 coil latching	
Electrical characteristics	Insulation resistance (Initial)		Min. $1,000 \mathrm{M} \Omega$ (at 500 V DC) Measurement at same location as "Initial breakdown voltage" section.
	Breakdown voltage (Initial)	Between open contacts	750 Vrms for 1 min . (Detection current: 10 mA)
		Between contact and coil	$1,500 \mathrm{Vrms}$ for 1 min . (Detection current: 10 mA)
		Between contact sets	$1,000 \mathrm{Vrms}$ for 1 min . (Detection current: 10 mA)
	Surge breakdown voltage (Initial)	Between open contacts	$1,500 \mathrm{~V}(10 \times 160 \mu \mathrm{~s})$ (FCC Part 68)
		Between contacts and coil	$2,500 \mathrm{~V}(2 \times 10 \mu \mathrm{~s})$ (Telcordia)
	Temperature rise (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. $50^{\circ} \mathrm{C}$ (By resistive method, nominal coil voltage applied to the coil; contact carrying current: 1A.)
	Operate time [Set time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 4 ms [Max. 4 ms] (Nominal coil voltage applied to the coil, excluding contact bounce time.)
	Release time [Reset time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 4 ms [Max. 4 ms] (Nominal coil voltage applied to the coil, excluding contact bounce time.) (without diode)
Mechanical characteristics	Shock resistance	Functional	Min. $750 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 6 ms ; detection time: $10 \mu \mathrm{~s}$.)
		Destructive	Min. $1,000 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 6 ms .)
	Vibration resistance	Functional	10 to 55 Hz at double amplitude of 3.3 mm (Detection time: $10 \mu \mathrm{~s}$.)
		Destructive	10 to 55 Hz at double amplitude of 5 mm
Expected life	Mechanical		Min. 5×10^{7} (at 180 cpm)
	Electrical		Min. 10^{5} (1 A 30 V DC resistive), 10^{5} (0.3 A $125 \mathrm{~V} \mathrm{AC} \mathrm{resistive)} \mathrm{(at} 20 \mathrm{cpm}$)
Conditions	Conditions for operation, transport and storage*2		Ambient temperature: (Single side stable, 1 coil latching type) $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+185^{\circ} \mathrm{F}$ (High sensitivity single side stable type) $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+158^{\circ} \mathrm{F}$ Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature)
	Max. operating speed (at rated load)		20 cpm
Unit weight			Approx. 1 g .035 oz

Notes: *1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.
*2Refer to "6. Usage, Storage and Transport Conditions" in AMBIENT ENVIRONMENT (page 599).
REFERENCE DATA

1. Max. switching capacity

2. Life curve

3. Mechanical life

Tested sample: AGN2004H, 15 pcs.
Operating speed: 180 cpm

4. Electrical life (1A 30V DC resistive load)

Tested sample: AGN2004H, 6 pcs.
Operating speed: 20 cpm
Change of pick-up and drop-out voltage

6-(1). Operate and release time (without diode)
Tested sample: AGN2004H, 6 pcs.

6-(2). Operate and release time (with diode)
Tested sample: AGN2004H, 6 pcs.
7. Ambient temperature characteristics Tested sample: AGN2004H, 6 pcs.

8. Malfunctional shock Tested sample: AGN2004H

9-(1). Influence of adjacent mounting Tested sample: AGN20012, 6 pcs.

9-(2). Influence of adjacent mounting Tested sample: AGN20012, 6 pcs.

DIMENSIONS (mm inch)

Interested in CAD data? You can obtain CAD data for all products with a CAD Data
mark from your local Panasonic Electric Works representative.

1. PC board terminal

External dimensions
 Standard type

PC board pattern

Schematic (Bottom view)

Single side stable High sensitivity single side stable	1 coil latching
$\left.\begin{array}{rll} 1 & 2 & 3 \\ + & 4 \\ + & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array}\right)$	
eenergized condition)	(Reset conditio

2. Surface-mount terminal

CAD Data

Type	External dimensions	Suggested mounting pad (Tolerance: $\pm 0.1 \pm .004$)
	Single side stable/1 coil latching/High sensitivity single side stable	Single side stable/1 coil latching/High sensitivity single side stable
A type		
S type		

Schematic (Top view)

Single side stable
High sensitivity single side stable

(Deenergized condition)

1 coil latching

(Reset condition)

NOTES

1. Packing style

1) The relay is packed in a tube with the relay orientation mark on the left side, as shown in the figure below.

2) Tape and reel packing
(A type)
(1)-1 Tape dimensions

(S type)
(1)-2 Tape dimensions

(2) Dimensions of plastic peel

2. Automatic insertion

To maintain the internal function of the relay, the chucking pressure should not exceed the values below.
Chucking pressure in the direction A : $4.9 \mathrm{~N}\{500 \mathrm{gf}\}$ or less
Chucking pressure in the direction B :
$9.8 \mathrm{~N}\{1 \mathrm{kgf}\}$ or less
Chucking pressure in the direction C : $9.8 \mathrm{~N}\{1 \mathrm{kgf}$ or less

Please chuck the जسा/ed portion.
Avoid chucking the center of the relay. In addition, excessive chucking pressure to the pinpoint of the relay should be avoided.

For Cautions for Use, see Relay Technical Information (page 582).

High sensitivity of nominal operating power 100 mW is achieved. Ultra small GQ RELAYS (AGQ) package \& Flat type

Panasonic
 ideas for life

FEATURES

1. Compact flat body saves space. With a small footprint of $10.6 \mathrm{~mm}(\mathrm{~L}) \times$ $7.2 \mathrm{~mm}(\mathrm{~W}) .417$ inch (L) $\times .283$ inch (W) for space savings, it also has a very short height of 5.2 mm .205 inch. (Standard PC board type.)
2. High sensitivity single side stable type (Nominal operating power: 100 mW) is available.
3. Outstanding surge resistance Surge breakdown voltage between contacts and coil:
$2,500 \vee 2 \times 10 \mu \mathrm{~s}$ (Telcordia)
Surge breakdown voltage between open contacts:
$1,500 \vee 10 \times 160 \mu \mathrm{~s}$ (FCC part 68)
4. The use of twin crossbar contacts ensures high contact reliability. AgPd contact is used because of its good sulfide resistance. Adopting lowgas molding material. Coil assembly molding technology which avoids generating volatile gas from coil.
5. Increased packaging density Due to highly efficient magnetic circuit design, leakage flux is reduced and changes in electrical characteristics from components being mounted
close-together are minimized. This all means a packaging density higher than ever before.
6. Nominal operating power: 140 mW
7. Outstanding vibration and shock resistance
Functional shock resistance: $750 \mathrm{~m} / \mathrm{s}^{2}$
Destructive shock resistance:
$1,000 \mathrm{~m} / \mathrm{s}^{2}$
Functional vibration resistance:
10 to 55 Hz (at double amplitude of 3.3 mm . 130 inch)

Destructive vibration resistance: 10 to 55 Hz (at double amplitude of 5 mm .197 inch)
8. Sealed construction allows automatic washing.

TYPICAL APPLICATIONS

1. Telephone switchboard
2. Telecommunications equipment
3. Security
4. Measurement equipment
5. Consumer electronic and audio visual equipment

ORDERING INFORMATION

TYPES

1．Standard PC board terminal

Nominal coil voltage	Single side stable	1 coil latching	High sensitivity single side stable
	Part No．	Part No．	Part No．
1.5 V DC	AGQ2001H	AGQ2101H	AGQ2601H
3V DC	AGQ20003	AGQ21003	AGQ26003
4.5 V DC	AGQ2004H	AGQ2104H	AGQ2604H
6V DC	AGQ20006	AGQ21006	AGQ26006
9V DC	AGQ20009	AGQ21009	AGQ26009
12 V DC	AGQ20012	AGQ21012	AGQ26012
24 V DC	AGQ20024	AGQ21024	AGQ26024

Standard packing：Tube： 50 pcs．；Case：1，000 pcs．

2．Surface－mount terminal

1）Tube packing

Nominal coil voltage	Single side stable	1 coil latching	High sensitivity single side stable
	Part No．	Part No．	Part No．
1.5 V DC	AGQ200］1H	AGQ210－1H	AGQ260］1H
3V DC	AGQ200］03	AGQ210］03	AGQ260］03
4.5 V DC	AGQ200］4H	AGQ210］4H	AGQ260］4H
6V DC	AGQ200］06	AGQ210］06	AGQ260－06
9 V DC	AGQ200－09	AGQ210］09	AGQ260－09
12 V DC	AGQ200］12	AGQ210］12	AGQ260］12
24V DC	AGQ200D24	AGQ210］24	AGQ260－124

［．For each surface－mounted terminal identification，input the following letter．A type：\underline{A}, S type：\underline{S}
Standard packing：Tube： 50 pcs．；Case：1，000 pcs．
2）Tape and reel packing

Nominal coil voltage	Single side stable	1 coil latching	High sensitivity single side stable
	Part No．	Part No．	Part No．
1.5 V DC	AGQ200］1HZ	AGQ210］1HZ	AGQ260］1HZ
3V DC	AGQ200］03Z	AGQ210］03Z	AGQ260］03Z
4.5 V DC	AGQ200］4HZ	AGQ210］4HZ	AGQ260］4HZ
6V DC	AGQ200］06Z	AGQ210】06Z	AGQ260］06Z
9V DC	AGQ200］09Z	AGQ210】09Z	AGQ260］09Z
12 V DC	AGQ200］12Z	AGQ210】12Z	AGQ260］12Z
24 V DC	AGQ200］24Z	AGQ210］24Z	AGQ260］24Z

■．For each surface－mounted terminal identification，input the following letter．A type：\underline{A}, S type：\underline{S}
Standard packing：Tape and reel： 900 pcs．；Case： 1,800 pcs
Notes：1．Tape and reel packing symbol＂－Z＂is not marked on the relay．＂X＂type tape and reel packing（picked from 1／2／3／4－pin side）is also available．
2．Please inquire if you require a relay，between 1.5 and $24 \mathrm{~V} D$ ，with a voltage not listed．

RATING

1．Coil data

1）Single side stable type

Nominal coil voltage	Pick－up voltage （at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$ ）	Drop－out voltage （at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$ ）	Nominal operating current $[\pm 10 \%]\left(\right.$ at $\left.20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)$	Coil resistance ［ $\pm 10 \%$ ］（at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$ ）	Nominal operating power	Max．applied voltage （at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$ ）
1.5 V DC	$75 \% \mathrm{~V}$ or less of nominal voltage＊ （Initial）	$10 \% \mathrm{~V}$ or more of nominal voltage＊ （Initial）	93.8 mA	16Ω	140 mW	$150 \% \mathrm{~V}$ of nominal voltage
3V DC			46.7 mA	64.2Ω		
4.5 V DC			31 mA	145Ω		
6V DC			23.3 mA	257Ω		
9V DC			15.5 mA	579Ω		
12 V DC			11.7 mA	1，028 Ω		
24 V DC			9.6 mA	2，504 Ω	230 mW	$120 \% \mathrm{~V}$ of nominal voltage

2） 1 coil latching type

Nominal coil voltage	$\begin{aligned} & \text { Set voltage } \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Reset voltage （at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$ ）	Nominal operating current $[\pm 10 \%]$（at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$ ）	$\begin{gathered} \text { Coil resistance } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right. \text {) }} \end{gathered}$	Nominal operating power	Max．applied voltage （at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$ ）
1.5 V DC	$75 \% \mathrm{~V}$ or less of nominal voltage＊ （Initial）	$75 \% \mathrm{~V}$ or less of nominal voltage＊ （Initial）	66.7 mA	22.5Ω	100mW	$150 \% \mathrm{~V}$ of nominal voltage
3V DC			33.3 mA	90Ω		
4.5 V DC			22.2 mA	202.5Ω		
6 V DC			16.7 mA	360Ω		
9 V DC			11.1 mA	810Ω		
12 V DC			8.3 mA	1，440		
24V DC			5.0 mA	4，800 ${ }^{\text {a }}$	120 mW	

＊Pulse drive（JIS C 5442－1996）
3) High sensitivity single side stable type

Nominal coil voltage	$\begin{aligned} & \text { Set voltage } \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%] \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) }} \end{gathered}$	$\begin{gathered} \text { Coil resistance } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right. \text {) }} \end{gathered}$	Nominal operating power	Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
1.5 V DC	$80 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	$10 \% \mathrm{~V}$ or more of nominal voltage* (Initial)	66.7 mA	22.5Ω	100 mW	$150 \% \mathrm{~V}$ of nominal voltage
3 V DC			33.3 mA	90Ω		
4.5 V DC			22.2 mA	202.5Ω		
6 V DC			16.7 mA	360Ω		
9 V DC			11.1 mA	810Ω		
12 V DC			8.3 mA	1,440 Ω		
24V DC			5.0 mA	4,800 Ω	120 mW	$120 \% \mathrm{~V}$ of nominal voltage

*Pulse drive (JIS C 5442-1996)

2. Specifications

Characteristics	Item		Specifications
Contact	Arrangement		2 Form C
	Initial contact resistance, max.		Max. $100 \mathrm{~m} \Omega$ (By voltage drop 6 V DC 1A)
	Contact material		Stationary contact: AgPd+Au clad Movable contact: AgPd
Rating	Nominal switching capacity		1 A 30 V DC, $0.3 \mathrm{~A} 125 \mathrm{~V} \mathrm{AC} \mathrm{(resistive} \mathrm{load)}$
	Max. switching power		30 W (DC), 37.5 V A (AC) (resistive load)
	Max. switching voltage		110 V DC, 125 V AC
	Max. switching current		1 A
	Min. switching capacity (Reference value)* ${ }^{-1}$		$10 \mu \mathrm{~A} 10 \mathrm{mV}$ DC
	Nominal operating power	Single side stable	140 mW (1.5 to 12 V DC), 230 mW (24 V DC)
		High sensitivity single side stable type	100 mW (1.5 to 12 V DC), 120 mW (24 V DC)
		1 coil latching	
Electrical characteristics	Insulation resistance (Initial)		Min. 1,000M Ω (at 500 V DC) Measurement at same location as "Initial breakdown voltage" section.
	Breakdown voltage (Initial)	Between open contacts	750 Vrms for 1 min . (Detection current: 10 mA)
		Between contact and coil	$1,500 \mathrm{Vrms}$ for 1 min . (Detection current: 10 mA)
		Between contact sets	$1,000 \mathrm{Vrms}$ for 1 min . (Detection current: 10 mA)
	Surge breakdown voltage (Initial)	Between open contacts	$1,500 \mathrm{~V}(10 \times 160 \mu \mathrm{~s})$ (FCC Part 68)
		Between contacts and coil	2,500 V ($2 \times 10 \mu \mathrm{~s}$) (Telcordia)
	Temperature rise (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. $50^{\circ} \mathrm{C}$ (By resistive method, nominal coil voltage applied to the coil; contact carrying current: 1A.)
	Operate time [Set time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 4 ms [Max. 4 ms] (Nominal coil voltage applied to the coil, excluding contact bounce time.)
	Release time [Reset time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 4 ms [Max. 4 ms] (Nominal coil voltage applied to the coil, excluding contact bounce time.) (without diode)
Mechanical characteristics	Shock resistance	Functional	Min. $750 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 6 ms ; detection time: $10 \mu \mathrm{~s}$.)
		Destructive	Min. 1,000 m/s ${ }^{2}$ (Half-wave pulse of sine wave: 6 ms .)
	Vibration resistance	Functional	10 to 55 Hz at double amplitude of 3.3 mm (Detection time: $10 \mu \mathrm{~s}$.)
		Destructive	10 to 55 Hz at double amplitude of 5 mm
Expected life	Mechanical		Min. 5×10^{7} (at 180 cpm)
	Electrical		Min. 10^{5} (1 A 30 V DC resistive), 10^{5} (0.3 A 125 V AC resistive) (at 20 cpm)
Conditions	Conditions for operation, transport and storage*2		Ambient temperature: (Single side stable, 1 coil latching type) $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+185^{\circ} \mathrm{F}$ (High sensitivity single side stable type) $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+158^{\circ} \mathrm{F}$ Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature)
	Max. operating speed (at rated load)		20 cpm
Unit weight			Approx. 1 g 035 oz

*1This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load. *2Refer to "6. Usage, Storage and Transport Conditions" in AMBIENT ENVIRONMENT (page 599).

REFERENCE DATA

1. Max. switching capacity

2. Life curve

3. Mechanical life

Tested sample: AGQ200A4H, 6 pcs.
Operating speed: 180 cpm

4. Electrical life (1A 30V DC resistive load)

Tested sample: AGQ200A4H, 6 pcs.
Operating speed: 20 cpm
Change of pick-up and drop-out voltage

6-(1). Operate and release time (without diode) Tested sample: AGQ2004H, 10 pcs.

6-(2). Operate and release time (with diode) Tested sample: AGQ2004H, 10 pcs.
5. Coil temperature rise

Tested sample: AGQ200A4H, AGQ200A24, 6 pcs. Point measured: Inside the coil Ambient temperature: Room temperature

7. Ambient temperature characteristics Tested sample: AGQ200A4H, 6 pcs.

8. Malfunctional shock

Tested sample: AGQ200A4H, 6 pcs.

9-(1). Influence of adjacent mounting Tested sample: AGQ20012, 6 pcs.

9-(2). Influence of adjacent mounting Tested sample: AGQ20012, 6 pcs.

DIMENSIONS (mm inch)

Interested in CAD data? You can obtain CAD data for all products with
CAD Data
mark from your local Panasonic Electric Works representative.

1. PC board terminal

2. Surface-mount terminal

CAD Data

Type	External dimensions		Suggested mounting pad (Tolerance: $\pm 0.1 \pm .004$)
	Single side stable/1 coil latching	High sensitivity single side stable	Single side stable/1 coil latching/High sensitivity single side stable
A type			
S type			

Schematic (Top view)

Single side stable
High sensitivity single side stable

8765	8765
$\bar{\square} 0.0$ ¢	
1	¢
$\stackrel{\square}{+}$	-0, ioi
1234	1234
Direction indication	Direction indication
(Deenergized condition)	(Reset condition)

NOTES

1. Packing style

1) The relay is packed in a tube with the relay orientation mark on the left side, as shown in the figure below.

Orientation (indicates PIN No.1) stripe

2) Tape and reel packing
(A type)
(1)-1 Tape dimensions
mm inch

(S type)
(1)-2 Tape dimensions

(2) Dimensions of plastic peel

2. Automatic insertion

To maintain the internal function of the relay, the chucking pressure should not exceed the values below.
Chucking pressure in the direction A : $9.8 \mathrm{~N}\{1 \mathrm{~kg} f$ or less
Chucking pressure in the direction B :
$9.8 \mathrm{~N}\{1 \mathrm{kgf}$ or less
Chucking pressure in the direction C : $9.8 \mathrm{~N}\{1 \mathrm{~kg} f$ or less

Please chuck the سWha portion.
Avoid chucking the center of the relay. In addition, excessive chucking pressure to the pinpoint of the relay should be also avoided.

For Cautions for Use, see Relay Technical Information (page 582).

Panasonic
 ideas for life

Non-polarized 1 Form C relay that realizes nominal operating power of 150 mW

FEATURES

1. Nominal operating power: High sensitivity of 150 mW (Single side stable type)
A nominal operating power of 150 mW (minimum operating power of 84 mW) has been achieved.
2. The use of gold-clad twin contacts ensures high contact reliability.
3. Sealed construction
side stable type)

TYPICAL APPLICATIONS

1. Automotive equipment

Automirrow controller
Retractable head light controller
2. Push button device: Dial pulsing
3. Portable video tape recorders and audio devices
4. Computer peripherals

ORDERING INFORMATION

Note: In case of 5 V drive circuit, it is recommended to use 4.5 V type relay.

TYPES
Contact arrangement

[^3]
RATING

1. Coil data

Contact arrangement	Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%] \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) }} \end{gathered}$	Coil resistance [$\pm 10 \%$] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating power	Max. applied voltage (at $70^{\circ} \mathrm{C} 158^{\circ} \mathrm{F}$)
1 Form C	1.5 V DC	$75 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$10 \% \mathrm{~V}$ or more of nominal voltage (Initial)	100 mA	15Ω	150 mW	$140 \% \mathrm{~V}$ of nominal voltage
	3V DC			50 mA	60Ω		
	4.5 V DC			33.3 mA	135Ω		
	5 V DC			30 mA	166Ω		
	6 V DC			25 mA	240Ω		
	9 V DC			16.7 mA	540Ω		
	12 V DC			12.5 mA	960Ω		
	24 V DC			6.25 mA	3,840 Ω		
	1.5 V DC	$75 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$10 \% \mathrm{~V}$ or more of nominal voltage (Initial)	133.3 mA	11.25Ω	200 mW	$120 \% \mathrm{~V}$ of nominal voltage
	3 V DC			66.7 mA	45Ω		
	4.5 V DC			44.5 mA	101.2Ω		
	5 V DC			40 mA	125Ω		
	6 V DC			33.3 mA	180Ω		
	9V DC			22.2 mA	405Ω		
	12 V DC			16.7 mA	720Ω		
	24V DC			8.3 mA	2,880 Ω		

2. Specifications

Characteristics	Item		Specifications
Contact	Arrangement		1 Form C
	Initial contact resistance, max.		Max. $100 \mathrm{~m} \Omega$ (By voltage drop 6 V DC 1A)
	Contact material		Ag+Au clad
Rating	Nominal switching capacity		1 A 30 V DC (resistive load)
	Max. switching power		30 W (DC) (resistive load)
	Max. switching voltage		60 V DC
	Max. carrying current		2 A
	Max. switching current		$1 \mathrm{~A}(30 \mathrm{~V} \mathrm{DC})$
	Min. switching capacity (Reference value)* ${ }^{* 1}$		1 mA 1 V DC
	Nominal operating power		150/200mW
Electrical characteristics	Insulation resistance (Initial)		Min. $100 \mathrm{M} \Omega$ (at 500 V DC) Measurement at same location as "Initial breakdown voltage" section.
	Breakdown voltage (Initial)	Between open contacts	500 Vrms for 1 min . (Detection current: 10 mA)
		Between contact and coil	$1,000 \mathrm{Vrms}$ for 1 min . (Detection current: 10 mA)
	Temperature rise (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. $50^{\circ} \mathrm{C}$ (By resistive method, nominal coil voltage applied to the coil, nominal switching capacity.)
	Operate time [Set time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 5 ms (Nominal coil voltage applied to the coil, excluding contact bounce time.)
	Release time [Reset time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 4 ms (Nominal coil voltage applied to the coil, excluding contact bounce time.) (without diode)
Mechanical characteristics	Shock resistance	Functional	Min. $98 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$.)
		Destructive	Min. $980 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 6 ms .)
	Vibration resistance	Functional	10 to 55 Hz at double amplitude of 1 mm (Detection time: $10 \mu \mathrm{~s}$.)
		Destructive	10 to 55 Hz at double amplitude of 2 mm
Expected life	Mechanical		Min. 10^{7} (at 180 cpm)
	Electrical		Min. 10^{5} (1 A 30 V DC resistive) (at 20 cpm)
Conditions	Conditions for operation, transport and storage*2		Ambient temperature: $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+158^{\circ} \mathrm{F}$ Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature)
	Max. operating speed (at rated load)		20 cpm
Unit weight			Approx. 1.8 g g 063 oz

*1This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load. *2Refer to " 6 . Usage, Storage and Transport Conditions" in AMBIENT ENVIRONMENT (page 599).

REFERENCE DATA

1. Maximum switching power

2. Electrical life

Tested sample: HY1-12V, 6 pcs.
Condition: 1 A 30 V DC resistive load, 30 cpm
2. Life curve

Change of pick-up and drop-out voltage

\longrightarrow No. of operations, $\times 10$

3. Mechanical life

Tested sample: HY1Z-12V, 10 pcs.
Ambient temperature: $20^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$ to $77^{\circ} \mathrm{F}$

5-(1). Coil temperature rise
(150 mW high sensitivity type)
Tested sample: HY1-9V, 5 pcs.
Ambient temperature: $24^{\circ} \mathrm{C} 75^{\circ} \mathrm{F}$

7. Distribution of pick-up and drop-out voltages Tested sample: HY1-12V, 50 pcs.
Ambient temperature: $23^{\circ} \mathrm{C} 74^{\circ} \mathrm{F}$

5-(2). Coil temperature rise (200 mW Standard type)
Tested sample: HY1Z-12V, 5 pcs.
Ambient temperature: $23^{\circ} \mathrm{C} 74^{\circ} \mathrm{F}$

8. Distribution of contact resistance Tested sample: HY1-12V, 50 pcs. N.C. side N.O. side

6. Operate/release time characteristics Tested sample: HY1Z-12V, 5 pcs. Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$

9. Malfunction shock

Tested sample: HY1Z-12V, 6 pcs.

DIMENSIONS
(mm inch) Interested in CAD data? You can obtain CAD data for all products with a CAD Data mark from your local Panasonic Electric Works representative.

External dimensions

General tolerance: $\pm 0.3 \pm .012$

PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$
Schematic (Bottom view)

NOTE

1. Packing style

1) As shown in the diagram below, the relays are presented in tube packages with pins 1 and 10 on the left. Be sure to maintain relays in the correct orientation when mounting on PC boards.

Side with pins 1 and 10.

2. Automatic insertion

To maintain the internal function of the relay, the chucking pressure should not exceed the values below.
Chucking pressure in the direction A : $4.9 \mathrm{~N}\{500 \mathrm{gf}\}$ or less
Chucking pressure in the direction B : $4.9 \mathrm{~N}\{500 \mathrm{gf}\}$ or less
Chucking pressure in the direction C $4.9 \mathrm{~N}\{500 \mathrm{gf}\}$ or less

Avoid chucking the center of the relay. In addition, excessive chucking pressure to the pinpoint of the relay should be avoided.

For Cautions for Use, see Relay Technical Information (page 582).

Panasonic ideas for life

HIGH SENSIBILITY RELAY WITH GUARANTEED LOW LEVEL SWITCHING CAPACITY

FEATURES

1. High contact reliability over a long life has been made possible for low level loads.
Using a low level load ($1 \mathrm{mV} 10 \mu \mathrm{~A}$ to $10 \mathrm{~V} 10 \mathrm{~mA}) 10^{7}$ operations were achieved with a static contact resistance of Max. $100 \mathrm{~m} \Omega$ (voltage drop of $20 \mathrm{mV}, 1 \mathrm{~mA}, 1 \mathrm{kHz}$) and a dynamic contact resistance of Max. 1Ω (Measurement delay 10 ms , voltage drop of $20 \mathrm{mV}, 1 \mathrm{~mA}, 1 \mathrm{kHz}$).
2. High sensibility of 50 mW By using the highly efficient polar magnetic circuit "seesaw balance armature mechanism", a rated power consumption of 50 mW (for single side stable type) has been achieved.
3. Low thermal electromotive force Reducing the heat from the coil enables a thermal electromotive force of $3 \mu \mathrm{~V}$ or less.

TYPICAL APPLICATIONS

This relay will be used for the low level load for measuring instruments or others where a stable contact resistance is required.

ORDERING INFORMATION

TYPES

1. Standard PC board terminal

Contact arrangement	Nominal coil	Single side stable	1 coil latching	2 coil latching
	voltage	Part No.	Part No.	Part No.
2 Form C	1.5 V DC	ASX2001H	ASX2101H	ASX2201H
	3V DC	ASX20003	ASX21003	ASX22003
	4.5 V DC	ASX2004H	ASX2104H	ASX2204H
	6 V DC	ASX20006	ASX21006	ASX22006
	9V DC	ASX20009	ASX21009	ASX22009
	12 V DC	ASX20012	ASX21012	ASX22012
	24V DC	ASX20024	ASX21024	ASX22024

[^4]
SX (ASX)

2. Surface-mount terminal

1) Tube packing

Contact arrangement	Nominal coil voltage	Single side stable	1 coil latching	2 coil latching
		Part No.	Part No.	Part No.
2 Form C	1.5 V DC	ASX200A1H	ASX210A1H	ASX220A1H
	3V DC	ASX200A03	ASX210A03	ASX220A03
	4.5 V DC	ASX200A4H	ASX210A4H	ASX220A4H
	6 V DC	ASX200A06	ASX210A06	ASX220A06
	9V DC	ASX200A09	ASX210A09	ASX220A09
	12 V DC	ASX200A12	ASX210A12	ASX220A12
	24 V DC	ASX200A24	ASX210A24	ASX220A24

Standard packing: Tube: 40 pcs.; Case: 1,000 pcs.

2) Tape and reel packing

Contact arrangement	Nominal coil	Single side stable	1 coil latching	2 coil latching
	voltage	Part No.	Part No.	Part No.
2 Form C	1.5 V DC	ASX200A1HZ	ASX210A1HZ	ASX220A1HZ
	3V DC	ASX200A03Z	ASX210A03Z	ASX220A03Z
	4.5 V DC	ASX200A4HZ	ASX210A4HZ	ASX220A4HZ
	6 V DC	ASX200A06Z	ASX210A06Z	ASX220A06Z
	9 V DC	ASX200A09Z	ASX210A09Z	ASX220A09Z
	12 V DC	ASX200A12Z	ASX210A12Z	ASX220A12Z
	24V DC	ASX200A24Z	ASX210A24Z	ASX220A24Z

Standard packing: Tape and reel: 500 pcs.; Case: 1,000 pcs.
Note: Tape and reel packing symbol "- Z " is not marked on the relay. " X " type tape and reel packing (picked from $1 / 3 / 4 / 5$-pin side) is also available.

RATING

1. Coil data
1) Single side stable type

Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%] \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) }} \end{gathered}$	$\begin{gathered} \text { Coil resistance } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$	Nominal operating power	Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
1.5 V DC	$80 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	$10 \% \mathrm{~V}$ or more of nominal voltage* (Initial)	33.3 mA	45Ω	50 mW	$150 \% \mathrm{~V}$ of nominal voltage
3V DC			16.7 mA	180Ω		
4.5 V DC			11.1 mA	405Ω		
6 V DC			8.3 mA	720Ω		
9V DC			5.6 mA	1,620		
12 V DC			4.2 mA	2,880 ${ }^{\text {, }}$		
24 V DC			2.9 mA	8,229	70 mW	

2) 1 coil latching type

Nominal coil voltage	$\begin{aligned} & \text { Set voltage } \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%] \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) }} \end{gathered}$	$\begin{gathered} \text { Coil resistance } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right. \text {) }} \end{gathered}$	Nominal operating power	Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
1.5 V DC	$80 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	$80 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	23.3 mA	64.3Ω	35 mW	$150 \% \mathrm{~V}$ of nominal voltage
3V DC			11.7 mA	257Ω		
4.5 V DC			7.8 mA	579Ω		
6V DC			5.8 mA	1,029 ${ }^{\text {a }}$		
9V DC			3.9 mA	2,314 Ω		
12 V DC			2.9 mA	4,114 Ω		
24V DC			2.1 mA	11,520	50 mW	

3) 2 coil latching type

Nominal coil voltage	$\begin{aligned} & \text { Set voltage } \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operatingcurrent$[\pm 10 \%]$ (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Coil resistance [$\pm 10 \%$] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Nominal operating power		Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
			Set coil	Reset coil	Set coil	Reset coil	Set coil	Reset coil	
1.5 V DC	$80 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	$80 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	46.7 mA	46.7 mA	32.1Ω	32.1Ω	70mW	70 mW	$150 \% \mathrm{~V}$ of nominal voltage
3V DC			23.3 mA	23.3 mA	129Ω	129Ω			
4.5 V DC			15.6 mA	15.6 mA	289Ω	289Ω			
6V DC			11.7 mA	11.7 mA	514Ω	514Ω			
9V DC			7.8 mA	7.8 mA	1,157 Ω	1,157 Ω			
12 V DC			5.8 mA	5.8 mA	2,057 Ω	2,057 Ω			
24 V DC			6.3 mA	6.3 mA	3,840 2	3,840 ${ }^{\text {a }}$	150mW	150mW	

[^5]
2. Specifications

Characteristics	Item		Specifications
Contact	Arrangement		2 Form C
	Static contact resistance (During initial and electric life tests)		Max. $100 \mathrm{~m} \Omega$ (By voltage drop of 20 mV 1 mA [1kHz]) (By nominal switching capacity: No. of operations: 10^{7})
	Dynamic contact resistance (During initial and electric life tests)		Max. 1Ω (By voltage drop of 20 mV 1 mA [1 kHz], Measurement delay 10 ms after applying nominal coil voltage) (By nominal switching capacity: No. of operations: 107)
	Contact material		Stationary contact: AgPd+Au clad Movable contact: AgPd
Rating	Nominal switching capacity		10 mA 10 V DC (resistive load)
	Max. switching power		0.1 W (resistive load)
	Max. switching voltage		10 V DC
	Max. switching current		10 mA DC
	Min. switching capacity (Reference value)* ${ }^{41}$		$10 \mu \mathrm{~A} 1 \mathrm{mV}$ DC
	Nominal operating power	Single side stable	50 mW (1.5 to 12 V DC), 70 mW (24 V DC)
		1 coil latching	35 mW (1.5 to 12 V DC), 50 mW (24 V DC)
		2 coil latching	70 mW (1.5 to 12 V DC), 150 mW (24 V DC)
Electrical characteristics	Insulation resistance (Initial)		Min. $10,000 \mathrm{M} \Omega$ (at 500 V DC) Measurement at same location as "Initial breakdown voltage" section.
	Breakdown voltage (Initial)	Between open contacts	750 Vrms for 1 min . (Detection current: 10 mA)
		Between contact and coil	$1,000 \mathrm{Vrms}$ for 1 min . (Detection current: 10 mA)
		Between contact sets	$1,000 \mathrm{Vrms}$ for 1 min . (Detection current: 10 mA)
	Surge breakdown voltage (Initial)	Between open contacts	$1,500 \mathrm{~V}(10 \times 160 \mu \mathrm{~s})$ (FCC Part 68)
		Between contacts and coil	$2,500 \mathrm{~V}(2 \times 10 \mu \mathrm{~s})$ (Telcordia)
	Temperature rise (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. $50^{\circ} \mathrm{C}$ (By resistive method, nominal coil voltage applied to the coil; contact carrying current: 10 mA .)
	Operate time [Set time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 5 ms [Max. 5 ms] (Nominal coil voltage applied to the coil, excluding contact bounce time.)
	Release time [Reset time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 5 ms [Max. 5 ms] (Nominal coil voltage applied to the coil, excluding contact bounce time.) (without diode)
Mechanical characteristics	Shock resistance	Functional	Min. $750 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 6 ms ; detection time: $10 \mu \mathrm{~s}$.)
		Destructive	Min. $1,000 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 6 ms .)
	Vibration resistance	Functional	10 to 55 Hz at double amplitude of 3.3 mm (Detection time: 10 s .)
		Destructive	10 to 55 Hz at double amplitude of 5 mm
Expected life	Mechanical		Min. 5×10^{7} (at 750 cpm)
	Electrical		Min. $10{ }^{7}$ (10 mA 10 V DC resistive load) (at 750 cpm)
Thermal electromotive force			Max. $3 \mu \mathrm{~V}$ (at nominal voltage applied to the coil)
Conditions	Conditions for operation, transport and storage*2		Ambient temperature: $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+158^{\circ} \mathrm{F}$ Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature)
	Max. operating speed (at rated load)		750 cpm
Unit weight			Approx. 2 g .071 oz

*1This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load. *2Refer to "6. Usage, Storage and Transport Conditions" in AMBIENT ENVIRONMENT (page 599).

REFERENCE DATA

1. Switching capacity range

2-(1). Change in dynamic contact resistance (10 mA 10 V DC resistive load)
Tested sample: ASX20012, 10 pcs.
Operating speed: 750 cpm
Measured condition: 10 ms after applying nominal coil voltage, using voltage drop of $20 \mathrm{mV}, 1 \mathrm{~mA}, 1 \mathrm{kHz}$.

2-(2). Change in dynamic contact resistance ($10 \mu \mathrm{~A} 1 \mathrm{mV}$ DC resistive load)
Tested sample: ASX20012, 10 pcs
Operating speed: 750 cpm
Measured condition: 10 ms after applying nominal coil voltage, using voltage drop of $20 \mathrm{mV}, 1 \mathrm{~mA}, 1 \mathrm{kHz}$.

3-(1). Change in static contact resistance (10 mA 10 V DC resistive load)
Tested sample: ASX20012, 10 pcs.
Operating speed: 750 cpm

3-(2). Change in static contact resistance
($10 \mu \mathrm{~A} 1 \mathrm{mV}$ DC resistive load)
Tested sample: ASX20012, 10 pcs.
Operating speed: 750 cpm

DIMENSIONS (mm inch) Interested in CAD data? You can obtain CAD data for all products with a CAD Data mark from your local Panasonic Electric Works representative.

1. Standard PC board terminal

CAD Data				
External dimensions (General tolerance: $\pm 0.3 \pm .012$)			PC board pattern (Tolerance: $\pm 0.1 \pm .004$)	
Single side stable/1 coil latching	2 coil latching		Single side stable/1 coil latching	2 coil latching

Schematic (Bottom view)

2. Surface-mount terminal

CAD Data

Type	External dimensions (General tolerance: $\pm 0.3 \pm .012)$		Suggested mounting pad (Tolerance: $\pm 0.1 \pm .004$)	
	Single side stable/1 coil latching	2 coil latching	Single side stable/1 coil latching	2 coil latching
A type				

Schematic (Top view)

Single side stable	1 coil latching	2 coil latching
(Deenergized condition)	(Reset condition)	(Reset condition)

NOTES

1. Packing style

1) The relay is packed in a tube with the relay orientation mark on the left side, as shown in the figure below.

2) Tape and reel packing
(A type)
(1) Tape dimensions mm inch

(2) Dimensions of plastic reel
mm inch

2. Automatic insertion

To maintain the internal function of the relay, the chucking pressure should not exceed the values below.
Chucking pressure in the direction A : $4.9 \mathrm{~N}\{500 \mathrm{gf}$ \} or less
Chucking pressure in the direction B: $9.8 \mathrm{~N}\{1 \mathrm{kgf}\}$ or less
Chucking pressure in the direction C :
$9.8 \mathrm{~N}\{1 \mathrm{kgf}\}$ or less

Please chuck theportion.
Avoid chucking the center of the relay. In addition, excessive chucking pressure to the pinpoint of the relay should be avoided.

For Cautions for Use, see Relay Technical Information (page 582).

Panasonic ideas for life

FEATURES

1. Compact and flat type $10.6(\mathrm{~L}) \times 9.0(\mathrm{~W}) \times 4.0(\mathrm{H}) .417(\mathrm{~L}) \times$ $.354(\mathrm{~W}) \times .157(\mathrm{H})$
2. High contact capacity: 2 A
3. Outstanding surge resistance

Surge breakdown voltage between contact and coil:
$2,500 \vee 2 \times 10 \mu \mathrm{sec}$. (Telcordia)
Surge breakdown voltage between open contacts:
$1,500 \mathrm{~V} 10 \times 160 \mu \mathrm{sec}$. (FCC part 68)
4. Initial breakdown voltage:

1,500 Vrms for 1 min . (Between contact and coil)
5. Nominal operating power:

High sensitivity of 140 mW (Single side stable type)
By using the highly efficient polar magnetic circuit "seesaw balance

4 mm height!

 2 A high capacity 1 Form C type ultra thin, super miniature relaymechanism", a nominal operating power of 140 mW (minimum operating power of 79 mW) has been achieved.
6. Outstanding vibration and shock resistance
Functional shock resistance: $750 \mathrm{~m} / \mathrm{s}^{2}$
Destructive shock resistance:
$1,000 \mathrm{~m} / \mathrm{s}^{2}$
Functional vibration resistance: 10 to 55 Hz (at double amplitude of 3.3 mm .130 inch)

Destructive vibration resistance: 10 to 55 Hz (at double amplitude of 5 mm .197 inch)
7. The use of gold-clad twin crossbar contacts ensures high contact reliability.
*We also offer a range of products with AgPd contacts suitable for use in low level load analog circuits (Max. 10V DC 10 mA).
*SX relays designed for low level loads are also available.
8. Self-clinching terminal also available
9. Pre-soldering terminal
10. Sealed construction allows automatic washing.

TYPICAL APPLICATIONS

1. Computer peripherals
2. Telephone devices and telecommunications equipment
3. Crime and disaster prevention equipment
4. Machine tools

ORDERING INFORMATION

Note: In case of 5 V drive circuit, it is recommended to use 4.5 V type relay.

TYPES

1) Standard PC board terminal

Contact arrangement	Nominal coil voltage	Single side stable	1 coil latching	2 coil latching
		Part No.	Part No.	Part No.
1 Form C	1.5 V DC	TK1-1.5V	TK1-L-1.5V	TK1-L2-1.5V
	3V DC	TK1-3V	TK1-L-3V	TK1-L2-3V
	4.5 V DC	TK1-4.5V	TK1-L-4.5V	TK1-L2-4.5V
	5V DC	TK1-5V	TK1-L-5V	TK1-L2-5V
	6V DC	TK1-6V	TK1-L-6V	TK1-L2-6V
	9V DC	TK1-9V	TK1-L-9V	TK1-L2-9V
	12 V DC	TK1-12V	TK1-L-12V	TK1-L2-12V
	24V DC	TK1-24V	TK1-L-24V	TK1-L2-24V

Standard packing: Tube: 50 pcs.; Case: 1,000 pcs.

2) Self-clinching terminal

Contact arrangement	Nominal coil	Single side stable	1 coil latching	2 coil latching
	voltage	Part No.	Part No.	Part No.
1 Form C	1.5 V DC	TK1-H-1.5V	TK1-L-H-1.5V	TK1-L2-H-1.5V
	3V DC	TK1-H-3V	TK1-L-H-3V	TK1-L2-H-3V
	4.5 V DC	TK1-H-4.5V	TK1-L-H-4.5V	TK1-L2-H-4.5V
	5 V DC	TK1-H-5V	TK1-L-H-5V	TK1-L2-H-5V
	6V DC	TK1-H-6V	TK1-L-H-6V	TK1-L2-H-6V
	9V DC	TK1-H-9V	TK1-L-H-9V	TK1-L2-H-9V
	12 V DC	TK1-H-12V	TK1-L-H-12V	TK1-L2-H-12V
	24V DC	TK1-H-24V	TK1-L-H-24V	TK1-L2-H-24V

Standard packing: Tube: 50 pcs.; Case: 1,000 pcs.

RATING

1. Coil data
1) Single side stable

Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \hline \begin{array}{c} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{array} \end{gathered}$	Coil resistance [$\pm 10 \%$] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating power	Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
1.5 V DC	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	$10 \% \mathrm{~V}$ or more of nominal voltage* (Initial)	93.8 mA	16Ω	140 mW	$150 \% \mathrm{~V}$ of nominal voltage
3V DC			46.7 mA	64.3Ω		
4.5 V DC			31 mA	145Ω		
5V DC			28.1 mA	178Ω		
6V DC			23.3 mA	257Ω		
9V DC			15.5 mA	579Ω		
12 V DC			11.7 mA	1,028 Ω		
24V DC			11.3 mA	2,133 Ω	270 mW	$120 \% \mathrm{~V}$ of nominal voltage

2) 1 coil latching

Nominal coil voltage	$\begin{aligned} & \text { Set voltage } \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$	$\begin{gathered} \text { Coil resistance } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$	Nominal operating power	Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
1.5 V DC	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	66.7 mA	22.5Ω	100 mW	$150 \% \mathrm{~V}$ of nominal voltage
3V DC			33.3 mA	90Ω		
4.5 V DC			22.2 mA	202.5Ω		
5V DC			20 mA	250Ω		
6V DC			16.7 mA	360Ω		
9V DC			11.1 mA	810Ω		
12 V DC			8.3 mA	1,440 Ω		
24V DC			6.3 mA	$3,840 \Omega$	150mW	$120 \% \mathrm{~V}$ of nominal voltage

*Pulse drive (JIS C 5442-1986)
3) 2 coil latching

Nominal coil voltage	$\begin{aligned} & \text { Set voltage } \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{array}{r} \text { Nominal } \\ \text { cu } \\ {[\pm 10 \%] \text { (a }} \\ \hline \end{array}$	perating nt $\left.20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)$	$\begin{array}{r} \text { Coil re } \\ {[\pm 10 \%] \text { (at }} \end{array}$	stance $\left.20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)$	Nomina p	perating er	Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
			Set coil	Reset coil	Set coil	Reset coil	Set coil	Reset coil	
1.5 V DC	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	133.9 mA	133.9 mA	11.2Ω	11.2Ω	200 mW	200 mW	$150 \% \mathrm{~V}$ of nominal voltage
3V DC			66.7 mA	66.7 mA	45Ω	45Ω			
4.5 V DC			44.5 mA	44.5 mA	101.2Ω	101.2Ω			
5V DC			40 mA	40 mA	125Ω	125Ω			
6V DC			33.3 mA	33.3 mA	180Ω	180Ω			
9V DC			22.2 mA	22.2 mA	405Ω	405Ω			
12V DC			20.8 mA	20.8 mA	576Ω	576Ω	250mW	250 mW	$120 \% \mathrm{~V}$ of nominal voltage
24 V DC			16.7 mA	16.7 mA	1,440 ${ }^{\text {a }}$	1,440 Ω	400 mW	400 mW	$110 \% \mathrm{~V}$ of nominal voltage

*Pulse drive (JIS C 5442-1986)

2. Specifications

Characteristics	Item		Specifications
Contact	Arrangement		1 Form C
	Initial contact resistance, max.		Max. $50 \mathrm{~m} \Omega$ (By voltage drop 6 V DC 1A)
	Contact material		Ag+Au clad
Rating	Nominal switching capacity		2 A 30 V DC (resistive load)
	Max. switching power		60 W (DC) (resistive load)
	Max. switching voltage		220 V DC
	Max. switching current		2 A
	Min. switching capacity (Reference value)*		$10 \mu \mathrm{~A} 10 \mathrm{mV}$ DC
	Nominal operating power	Single side stable	140 mW (1.5 to 12 V DC), 270 mW (24 V DC)
		1 coil latching	100 mW (1.5 to 12 V DC), 150 mW (24 V DC)
		2 coil latching	200 mW (1.5 to 9 V DC), 250 mW (12 V DC), 400 mW (24 V DC)
Electrical characteristics	Insulation resistance (Initial)		Min. $1,000 \mathrm{M} \Omega$ (at 500 V DC) Measurement at same location as "Initial breakdown voltage" section.
	Breakdown voltage (Initial)	Between open contacts	750 Vrms for 1 min . (Detection current: 10 mA)
		Between contact and coil	$1,500 \mathrm{Vrms}$ for 1 min . (Detection current: 10 mA)
	Surge breakdown voltage (Initial)	Between open contacts	$1,500 \mathrm{~V}(10 \times 160 \mu \mathrm{~s})$ (FCC Part 68)
		Between contacts and coil	$2,500 \mathrm{~V}(2 \times 10 \mu \mathrm{~s})$ (Telcordia)
	Temperature rise (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. $50^{\circ} \mathrm{C}$ (By resistive method, nominal coil voltage applied to the coil; contact carrying current: 2A.)
	Operate time [Set time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 3 ms [Max. 3 ms] (Nominal coil voltage applied to the coil, excluding contact bounce time.)
	Release time [Reset time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 2 ms [Max. 3 ms] (Nominal coil voltage applied to the coil, excluding contact bounce time.) (without diode)
Mechanical characteristics	Shock resistance	Functional	Min. $750 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 6 ms ; detection time: $10 \mu \mathrm{~s}$.)
		Destructive	Min. 1,000 m/s ${ }^{2}$ (Half-wave pulse of sine wave: 6 ms .)
	Vibration resistance	Functional	10 to 55 Hz at double amplitude of 3.3 mm (Detection time: $10 \mu \mathrm{~s}$.)
		Destructive	10 to 55 Hz at double amplitude of 5 mm
Expected life	Mechanical		Min. 10^{8} (Single side stable), Min. 5×10^{7} (1 or 2 coil latching) (at 180 cpm)
	Electrical		Min. 10^{5} (2 A 30 V DC resistive) (at 20 cpm)
Conditions	Conditions for operation, transport and storage ${ }^{2}$		Ambient temperature: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $185^{\circ} \mathrm{F}^{*} 3$; Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature)
	Max. operating speed (at rated load)		20 cpm
Unit weight			Approx. 1 g .035 oz .

*1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load. (SX relays are available for low level load switching [10V DC, 10mA max. level])
*2Refer to "6. Usage, Storage and Transport Conditions" in AMBIENT ENVIRONMENT (page 599).
*3 The maximum ambient temperature allows for coil temperature rise at maximum allowable coil voltage.
As for the applicable range of continuous carrying current against temperature, please refer to "Maximum value of continuous carrying current" chart. (Page 79)

REFERENCE DATA

1. Maximum value of continuous carrying current

Test conditions:
Coil applied voltage: 110% of rated voltage
Continuous carrying current: 1,000 hours

4. Mechanical life

Tested sample: TK1-12V, 8 pcs.
Switching frequency: 30 Hz

6.-(1) Coil temperature rise

Tested sample: TK1-12V, 6 pcs.
Measured portion: Inside the coil
Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$

7.-(1) Operate/release time characteristics Tested sample: TK1-5 V, 50 pcs.
<Without diode>

2. Maximum switching capacity

5. Electrical life (DC load)

Tested sample: TK1-12V, 10 pcs.
Condition: 2 A 30 V DC resistive load, 20 cpm Change of pick-up and drop-out voltage

6.-(2) Coil temperature rise

Tested sample: TK1-12V, 6 pcs.
Measured portion: Inside the coil
Ambient temperature: $70^{\circ} \mathrm{C} 158^{\circ} \mathrm{F}$

7.-(2) Operate/release time characteristics Tested sample: TK1-5 V, 50 pcs. <With diode>

3. Life curve

Change of contact resistance

9.-(1) High-frequency characteristics (Isolation)
9.-(2) High-frequency characteristics (Insertion loss)

10. Malfunctional shock

Tested sample: TK1-12V, 6 pcs. (single side stable); TK1-L2-12V, 6 pcs. (latching)

11.-(1) Influence of adjacent mounting

11.-(2) Influence of adjacent mounting

12. Actual load test (35 mA 48 V DC wire spring relay load)

Circuit

Change of pick-up and drop-out voltage

Change of contact resistance

DIMENSIONS (mm inch) Interested in CAD data? You can obtain CAD data for all products with a CAD Data mark from your local Panasonic Electric Works representative.

CAD Data

External dimensions Standard PC board terminal

Self-clinching terminal

General tolerance: $\pm 0.3 \pm .012$

PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$

(Deenergized condition)

NOTES

1. Packing style

The relay is packed in a tube with the relay orientation mark on the left side, as shown in the figure below.

2. Automatic insertion

To maintain the internal function of the relay, the chucking pressure should not exceed the values below.
Chucking pressure in the direction A:
$9.8 \mathrm{~N}\{1 \mathrm{kgf}\}$ or less
Chucking pressure in the direction B :
$29.4 \mathrm{~N}\{3 \mathrm{kgf}\}$ or less
Chucking pressure in the direction C :
$9.8 \mathrm{~N}\{1 \mathrm{~kg} f$ or less

Please chuck the \qquad portion. Avoid chucking the center of the relay. In addition, excessive chucking pressure to the pinpoint of the relay should be avoided.

Panasonic ideas for life

Space reduction down to footprint of
$5.6 \mathrm{~mm} \times 14 \mathrm{~mm}^{2}$ realized

FEATURES

1. 2 Form C Slim type
$14.0(\mathrm{~L}) \times 9.0(\mathrm{~W}) \times 5.0(\mathrm{H}) .551(\mathrm{~L}) \times$ $.354(\mathrm{~W}) \times .197(\mathrm{H})$
Small header area makes higher density mounting possible
2. Nominal operating power: High sensitivity of 140 mW (Single side stable type)
By using the highly efficient polar magnetic circuit "seesaw balance mechanism", a nominal operating power of 140 mW (minimum operating power of 79 mW) has been achieved.
3. Surge breakdown voltage: 1500 V FCC Part 68
4. Outstanding vibration and shock resistance
Functional shock resistance: $490 \mathrm{~m} / \mathrm{s}^{2}$
Destructive shock resistance: $980 \mathrm{~m} / \mathrm{s}^{2}$
Functional vibration resistance:
10 to 55 Hz (at double amplitude of 3 mm .118 inch)
Destructive vibration resistance: 10 to 55 Hz (at double amplitude of 5 mm .197 inch)
5. High density mounting possible High-efficiency magnetic circuits ensure low magnetic flux leakage. Because characteristics are little changed by proximity mounting, highdensity mounting is possible.
6. The use of gold-clad twin crossbar contacts ensures high contact reliability.
*We also offer a range of products with AgPd contacts suitable for use in low level load analog circuits (Max. 10V DC 10 mA). *SX relays designed for low level loads are also available.
7. Low thermal electromotive force As well as low power consumption of 140 mW , use of a structure with separate coil and contact sections has reduced thermal electromotive force to the low level of approximately $5 \mu \mathrm{~V}$.
8. Latching types also available.
9. Self-clinching terminal also available.
10. Sealed construction allows automatic washing.

TYPICAL APPLICATIONS

- Communications
- Measurement equipment
- OA equipment
- Industrial machines

ORDERING INFORMATION

Contact arrangement
2: 2 Form C
Operating function
Nil: Single side stable
L: 1 coil latching
L2: 2 coil latching
Terminal shape
Nil: Standard PC board terminal
H: Self-clinching terminal
Nominal coil voltage (DC)*
$3,4.5,5,6,9,12,24,48 \mathrm{~V}$
Notes: 1. *48 V coil type: Single side stable only
2. In case of 5 V drive circuit, it is recommended to use 4.5 V type relay.

TYPES

1. Standard PC board terminal

Contact arrangement	Nominal coil voltage	Single side stable	1 coil latching	2 coil latching
		Part No.	Part No.	Part No.
2 Form C	3V DC	TN2-3V	TN2-L-3V	TN2-L2-3V
	4.5 V DC	TN2-4.5V	TN2-L-4.5V	TN2-L2-4.5V
	5V DC	TN2-5V	TN2-L-5V	TN2-L2-5V
	6V DC	TN2-6V	TN2-L-6V	TN2-L2-6V
	9V DC	TN2-9V	TN2-L-9V	TN2-L2-9V
	12 V DC	TN2-12V	TN2-L-12V	TN2-L2-12V
	24 V DC	TN2-24V	TN2-L-24V	TN2-L2-24V
	48 V DC	TN2-48V	-	-

Standard packing: Tube: 50 pcs.; Case: 1,000 pcs.

2. Self-clinching terminal

Contact arrangement	Nominal coil voltage	Single side stable	1 coil latching	2 coil latching
	3V DC	Part No.	Part No.	Part No.
	4.5 V DC	TN2-H-3V	TN2-L-H-3V	TN2-L2-H-3V
	5V DC	TN2-H-4.5V	TN2-L-H-4.5V	TN2-L2-H-4.5V
	6V DC	TN2-H-5V	TN2-L-H-5V	TN2-L2-H-5V
	9V DC	TN2-H-6V	TN2-L-H-6V	TN2-L2-H-6V
	12V DC	TN2-H-9V	TN2-L-H-9V	TN2-L2-H-9V
	24V DC	TN2-H-12V	TN2-L-H-12V	TN2-L2-H-12V
	48V DC	TN2-H-24V	TN2-L-H-24V	TN2-L2-H-24V

Standard packing: Tube: 50 pcs.; Case: 1,000 pcs.
Note: Types ("-3" to the end of part No.) designed to withstand strong vibration caused, for example, by the use of terminal cutters, can also be ordered. However, please contact us if you need parts for use in low level load and low thermal power.

RATING

1. Coil data

1) Single side stable

Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%] \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) }} \end{gathered}$	$\begin{gathered} \text { Coil resistance } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$	Nominal operating power	Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
3V DC	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	$10 \% \mathrm{~V}$ or more of nominal voltage* (Initial)	46.7 mA	64.3Ω	140 mW	$150 \% \mathrm{~V}$ of nominal voltage
4.5 V DC			31.1 mA	145Ω		
5 V DC			28.1 mA	178Ω		
6V DC			23.3 mA	257Ω		
9V DC			15.5 mA	579Ω		
12 V DC			11.7 mA	1,028 Ω		
24 V DC			8.3 mA	2,880 Ω	200 mW	
48V DC			6.25 mA	7,680	300 mW	$120 \% \mathrm{~V}$ of nominal voltage
2) 1 coil latching						
Nominal coil voltage	$\begin{gathered} \text { Set voltage } \\ \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{gathered}$	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$	Coil resistance [$\pm 10 \%$] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating power	Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
3V DC	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	33.3 mA	90Ω	100 mW	$150 \% \mathrm{~V}$ of nominal voltage
4.5V DC			22.2 mA	202.5Ω		
5V DC			20 mA	250Ω		
6V DC			16.7 mA	360Ω		
9V DC			11.1 mA	810Ω		
12 V DC			8.3 mA	1,440		
24V DC			6.3 mA	$3,840 \Omega$	150 mW	

3) 2 coil latching

Nominal coil voltage	Set voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		perating nt $0^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{array}{r} \text { Coil re } \\ {[\pm 10 \%] \text { (at }} \end{array}$	stance $0^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nomina p	perating er	Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
			Set coil	Reset coil	Set coil	Reset coil	Set coil	Reset coil	
3V DC	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	66.7 mA	66.7 mA	45Ω	45Ω	200 mW	200 mW	$150 \% \mathrm{~V}$ of nominal voltage
4.5 V DC			44.4 mA	44.4 mA	101.2Ω	101.2Ω			
5 V DC			40 mA	40 mA	125Ω	125Ω			
6V DC			33.3 mA	33.3 mA	180Ω	180Ω			
9V DC			22.2 mA	22.2 mA	405Ω	405Ω			
12 V DC			16.7 mA	16.7 mA	720Ω	720Ω			
24 V DC			12.5 mA	12.5 mA	1,920	1,920	300 mW	300 mW	$120 \% \mathrm{~V}$ of nominal voltage

*Pulse drive (JIS C 5442-1986)

2. Specifications

Characteristics	Item		Specifications
Contact	Arrangement		2 Form C
	Initial contact resistance, max.		Max. $60 \mathrm{~m} \Omega$ (By voltage drop 6 V DC 1A)
	Contact material		Ag+Au clad
Rating	Nominal switching capacity		1 A 30 V DC, $0.5 \mathrm{~A} 125 \mathrm{~V} \mathrm{AC} \mathrm{(resistive} \mathrm{load)}$
	Max. switching power		30 W (DC), 62.5 VA (AC) (resistive load)
	Max. switching voltage		110 V DC, 125 V AC
	Max. switching current		1 A
	Min. switching capacity (Reference value)*		$10 \mu \mathrm{~A} 10 \mathrm{mV} \mathrm{DC}$
	Nominal operating power	Single side stable	140 mW (3 to 12 V DC), 200 mW (24 V DC), 300 mW (48 V DC)
		1 coil latching	100 mW (3 to 12 V DC), 150 mW (24 V DC)
		2 coil latching	200 mW (3 to 12 V DC), 300 mW (24 V DC)
Electrical characteristics	Insulation resistance (Initial)		Min. 1,000M Ω (at 500 V DC) Measurement at same location as "Initial breakdown voltage" section.
	Breakdown voltage (Initial)	Between open contacts	750 Vrms for 1 min . (Detection current: 10 mA)
		Between contact and coil	$1,000 \mathrm{Vrms}$ for 1 min . (Detection current: 10 mA)
		Between contact sets	1,000 Vrms for 1 min . (Detection current: 10 mA)
	Surge breakdown voltage (Initial)	Between open contacts	$1,500 \mathrm{~V}(10 \times 160 \mu \mathrm{~s})$ (FCC Part 68)
	Temperature rise (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. $50^{\circ} \mathrm{C}$ (By resistive method, nominal coil voltage applied to the coil; contact carrying current: 1A.)
	Operate time [Set time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 3 ms [Max. 3 ms] (Nominal coil voltage applied to the coil, excluding contact bounce time.)
	Release time [Reset time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 3 ms [Max. 3 ms] (Nominal coil voltage applied to the coil, excluding contact bounce time.) (without diode)
Mechanical characteristics	Shock resistance	Functional	Min. $490 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: $11 \mathrm{~ms} ;$ detection time: $\left.10 \mu \mathrm{~s}.\right)$
		Destructive	Min. $980 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 6 ms .)
	Vibration resistance	Functional	10 to 55 Hz at double amplitude of 3 mm (Detection time: $10 \mu \mathrm{~s}$.)
		Destructive	10 to 55 Hz at double amplitude of 5 mm
Expected life	Mechanical		Min. 10^{8} (at 180 cpm)
	Electrical		Min. 2×10^{5} (1 A 30 V DC resistive), Min. 10^{5} ($0.5 \mathrm{~A} 125 \mathrm{~V} \mathrm{AC} \mathrm{resistive)} \mathrm{(at} 20 \mathrm{cpm}$)
Conditions	Conditions for operation, transport and storage*2		Ambient temperature: $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $158^{\circ} \mathrm{F}$; Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature)
	Max. operating speed (at rated load)		20 cpm
Unit weight			Approx. 1.5 g .053 oz

*1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load. (SX relays are available for low level load switching [10V DC, 10 mA max. level])
*2Refer to " 6 . Usage, Storage and Transport Conditions" in AMBIENT ENVIRONMENT (page 599).

REFERENCE DATA

1. Maximum switching capacity

2. Electrical life (DC load)

Tested sample: TN2-12V, 10 pcs.
Condition: 1 A 30 V DC resistive load, 20 cpm

6. Set/reset time characteristics

Tested sample: TN2-L2-12V, 5 pcs.

8-(2). Malfunctional shock (latching)
Tested sample: TN2-L2-12V, 6 pcs.

2. Life curve

3. Mechanical life

Tested sample: TN2-12V, 10 pcs.

5. Coil temperature rise

Tested sample: TN2-12V
Point measured: Inside the coil
Ambient temperature: Room temperature $\left(25^{\circ}\right.$ to $26^{\circ} \mathrm{C}$), $70^{\circ} \mathrm{C}\left(77^{\circ}\right.$ to $79^{\circ} \mathrm{F}$), $158^{\circ} \mathrm{F}$

8-(1). Malfunctional shock (single side stable) Tested sample: TN2-12V, 6 pcs.

9-(1). Influence of adjacent mounting

9-(2). Influence of adjacent mounting

\longrightarrow Inter-relay distance $\boldsymbol{\ell}, \mathrm{mm}$ inch
10. Actual load test (35 mA 48 V DC wire spring relay load)

Tested sample: TN2-12V, 5 pcs.

Change of pick-up and drop-out voltage

Change of contact resistance

DIMENSIONS (mm inch) Interested in CAD data? You can obtain CAD data for all products with a CAD Data mark from your local Panasonic Electric Works representative.

External dimensions Standard PC board terminal

PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$

Schematic (Bottom view)

Schematic (Bottom view)		
Single side stable	1-coil latching	2-coil latching
(Deenergized condition)	(Reset condition)	(Reset condition)

NOTES

1. Packing style

The relay is packed in a tube with the relay orientation mark on the left side, as shown in the figure below.

2. Automatic insertion

To maintain the internal function of the relay, the chucking pressure should not exceed the values below.
Chucking pressure in the direction A : $9.8 \mathrm{~N}\{1 \mathrm{kgf}\}$ or less
Chucking pressure in the direction B:
$9.8 \mathrm{~N}\{1 \mathrm{kgf}\}$ or less
Chucking pressure in the direction C : $4.9 \mathrm{~N}\{500 \mathrm{gf}\}$ or less

Please chuck the \square portion.

Avoid chucking the center of the relay. In addition, excessive chucking pressure to the pinpoint of the relay should be avoided.

For Cautions for Use, see Relay Technical Information (page 582).

Panasonic ideas for life

FEATURES

1. Flat compact size
$14.0(\mathrm{~L}) \times 9.0(\mathrm{~W}) \times 5.0(\mathrm{H}) .551(\mathrm{~L}) \times$
$.354(\mathrm{~W}) \times .197(\mathrm{H})$
2. Nominal operating power:

High sensitivity of 140 mW (2 Form C single side stable type)

Leading the market, our 5 mm 2 -pole surface mount relays comply with JIS C0806

By using the highly efficient polar magnetic circuit "seesaw balance mechanism", a nominal operating power of 140 mW (minimum operating power of 79 mW) has been achieved (4 Form C single side stable type is 280 mW).
3. Suitable for SMD automatic insertion (SA type)
With a height of 5.6 mm .220 inch, the relays meet JIS C 0806 specifications.
4. High density mounting possible High-efficiency magnetic circuits ensure low magnetic flux leakage. Because characteristics are little changed by proximity mounting, highdensity mounting is possible.
5. The use of gold-clad twin crossbar contacts ensures high contact reliability.
6. DIL terminal array enables use of IC sockets.
7. Low thermal electromotive force As well as low power consumption of 140 mW , use of a structure with separate coil and contact sections has reduced thermal electromotive force to the low level of approximately $5 \mu \mathrm{~V}$. Surface mount types achieve approximately $2 \mu \mathrm{~V}$.
8. Latching types also available
9. Self-clinching terminal also available
10. A range of surface-mount types also available
SA: Low-profile surface-mount terminal type
SL: High connection reliability surfacemount terminal type
SS: Space saving surface-mount terminal type
11. M.B.B. contact types available

TYPICAL APPLICATIONS

1. Communications
2. Measurement equipment
3. OA equipment
4. Industrial machines

ORDERING INFORMATION

Contact arrangement
2: 2 Form C
4: 4 Form C
Terminal shape
Nil: Standard PC board terminal
H: Self-clinching terminal
SA: SA type
SL: SL type
SS: SS type

Operating function

Nil: Single side stable
L: 1 coil latching
L2: 2 coil latching
MBB function
Nil: Standard (B.B.M.) type
2M: 2M.B.B. type
Nominal coil voltage (DC)*
1.5 (SMD only), 3, 4.5, 5, 6, 9, 12, 24, 48V

Packing style

Nil: Tube packing
X: Tape and reel (picked from 1/2/3/4/5-pin side)
Z: Tape and reel packing (picked from the 6/7/8/9/10-pin side)
Notes: 1. *48 V coil type: Single side stable only
2. In case of 5 V transistor drive circuit, it is recommended to use 4.5 V type relay.

TYPES

\square Standard PC board terminal and self-clinching terminal

1. Standard (B.B.M.) type
1) Standard PC board terminal

Contact arrangement		Single side stable	1 coil latching	2 coil latching
	voltage	Part No.	Part No.	Part No.
2 Form C	3V DC	TQ2-3V	TQ2-L-3V	TQ2-L2-3V
	4.5 V DC	TQ2-4.5V	TQ2-L-4.5V	TQ2-L2-4.5V
	5V DC	TQ2-5V	TQ2-L-5V	TQ2-L2-5V
	6V DC	TQ2-6V	TQ2-L-6V	TQ2-L2-6V
	9V DC	TQ2-9V	TQ2-L-9V	TQ2-L2-9V
	12 V DC	TQ2-12V	TQ2-L-12V	TQ2-L2-12V
	24 V DC	TQ2-24V	TQ2-L-24V	TQ2-L2-24V
	48 V DC	TQ2-48V	-	-
4 Form C	3V DC	TQ4-3V	TQ4-L-3V	TQ4-L2-3V
	4.5 V DC	TQ4-4.5V	TQ4-L-4.5V	TQ4-L2-4.5V
	5 V DC	TQ4-5V	TQ4-L-5V	TQ4-L2-5V
	6V DC	TQ4-6V	TQ4-L-6V	TQ4-L2-6V
	9V DC	TQ4-9V	TQ4-L-9V	TQ4-L2-9V
	12 V DC	TQ4-12V	TQ4-L-12V	TQ4-L2-12V
	24V DC	TQ4-24V	TQ4-L-24V	TQ4-L2-24V
	48V DC	TQ4-48V	-	-

Standard packing (2 Form C): Tube: 50 pcs.; Case: 1,000 pcs.
Standard packing (4 Form C): Tube: 25 pcs.; Case: 500 pcs.

2) Self-clinching terminal

Contact arrangement	$\begin{gathered} \text { Nominal coil } \\ \text { voltage } \\ \hline \end{gathered}$	Single side stable	1 coil latching	2 coil latching
		Part No.	Part No.	Part No.
2 Form C	3V DC	TQ2H-3V	TQ2H-L-3V	TQ2H-L2-3V
	4.5 V DC	TQ2H-4.5V	TQ2H-L-4.5V	TQ2H-L2-4.5V
	5V DC	TQ2H-5V	TQ2H-L-5V	TQ2H-L2-5V
	6V DC	TQ2H-6V	TQ2H-L-6V	TQ2H-L2-6V
	9 V DC	TQ2H-9V	TQ2H-L-9V	TQ2H-L2-9V
	12 V DC	TQ2H-12V	TQ2H-L-12V	TQ2H-L2-12V
	24V DC	TQ2H-24V	TQ2H-L-24V	TQ2H-L2-24V
	48 V DC	TQ2H-48V	-	-
4 Form C	3V DC	TQ4H-3V	TQ4H-L-3V	TQ4H-L2-3V
	4.5 V DC	TQ4H-4.5V	TQ4H-L-4.5V	TQ4H-L2-4.5V
	5V DC	TQ4H-5V	TQ4H-L-5V	TQ4H-L2-5V
	6V DC	TQ4H-6V	TQ4H-L-6V	TQ4H-L2-6V
	9V DC	TQ4H-9V	TQ4H-L-9V	TQ4H-L2-9V
	12 V DC	TQ4H-12V	TQ4H-L-12V	TQ4H-L2-12V
	24V DC	TQ4H-24V	TQ4H-L-24V	TQ4H-L2-24V
	48 V DC	TQ4H-48V	-	-

Note: Types ("-3" to the end of part No.) designed to withstand strong vibration caused, for example, by the use of terminal cutters, can also be ordered. However, please contact us if you need parts for use in low level load.
2. M.B.B. type

1) Standard PC board terminal

Contact arrangement	Nominal coil voltage	Single side stable
		Part No.
2 Form C	3V DC	TQ2-2M-3V
	4.5V DC	TQ2-2M-4.5V
	5 V DC	TQ2-2M-5V
	6 V DC	TQ2-2M-6V
	9V DC	TQ2-2M-9V
	12 V DC	TQ2-2M-12V
	24V DC	TQ2-2M-24V

[^6]
2）Self－clinching terminal

Contact arrangement	Nominal coil voltage	Single side stable
		Part No．
2 Form C	3V DC	TQ2H－2M－3V
	4.5 V DC	TQ2H－2M－4．5V
	5V DC	TQ2H－2M－5V
	6V DC	TQ2H－2M－6V
	9V DC	TQ2H－2M－9V
	12 V DC	TQ2H－2M－12V
	24V DC	TQ2H－2M－24V

Standard packing：Tube： 50 pcs．；Case： 1,000 pcs．
Notes：1．Latching types are available by request．Please consult us for details．
2．UL／CSA approved（UL file No．：E 43149，CSA file No．：LR26550）
3．Types（＂－1＂to the end of part No．）designed to withstand strong vibration caused，for example，by the use of terminal cutters，can also be ordered． However，please contact us if you need parts for use in low level load and low thermal power．

■ Surface－mount terminal

1）Tube packing

Contact arrangement	Nominal coil voltage	Single side stable	1 coil latching	2 coil latching
		Part No．	Part No．	Part No．
2c	1.5 V DC	TQ2SD－1．5V	TQ2SD－L－1．5V	TQ2SD－L2－1．5V
	3 V DC	TQ2S－3V	TQ2SD－L－3V	TQ2SD－L2－3V
	4.5 V DC	TQ2SD－4．5V	TQ2S］－L－4．5V	TQ2SD－L2－4．5V
	5V DC	TQ2S】－5V	TQ2SD－L－5V	TQ2S】－L2－5V
	6V DC	TQ2S］－6V	TQ2SD－L－6V	TQ2SD－L2－6V
	9V DC	TQ2S】－9V	TQ2SD－L－9V	TQ2S】－L2－9V
	12 V DC	TQ2S－12V	TQ2S－－ 12 V	TQ2SD－L2－12V
	24 V DC	TQ2SD－24V	TQ2SD－L－24V	TQ2SD－L2－24V
	48 V DC	TQ2S】－48V	－	－

］：For each surface－mounted terminal identification，input the following letter．SA type：\underline{A}, SL type：\underline{L}, SS type：\underline{S} Standard packing：Tube： 50 pcs．；Case：1，000 pcs．

2）Tape and reel packing

Contact arrangement		Single side stable	1 coil latching	2 coil latching
	voltage	Part No．	Part No．	Part No．
2 Form C	1.5 V DC	TQ2SD－1．5V－Z	TQ2S】－L－1．5V－Z	TQ2SD－L2－1．5V－Z
	3V DC	TQ2SD－3V－Z	TQ2SD－L－3V－Z	TQ2SD－L2－3V－Z
	4.5 V DC	TQ2S】－4．5V－Z	TQ2S】－L－4．5V－Z	TQ2SD－L2－4．5V－Z
	5V DC	TQ2SD－5V－Z	TQ2S］－L－5V－Z	TQ2SD－L2－5V－Z
	6 V DC	TQ2SD－6V－Z	TQ2SD－L－6V－Z	TQ2S］－L2－6V－Z
	9 V DC	TQ2SD－9V－Z	TQ2SD－L－9V－Z	TQ2SD－L2－9V－Z
	12 V DC	TQ2S］－12V－Z	TQ2S】－L－12V－Z	TQ2SD－L2－12V－Z
	24 V DC	TQ2S］－24V－Z	TQ2S】－L－24V－Z	TQ2SD－L2－24V－Z
	48 V DC	TQ2S］－48V－Z	－	－

■：For each surface－mounted terminal identification，input the following letter．SA type：\underline{A}, SL type：$\underline{L}, \operatorname{SS}$ type：\underline{S}
Standard packing：Tape and reel： 500 pcs．；Case：1，000 pcs
Note：Tape and reel packing symbol＂－Z＂is not marked on the relay．＂X＂type tape and reel packing（picked from 1／2／3／4－pin side）is also available．

RATING

\square Standard PC board terminal and self－clinching terminal

1．Coil data
［Standard（B．B．M．）type］
1）Single side stable（2 Form C）

Nominal coil voltage	Pick－up voltage （at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$ ）	Drop－out voltage （at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$ ）	$\begin{gathered} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$	$\begin{gathered} \text { Coil resistance } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$	Nominal operating power	Max．applied voltage （at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$ ）
3V DC	$75 \% \mathrm{~V}$ or less of nominal voltage＊ （Initial）	$10 \% \mathrm{~V}$ or more of nominal voltage＊ （Initial）	46.7 mA	64.3Ω	140 mW	$150 \% \mathrm{~V}$ of nominal voltage
4.5 V DC			31.1 mA	144.6Ω		
5V DC			28.1 mA	178Ω		
6V DC			23.3 mA	257Ω		
9V DC			15.5 mA	579Ω		
12 V DC			11.7 mA	1，028		
24V DC			8.3 mA	2，880 Ω	200mW	
48 V DC			6.25 mA	7，680	300 mW	$120 \% \mathrm{~V}$ of nominal voltage

2) 1 coil latching (2 Form C)									
Nominal coil voltage	$\begin{aligned} & \text { Set voltage } \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$		Coil resistance [$\pm 10 \%$] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Nominal operating power		Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
3V DC	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	33.3 mA		90Ω				
4.5 V DC				mA					
5V DC									
6 V DC				mA					
9V DC				mA					
12 V DC									
24V DC									
3) 2 coil latching (2 Form C)									
Nominal coil voltage	$\begin{aligned} & \text { Set voltage } \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operatingcurrent$[\pm 10 \%]$ (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		$\begin{gathered} \text { Coil resistance } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$		Nominal operating power		Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
			Set coil	Reset coil	Set coil	Reset coil	Set coil	Reset coil	
3V DC	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	66.7 mA	66.7 mA	45Ω	45Ω	200 mW	200mW	$150 \% \mathrm{~V}$ of nominal voltage
4.5V DC			44.4 mA	44.4 mA	101.2Ω	101.2Ω			
5V DC			40 mA	40 mA	125Ω	125Ω			
6V DC			33.3 mA	33.3 mA	180Ω	180Ω			
9V DC			22.2 mA	22.2 mA	405Ω	405Ω			
12 V DC			16.7 mA	16.7 mA	720Ω	720Ω			
24 V DC			12.5 mA	12.5 mA	1,920	1,920	300 mW	300 mW	$120 \% \mathrm{~V}$ of nominal voltage

4) Single side stable (4 Form C)

Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%] \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) }} \end{gathered}$	Coil resistance [$\pm 10 \%$] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating power	Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
3V DC	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	$10 \% \mathrm{~V}$ or more of nominal voltage* (Initial)	93.8 mA	32Ω	280 mW	$150 \% \mathrm{~V}$ of nominal voltage
4.5 V DC			62.2 mA	72.3Ω		
5 V DC			56.2 mA	89Ω		
6 V DC			46.5 mA	129Ω		
9 V DC			31.1 mA	289Ω		
12 V DC			23.3 mA	514Ω		
24V DC			11.7 mA	2,056 ${ }^{\text {a }}$		
48 V DC			8.3 mA	5,760	400 mW	$120 \% \mathrm{~V}$ of nominal voltage

5) 1 coil latching (4 Form C)

Nominal coil voltage	$\begin{aligned} & \text { Set voltage } \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$	$\begin{gathered} \text { Coil resistance } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$	Nominal operating power	Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
3V DC	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	66.6 mA	45Ω	200mW	$150 \% \mathrm{~V}$ of nominal voltage
4.5 V DC			44.4 mA	101.2Ω		
5V DC			40 mA	125Ω		
6 V DC			33.3 mA	180Ω		
9V DC			22.2 mA	405Ω		
12 V DC			16.7 mA	720Ω		
24V DC			8.3 mA	2,880 Ω		

6) 2 coil latching (4 Form C)

Nominal coil voltage	$\begin{aligned} & \text { Set voltage } \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operatingcurrent$[\pm 10 \%]$ (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		$\begin{gathered} \text { Coil resistance } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right. \text {) }} \end{gathered}$		Nominal operating power		Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
			Set coil	Reset coil	Set coil	Reset coil	Set coil	Reset coil	
3V DC	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	133 mA	133 mA	22.5Ω	22.5Ω	400 mW	400mW	$150 \% \mathrm{~V}$ of nominal voltage
4.5 V DC			88.9 mA	88.9 mA	50.6Ω	50.6Ω			
5V DC			80 mA	80 mA	62.5Ω	62.5Ω			
6V DC			66.6 mA	66.6 mA	90Ω	90Ω			
9V DC			44.4 mA	44.4 mA	202.5Ω	202.5Ω			
12 V DC			33.3 mA	33.3 mA	360Ω	360Ω			
24V DC			16.7 mA	16.7 mA	1,440 Ω	1,440 ${ }^{\text {a }}$			

*Pulse drive (JIS C 5442-1986)
[M.B.B. type]

Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating current $[\pm 10 \%]\left(\right.$ at $\left.20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)$	$\begin{gathered} \text { Coil resistance } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right. \text {) }} \end{gathered}$	Nominal operating power	Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
3V DC	$80 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	$10 \% \mathrm{~V}$ or more of nominal voltage* (Initial)	66.7 mA	45Ω	200 mW	$150 \% \mathrm{~V}$ of nominal voltage
4.5 V DC			44.4 mA	101Ω		
5 V DC			40 mA	125Ω		
6V DC			33.3 mA	180Ω		
9V DC			22.2 mA	405Ω		
12 V DC			16.7 mA	720Ω		
24 V DC			8.3 mA	2,880 Ω		

*Pulse drive (JIS C 5442-1986)

2. Specifications

Characteristics	Item		Specifications	
Contact	Arrangement		2 Form C, 2 Form D (M.B.B.)	4 Form C
	Initial contact resistance, max.		Max. $50 \mathrm{~m} \Omega$ (By voltage drop 6 V DC 1A)	
	Contact material		$\mathrm{Ag}+\mathrm{Au}$ clad	
Rating	Nominal switching capacity		$1 \mathrm{~A} 30 \mathrm{~V} \mathrm{DC}, 0.5 \mathrm{~A} 125 \mathrm{~V} \mathrm{AC*1}$ (resistive load)	
	Max. switching power		30 W (DC), $62.5 \mathrm{~V} \mathrm{~A} \mathrm{(AC)}{ }^{* 1}$ (resistive load)	
	Max. switching voltage		$110 \mathrm{~V} \mathrm{DC}, 125 \mathrm{~V} \mathrm{AC}^{* 1}$	
	Max. switching current		1 A	
	Min. switching capacity (Reference value)*2		$10 \mu \mathrm{~A} 10 \mathrm{mV} \mathrm{DC}$	
	Nominal operating power	Single side stable	Standard (B.B.M) type: 140 mW (3 to 12 V DC), 200 mW (24 V DC), 300 mW (48 V DC) M.B.B. type: 200 mW	280 mW (3 to 24 V DC), 400 mW (48 V DC)
		1 coil latching	100 mW (3 to 12 V DC), 150 mW (24 V DC)	200 mW
		2 coil latching	200 mW (3 to 12 V DC), 300 mW (24 V DC)	400 mW
Electrical characteristics	Insulation resistance (Initial)		Min. $1,000 \mathrm{M} \Omega$ (at 500 V DC)Measurement at same location as "Initial breakdown voltage" section.	
	Breakdown voltage (Initial)	Between open contacts	Standard (B.B.M) type: 750 Vrms for 1 min . (Detection current: 10 mA), M.B.B. type: 300 Vrms for 1 min . (Detection current: 10 mA)	
		Between contact and coil	1,000 Vrms for 1 min . (Detection current: 10 mA)	
		Between contact sets	1,000 Vrms for 1 min . (Detection current: 10 mA)	
	Temperature rise (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. $50^{\circ} \mathrm{C}$ (By resistive method, nominal coil voltage applied to the coil; contact carrying current: 1 A .)	
	Operate time [Set time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 3 ms [Max. 3 ms] (Nominal coil voltage applied to the coil, excluding contact bounce time.)	
	Release time [Reset time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 3 ms [Max. 3 ms] (Nominal coil voltage applied to the coil, excluding contact bounce time.) (without diode)	
Mechanical characteristics	Shock resistance	Functional	Min. $490 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$.)	
		Destructive	Min. $980 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 6 ms .)	
	Vibration resistance	Functional	10 to 55 Hz at double amplitude of 3 mm (Detection time: $10 \mu \mathrm{~s}$.)	
		Destructive	10 to 55 Hz at double amplitude of 5 mm	
	Mechanical (at 180 cpm)		Standard (B.B.M) type: Min. 108, M.B.B. type: Min. 10^{7}	
Expected life	Electrical (at 20 cpm)		Standard (B.B.M) type: Min. 2×10^{5} (1 A 30 V DC resistive), Min. 10^{5} (0.5 A 125 V AC resistive) M.B.B. type: Min. 10^{5} (1 A 30 V DC resistive)	
Conditions	Conditions for operation, transport and storage*3		Standard (B.B.M) type: Ambient temperature: $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+158^{\circ} \mathrm{F}$; Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature) M.B.B. type: Ambient temperature: $-40^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+122^{\circ} \mathrm{F}$; Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature)	
	Max. operating speed (at rated load)		20 cpm	
Unit weight			Approx. $1.5 \mathrm{~g} \mathrm{}$.	Approx. 3 g .106 oz .

Notes: *1 AC is standard (B.B.M) type only.
*2 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load. (SX relays are available for low level load switching [10V DC, 10 mA max. level])
*3Refer to "6. Usage, Storage and Transport Conditions" in AMBIENT ENVIRONMENT (page 599).

- Surface-mount terminal

1. Coil data

1) Single side stable

Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating current (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Coil resistance [$\pm 10 \%$] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating power	Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
1.5 V DC	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	$10 \% \mathrm{~V}$ or more of nominal voltage* (Initial)	93.8 mA	16Ω	140 mW	$150 \% \mathrm{~V}$ of nominal voltage
3V DC			46.7 mA	64.3Ω		
4.5 V DC			31 mA	145Ω		
5 V DC			28.1 mA	178Ω		
6V DC			23.3 mA	257Ω		
9V DC			15.5 mA	579Ω		
12 V DC			11.7 mA	1,028 Ω		
24 V DC			8.3 mA	2,880	200mW	
48 V DC			6.3 mA	7,680	300 mW	$120 \% \mathrm{~V}$ of nominal voltage

Nominal coil voltage	$\begin{aligned} & \text { Set voltage } \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating current (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Coil resistance [$\pm 10 \%$] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating power	Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
1.5 V DC	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	46.9 mA	32Ω	70 mW	$150 \% \mathrm{~V}$ of nominal voltage
3V DC			23.3 mA	128.6Ω		
4.5 V DC			15.6 mA	289.3Ω		
5 V DC			14 mA	357Ω		
6 V DC			11.7 mA	514Ω		
9V DC			7.8 mA	1,157 Ω		
12 V DC			5.8 mA	2,057 Ω		
24 V DC			4.2 mA	5,760 ${ }^{\text {a }}$	100mW	

3) 2 coil latching

Nominal coil voltage	$\begin{aligned} & \text { Set voltage } \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nomina (at 20	operating ent 68ํ.)	$\begin{aligned} & \text { Coil re } \\ & {[\pm 10 \%] \text { (at }} \end{aligned}$	stance $\left.20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)$	Nomina p	perating er	Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
			Set coil	Reset coil	Set coil	Reset coil	Set coil	Reset coil	
1.5 V DC	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	93.8 mA	93.8 mA	16Ω	16Ω	140 mW	140 mW	$150 \% \mathrm{~V}$ of nominal voltage
3V DC			46.7 mA	46.7 mA	64.3Ω	64.3Ω			
4.5V DC			31 mA	31 mA	145Ω	145Ω			
5V DC			28.1 mA	28.1 mA	178Ω	178Ω			
6V DC			23.3 mA	23.3 mA	257Ω	257Ω			
9V DC			15.5 mA	15.5 mA	579Ω	579Ω			
12 V DC			11.7 mA	11.7 mA	1,028	1,028			
24 V DC			8.3 mA	8.3 mA	2,880 2	2,880 ${ }^{\text {d }}$	200mW	200 mW	

*Pulse drive (JIS C 5442-1986)

2. Specifications

Characteristics	Item		Specifications
Contact	Arrangement		2 Form C
	Initial contact resistance, max.		Max. $75 \mathrm{~m} \Omega$ (By voltage drop 6 V DC 1A)
	Contact material		AgNi type+Au clad
Rating	Nominal switching capacity		2 A 30 V DC, 0.5 A 125 V AC (resistive load)
	Max. switching power		60 W (DC), 62.5 VA (AC) (resistive load)
	Max. switching voltage		220 V DC, 125 V AC
	Max. switching current		2 A
	Min. switching capacity (Reference value)*1		$10 \mu \mathrm{~A} 10 \mathrm{mV}$ DC
	Nominal operating power	Single side stable	140 mW (1.5 to 12 V DC), 200 mW (24 V DC), 300 mW (48 V DC)
		1 coil latching	70 mW (1.5 to 12 V DC), 100 mW (24 V DC)
		2 coil latching	140 mW (1.5 to 12 V DC), 200 mW (24 V DC)
Electrical characteristics	Insulation resistance (Initial)		Min. 1,000M Ω (at 500 V DC) Measurement at same location as "Initial breakdown voltage" section.
	Breakdown voltage (Initial)	Between open contacts	1,000 Vrms for 1 min . (Detection current: 10 mA)
		Between contact and coil	1,500 Vrms for 1 min . (Detection current: 10 mA)
		Between contact sets	1,500 Vrms for 1 min . (Detection current: 10 mA)
	Surge breakdown voltage (Initial)	Between open contacts	$1,500 \mathrm{~V}(10 \times 160 \mu \mathrm{~s})$ (FCC Part 68)
		Between contacts and coil	$2,500 \mathrm{~V}(2 \times 10 \mu \mathrm{~s})$ (Bellcore)
	Temperature rise (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. $50^{\circ} \mathrm{C}$ (By resistive method, nominal coil voltage applied to the coil; contact carrying current: 2A.)
	Operate time [Set time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 4 ms [Max. 4 ms] (Nominal coil voltage applied to the coil, excluding contact bounce time.)
	Release time [Reset time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 4 ms [Max. 4 ms] (Nominal coil voltage applied to the coil, excluding contact bounce time.) (without diode)
Mechanical characteristics	Shock resistance	Functional	Min. $750 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 6 ms ; detection time: $10 \mu \mathrm{~s}$.)
		Destructive	Min. $1,000 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 6 ms .)
	Vibration resistance	Functional	10 to 55 Hz at double amplitude of 3.3 mm (Detection time: $10 \mu \mathrm{~s}$.)
		Destructive	10 to 55 Hz at double amplitude of 5 mm
Expected life	Mechanical		Min. 10^{8} (at 180 cpm)
	Electrical		Min. 10^{5} (2 A 30 V DC resistive), Min. 2×10^{5} (1 A 30 V DC resistive), Min. 10^{5} (0.5 A 125 V AC resistive) (at 20 cpm)
Conditions	Conditions for operation, transport and storage*2		Ambient temperature: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+185^{\circ} \mathrm{F}$, Max. $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}(2 \mathrm{~A}) \mathrm{Max} . ~-40^{\circ} \mathrm{F}$ to $+158^{\circ} \mathrm{F}(2 \mathrm{~A})$; Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature)
	Max. operating speed (at rated load)		20 cpm
Unit weight			Approx. 2 g .071 oz

[^7]*2Refer to "6. Usage, Storage and Transport Conditions" in AMBIENT ENVIRONMENT (page 599).

REFERENCE DATA

\square Standard PC board terminal and self-clinching terminal

1. Maximum switching capacity

2. Life curve

3. Mechanical life

Tested sample: TQ2-12V, 10 pcs.

4.-(1) Electrical life (DC load)

Tested sample: TQ2-12V, 6 pcs.
Condition: 1 A 30 V DC resistive load, 20 cpm Change of pick-up and drop-out voltage

Change of contact resistance

4.-(2) Electrical life (AC load)

Tested sample: TQ2-12V, 6 pcs.
Condition: 0.5 A 125 V AC resistive load, 20 cpm
Change of pick-up and drop-out voltage

5. Coil temperature rise (2C)

Tested sample: TQ2-12V
Measured portion: Inside the coil
Ambient temperature: $30^{\circ} \mathrm{C} 86^{\circ} \mathrm{F}$

7.-(2) High-frequency characteristics (Insertion loss)

Change of contact resistance

7.-(1) High-frequency characteristics (Isolation)
6. Ambient temperature characteristics Tested sample: TQ2-12V, 5 pcs.

8. Malfunctional shock (single side stable) Tested sample: TQ2-12V, 6 pcs.

\longrightarrow Inter-relay distance ℓ, mm inch
10. Contact reliability
(1 mA 5 V DC resistive load)
Tested sample: TQ2-12V
Condition: Detection level 10 W

11. Actual load test (35 mA 48 V DC wire spring relay load)

Circuit

Change of pick-up and drop-out voltage

Change of contact resistance

12. 0.1 A 53 V DC resistive load test

Change of pick-up and drop-out voltage

Change of contact resistance

13. Distribution of M.B.B. time

Tested sample: TQ2-2M-5V, 85 pcs.

- Surface-mount terminal

1. Maximum switching capacity

4.-(1) Electrical life (2 A 30 V DC resistive load)

Tested sample: TQ2SA-12V, 6 pcs.
Operating speed: 20 cpm
Change of pick-up and drop-out voltage (mounting by IRS method)

Change of contact resistance (mounting by IRS method)

7. Ambient temperature characteristics Tested sample: TQ2SA-12V, 5 pcs.

2. Life curve

3. Mechanical life (mounting by IRS method) Tested sample: TQ2SA-12V, 10 pcs.

4.-(2) Electrical life (0.5 A 125 V AC resistive load)

Tested sample: TQ2SA-12V, 6 pcs
Operating speed: 20 cpm
Change of pick-up and drop-out voltage (mounting by IRS method)

5. Coil temperature rise

Tested sample: TQ2SA-12V, 6 pcs.
Point measured: Inside the coil
Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$

8.-(1) High-frequency characteristics (Isolation)

6. Operate/release time

Tested sample: TQ2SA-12V, 6 pcs.

8.-(2) High-frequency characteristics (Insertion loss)

9. Malfunctional shock (single side stable)

Tested sample: TQ2SA-12V, 6 pcs

10.-(1) Influence of adjacent mounting Tested sample: TQ2SA-12V, 5 pcs.

10.-(2) Influence of adjacent mounting Tested sample: TQ2SA-12V, 6 pcs.

11. Pulse dialing test
(35 mA 48 V DC wire spring relay load) Tested sample: TQ2SA-12V, 6 pcs. Circuit

Change of pick-up and drop-out voltage (mounting by IRS method)

Change of contact resistance (mounting by IRS method)

DIMENSIONS (mm inch) Interested in CAD data? You can obtain CAD data for all products with a CAD Data mark from your local Panasonic Electric Works representative.

1. Standard PC board terminal and Self-clinching terminal
1) 2 Form C

External dimensions
Standard PC board terminal

Self-clinching termina

General tolerance: $\pm 0.3 \pm .012$

Schematic (Bottom view) 1-coil latching

(Deenergized condition)

Single side stable

(Reset condition)

PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$

2) 4 Form C

External dimensions
Standard PC board terminal

Self-clinching terminal

General tolerance: $\pm 0.3 \pm .012$

PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$

Schematic (Bottom view)

Schematic (Bottom view)		
Single side stable	1-coil latching	2-coil latching
\qquad		
(Deenergized condition)	(Reset condition)	(Reset condition)

2. Surface-mount terminal

SA type

Schematic (Top view)

Single side stable

(Deenergized condition)

1-coil latching

2-coil latching

NOTES

1. Packing style
1) The relay is packed in a tube with the relay orientation mark on the left side, as shown in the figure below.

2) Tape and reel packing (surface-mount terminal type)
(1) Tape dimensions
(i) SA type
mm inch

(ii) SL, SS type
mm inch

(2) Dimensions of plastic reel
mm inch

2. Automatic insertion

To maintain the internal function of the relay, the chucking pressure should not exceed the values below.
Chucking pressure in the direction A : $9.8 \mathrm{~N}\{1 \mathrm{kgf}\}$ or less
Chucking pressure in the direction B: $9.8 \mathrm{~N}\{1 \mathrm{kgf}\}$ or less
Chucking pressure in the direction C : $9.8 \mathrm{~N}\{1 \mathrm{kgf}\}$ or less

Please chuck the \square portion. Avoid chucking the center of the relay. In addition, excessive chucking pressure to the pinpoint of the relay should be avoided.

For Cautions for Use, see Relay Technical Information (page 582).

Panasonic ideas for life

FEATURES

1. $2,000 \mathrm{~V}$ breakdown voltage between contact and coil
The body block construction of the coil that is sealed at formation offers a high breakdown voltage of $2,000 \mathrm{~V}$ between contact and coil, and $1,000 \mathrm{~V}$ between open contacts.
2. Outstanding surge resistance Surge breakdown voltage between open contacts:
$1,500 \vee 10 \times 160 \mu \mathrm{sec}$. (FCC part 68) Surge breakdown voltage between contact and coil:
2,500 V $2 \times 10 \mu \mathrm{sec}$. (Bellcore)

New pin layout (LT type) added. Best seller with broad lineup and AC 2000 V breakdown voltage.

3. Nominal operating power: High sensitivity of 140 mW
By using the highly efficient polar magnetic circuit "seesaw balance mechanism", a nominal operating power of 140 mW (minimum operating power of 79 mW) has been achieved.
4. High contact capacity: 2 A 30 V DC
5. Compact size
$15.0(\mathrm{~L}) \times 7.4(\mathrm{~W}) \times 8.2(\mathrm{H}) .591(\mathrm{~L}) \times$
$.291(\mathrm{~W}) \times .323(\mathrm{H})$
6. The use of gold-clad twin crossbar contacts ensures high contact reliability.
*We also offer a range of products with AgPd contacts suitable for use in low level load analog circuits (Max. 10V DC 10 mA).
*SX relays designed for low level loads are also available.
7. Outstanding vibration and shock resistance
Functional shock resistance: $750 \mathrm{~m} / \mathrm{s}^{2}$
Destructive shock resistance:
$1,000 \mathrm{~m} / \mathrm{s}^{2}$
Functional vibration resistance:
10 to 55 Hz (at double amplitude of 3.3 mm .130 inch)

Destructive vibration resistance: 10 to 55 Hz (at double amplitude of 5 mm .197 inch)
8. Sealed construction allows automatic washing.
9. A range of surface-mount types is also available
SA: Low-profile surface-mount terminal type
SL: High connection reliability surfacemount terminal type
SS: Space saving surface-mount terminal type

TYPICAL APPLICATIONS

1. Communications (xDSL, Transmission)
2. Measurement
3. Security
4. Home appliances, and audio/visual equipment
5. Automotive equipment
6. Medical equipment

ORDERING INFORMATION

[^8]
Operating function

Nil: Single side stable
L: 1 coil latching
L2: 2 coil latching
LT: 2 coil latching
Terminal shape
Nil: Standard PC board terminal or surface-mount terminal
H: Self-clinching terminal
Nominal coil voltage (DC)*
1.5, 3, 4.5, 5, 6, 9, 12, 24, 48V

Contact material

Nil: Standard contact (Ag+Au clad)
1: AgPd contact (low level load); AgPd+Au clad (stationary), AgPd (movable)

Packing style

Nil: Tube packing
X: Tape and reel (picked from 1/3/4/5-pin side)
Z: Tape and reel packing (picked from the 8/9/10/12-pin side)
Notes: 1. *48 V coil type: Single side stable only
2. In case of 5 V transistor drive circuit, it is recommended to use 4.5 V type relay

TYPES

1．Standard PC board terminal

Contact arrangement	Nominal coil voltage	Single side stable	1 coil latching	2 coil latching（L2）	2 coil latching（LT）
		Part No．	Part No．	Part No．	Part No．
2 Form C	1.5 V DC	TX2－1．5V	TX2－L－1．5V	TX2－L2－1．5V	TX2－LT－1．5V
	3V DC	TX2－3V	TX2－L－3V	TX2－L2－3V	TX2－LT－3V
	4.5 V DC	TX2－4．5V	TX2－L－4．5V	TX2－L2－4．5V	TX2－LT－4．5V
	5V DC	TX2－5V	TX2－L－5V	TX2－L2－5V	TX2－LT－5V
	6 V DC	TX2－6V	TX2－L－6V	TX2－L2－6V	TX2－LT－6V
	9V DC	TX2－9V	TX2－L－9V	TX2－L2－9V	TX2－LT－9V
	12 V DC	TX2－12V	TX2－L－12V	TX2－L2－12V	TX2－LT－12V
	24 V DC	TX2－24V	TX2－L－24V	TX2－L2－24V	TX2－LT－24V
	48 V DC	TX2－48V	－	－	－

Standard packing：Tube： 40 pcs．；Case：1，000 pcs．
Note：Please add＂-1 ＂to the end of the part number for AgPd contacts（low level load）．

2．Self－clinching terminal

Contact arrangement	Nominal coil	Single side stable	1 coil latching	2 coil latching（L2）	2 coil latching（LT）
	voltage	Part No．	Part No．	Part No．	Part No．
2 Fom C	1.5 V DC	TX2－H－1．5V	TX2－L－H－1．5V	TX2－L2－H－1．5V	TX2－LT－H－1．5V
	3V DC	TX2－H－3V	TX2－L－H－3V	TX2－L2－H－3V	TX2－LT－H－3V
	4.5 V DC	TX2－H－4．5V	TX2－L－H－4．5V	TX2－L2－H－4．5V	TX2－LT－H－4．5V
	5 V DC	TX2－H－5V	TX2－L－H－5V	TX2－L2－H－5V	TX2－LT－H－5V
	6 V DC	TX2－H－6V	TX2－L－H－6V	TX2－L2－H－6V	TX2－LT－H－6V
	9 VDC	TX2－H－9V	TX2－L－H－9V	TX2－L2－H－9V	TX2－LT－H－9V
	12 V DC	TX2－H－12V	TX2－L－H－12V	TX2－L2－H－12V	TX2－LT－H－12V
	24V DC	TX2－H－24V	TX2－L－H－24V	TX2－L2－H－24V	TX2－LT－H－24V
	48 V DC	TX2－H－48V	－	－	－

Standard packing：Tube： 40 pcs．；Case：1，000 pcs．
Note：Please add＂-1 ＂to the end of the part number for AgPd contacts（low level load）．

3．Surface－mount terminal

1）Tube packing

Contact arrangement	Nominal coil voltage	Single side stable	1 coil latching	2 coil latching（L2）	2 coil latching（LT）
		Part No．	Part No．	Part No．	Part No．
2c	1.5 V DC	TX2S】－1．5V	TX2SD－L－1．5V	TX2SD－L2－1．5V	TX2SD－LT－1．5V
	3 V DC	TX2S -3 V	TX2SD－L－3V	TX2S】－L2－3V	TX2S】－LT－3V
	4.5 V DC	TX2S】－4．5V	TX2SD－L－4．5V	TX2SD－L2－4．5V	TX2SD－LT－4．5V
	5V DC	TX2S】－5V	TX2SD－L－5V	TX2S】－L2－5V	TX2S】－LT－5V
	6 V DC	TX2S $\square^{-6 \mathrm{~V}}$	TX2SD－L－6V	TX2SD－L2－6V	TX2SD－LT－6V
	9V DC	TX2SD－9V	TX2SD－L－9V	TX2S】－L2－9V	TX2S】－LT－9V
	12 V DC	TX2SD－12V	TX2S】－L－12V	TX2SD－L2－12V	TX2SD－LT－12V
	24 V DC	TX2S］－24V	TX2S】－L－24V	TX2SD－L2－24V	TX2SD－LT－24V
	48V DC	TX2SD－48V	－	－	－

I：For each surface－mounted terminal identification，input the following letter．SA type：$\underline{A}, S L$ type：$\underline{L}, S S$ type：\underline{S} Standard packing：Tube： 40 pcs．；Case：1，000 pcs．
Note：Please add＂-1 ＂to the end of the part number for AgPd contacts（low level load）．
2）Tape and reel packing

Contact arrangement	Nominal coil	Single side stable	1 coil latching	2 coil latching（L2）	2 coil latching（LT）
	voltage	Part No．	Part No．	Part No．	Part No．
2 Form C	1.5 V DC	TX2SD－1．5V－Z	TX2S］－L－1．5V－Z	TX2SD－L2－1．5V－Z	TX2SD－LT－1．5V－Z
	3V DC	TX2SD－3V－Z	TX2SD－L－3V－Z	TX2SD－L2－3V－Z	TX2SD－LT－3V－Z
	4.5 V DC	TX2S］－4．5V－Z	TX2S】－L－4．5V－Z	TX2SD－L2－4．5V－Z	TX2S［－LT－4．5V－Z
	5 V DC	TX2SD－5V－Z	TX2S］－L－5V－Z	TX2S］－L2－5V－Z	TX2S］－LT－5V－Z
	6 V DC	TX2SD－6V－Z	TX2SD－L－6V－Z	TX2SD－L2－6V－Z	TX2SD－LT－6V－Z
	9V DC	TX2SD－9V－Z	TX2SD－L－9V－Z	TX2SD－L2－9V－Z	TX2SD－LT－9V－Z
	12 V DC	TX2SD－12V－Z	TX2S】－L－12V－Z	TX2SD－L2－12V－Z	TX2SD－LT－12V－Z
	24V DC	TX2S］－24V－Z	TX2S】－L－24V－Z	TX2SD－L2－24V－Z	TX2SD－LT－24V－Z
	48 V DC	TX2S \square－48V－Z	－	－	－

Standard packing：Tape and reel： 500 pcs．；Case： 1,000 pcs．
Notes：1．Tape and reel packing symbol＂$-Z$＂is not marked on the relay．＂X＂type tape and reel packing（picked from $1 / 2 / 3 / 4-$ pin side）is also available．
2．Please add＂-1 ＂to the end of the part number for AgPd contacts（low level load）．

RATING

1. Coil data
1) Single side stable

Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating current $[\pm 10 \%]$ (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Coil resistance [$\pm 10 \%$] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating power	Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
1.5 V DC	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	$10 \% \mathrm{~V}$ or more of nominal voltage* (Initial)	93.8 mA	16Ω	140 mW	$150 \% \mathrm{~V}$ of nominal voltage
3V DC			46.7 mA	64.3Ω		
4.5 V DC			31 mA	145Ω		
5V DC			28.1 mA	178Ω		
6 V DC			23.3 mA	257Ω		
9 V DC			15.5 mA	579Ω		
12 V DC			11.7 mA	1,028 Ω		
24 V DC			5.8 mA	4,114 Ω		
48 V DC			5.6 mA	8,533 Ω	270 mW	$\begin{gathered} 120 \% \mathrm{~V} \text { of } \\ \text { nominal voltage } \\ \hline \end{gathered}$

2) 1 coil latching

Nominal coil voltage	$\begin{aligned} & \text { Set voltage } \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%] \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) }} \end{gathered}$	Coil resistance [$\pm 10 \%$] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating power	Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
1.5 V DC	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	66.7 mA	22.5Ω	100mW	$150 \% \mathrm{~V}$ of nominal voltage
3 V DC			33.3 mA	90Ω		
4.5V DC			22.2 mA	202.5Ω		
5 V DC			20 mA	250Ω		
6V DC			16.7 mA	360Ω		
9V DC			11.1 mA	810Ω		
12 V DC			8.3 mA	1,440		
24V DC			4.2 mA	5,760		

3) 2 coil latching (L2, LT)

Nominal coil voltage	$\begin{aligned} & \text { Set voltage } \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		perating ent $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{array}{r} \text { Coil } \\ {[\pm 10 \%](a} \end{array}$	stance $\left.20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)$		perating er	Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$
			Set coil	Reset coil	Set coil	Reset coil	Set coil	Reset coil	
1.5 V DC	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	133.9 mA	133.9 mA	11.2Ω	11.2Ω	200 mW	200mW	$150 \% \mathrm{~V}$ of nominal voltage
3 V DC			66.7 mA	66.7 mA	45Ω	45Ω			
4.5 V DC			44.5 mA	44.5 mA	101.2Ω	101.2Ω			
5 V DC			40 mA	40 mA	125Ω	125Ω			
6 V DC			33.3 mA	33.3 mA	180Ω	180Ω			
9V DC			22.2 mA	22.2 mA	405Ω	405Ω			
12 V DC			16.7 mA	16.7 mA	720Ω	720Ω			
24V DC			8.3 mA	8.3 mA	2,880 ${ }^{\text {a }}$	2,880 Ω			

*Pulse drive (JIS C 5442-1986)

2. Specifications

Characteristics	Item		Specifications
Contact	Arrangement		2 Form C
	Initial contact resistance, max.		Max. $100 \mathrm{~m} \Omega$ (By voltage drop 6 V DC 1A)
	Contact material		Standard contact: Ag+Au clad, AgPd contact (low level load): AgPd+Au clad (stationary), AgPd (movable)
Rating	Nominal switching capacity		Standard contact: 2 A 30 V DC, AgPd contact: 1 A 30 V DC (resistive load)
	Max. switching power		Standard contact: 60 W (DC), AgPd contact: 30 W (DC) (resistive load)
	Max. switching voltage		220V DC
	Max. switching current		Standard contact: $2 \mathrm{~A}, \mathrm{AgPd}$ contact: 1 A
	Min. switching capacity (Reference value)* ${ }^{+1}$		$10 \mu \mathrm{~A} 10 \mathrm{mV}$ DC
	Nominal operating power	Single side stable	140 mW (1.5 to 24 V DC), 270 mW (48 V DC)
		1 coil latching	100 mW (1.5 to 24 V DC)
		2 coil latching	200 mW (1.5 to 24 V DC)
Electrical characteristics	Insulation resistance (Initial)		Min. 1,000M Ω (at 500 V DC) Measurement at same location as "Initial breakdown voltage" section.
	Breakdown voltage (Initial)	Between open contacts	$1,000 \mathrm{Vrms}$ for 1 min . (Detection current: 10 mA)
		Between contact and coil	2,000 Vrms for 1 min . (Detection current: 10 mA)
		Between contact sets	1,000 Vrms for 1 min . (Detection current: 10 mA)
	Surge breakdown voltage (Initial)	Between open contacts	$1,500 \mathrm{~V}(10 \times 160 \mu \mathrm{~s})$ (FCC Part 68)
		Between contacts and coil	$2,500 \mathrm{~V}(2 \times 10 \mu \mathrm{~s})$ (Telcordia)
	Temperature rise (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. $50^{\circ} \mathrm{C}$ (By resistive method, nominal coil voltage applied to the coil; contact carrying current: 2A.)
	Operate time [Set time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 4 ms [Max. 4 ms] (Nominal coil voltage applied to the coil, excluding contact bounce time.)
	Release time [Reset time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 4 ms [Max. 4 ms] (Nominal coil voltage applied to the coil, excluding contact bounce time.) (without diode)
Mechanical characteristics	Shock resistance	Functional	Min. $750 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 6 ms ; detection time: $10 \mu \mathrm{~s}$.)
		Destructive	Min. 1,000 m/s ${ }^{2}$ (Half-wave pulse of sine wave: 6 ms .)
	Vibration resistance	Functional	10 to 55 Hz at double amplitude of 3.3 mm (Detection time: $10 \mu \mathrm{~s}$.)
		Destructive	10 to 55 Hz at double amplitude of 5 mm
Expected life	Mechanical		Min. 10^{8} (at 180 cpm)
	Electrical		Min. 10^{5} (2 A 30 V DC resistive), 5×10^{5} (1 A 30 V DC resistive) (at 20 cpm)
Conditions	Conditions for operation, transport and storage*2		Ambient temperature: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (up to 24 V coil) $-40^{\circ} \mathrm{F}$ to $+185^{\circ} \mathrm{F}$ (up to 24 V coil) $\left[-40^{\circ} \mathrm{C}\right.$ to $+70^{\circ} \mathrm{C}\left(48 \mathrm{~V}\right.$ coil) $-40^{\circ} \mathrm{F}$ to $+158^{\circ} \mathrm{F}(48 \mathrm{~V}$ coil) $)$; Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature)
	Max. operating speed (at rated load)		20 cpm
Unit weight			Approx. 2 g .071 oz

*1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load. (AgPd contact type or SX relays are available for low level load switching [10V DC, 10mA max. level])
*2Refer to "6. Usage, Storage and Transport Conditions" in AMBIENT ENVIRONMENT (page 599).

REFERENCE DATA

2. Life curve

3. Mechanical life

Tested sample: TX2-5V, 10 pcs.
Operating speed: 180 cpm

4. Electrical life (2A 30V DC resistive load)

Tested sample: TX2-5V, 6 pcs
Operating speed: 20 cpm

5-(2). Coil temperature rise
Tested sample: TX2-48V, 6 pcs.
Point measured: Inside the coil
Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}, 70^{\circ} \mathrm{C} 158^{\circ} \mathrm{F}$

7. Ambient temperature characteristics

Tested sample: TX2-5V, 5 pcs.

9 Malfunctional shock (single side stable) Tested sample: TX2-5V, 6 pcs.

5-(1). Coil temperature rise
Tested sample: TX2-5V, 6 pcs
Point measured: Inside the coil
Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}, 85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$

6-(1). Operate and release time (with diode) Tested sample: TX2-5V, 10 pcs

8-(1). High frequency characteristics (Isolation)
Tested sample: TX2-12V, 2 pcs.

10-(1). Influence of adjacent mounting Tested sample: TX2-12V, 6 pcs.

6-(2). Operate and release time (without diode) Tested sample: TX2-5V, 10 pcs.

8-(2). High frequency characteristics (Insertion loss)
Tested sample: TX2-12V, 2 pcs.

10-(2). Influence of adjacent mounting Tested sample: TX2-12V, 6 pcs.

(35 mA 48 V DC wire spring relay load)

Circuit

Change of pick-up and drop-out voltage

Change of contact resistance

Note: Data of surface-mount type are the same as those of PC board terminal type.
DIMENSIONS
(mm inch) Interested in CAD data? You can obtain CAD data for all products with a CAD Data mark from your local Panasonic Electric Works representative.

1. Standard PC board terminal and self clinching terminal

Single side stable and 1 coil latching type

CAD Data

PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$

External dimensions
Standard PC board terminal

Self clinching terminal

General tolerance: $\pm 0.3 \pm .012$
Schematic (Bottom view)
Single side stable 1 coil latching

(Deenergized condition)

(Reset condition)

PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$

2 coil latching type (L2, LT)

External dimensions
Standard PC board terminal

Self clinching terminal

General tolerance: $\pm 0.3 \pm .012$
Schematic (Bottom view)
2 coil latching (L2) 2 coil latching (LT)

(Reset condition)

(Reset condition)

2. Surface-mount terminal

CAD Data

Type	External dimensions (General tolerance: $\pm 0.3 \pm .012$)		Suggested mounting pad (Top view) (Tolerance: $\pm 0.1 \pm .004$)	
	Single side stable and 1 coil latching type	2 coil latching type (L2, LT)	Single side stable and 1 coil latching type	2 coil latching type (L2, LT)
SA type				
SL type				
SS type				

Schematic (Top view)

Single side stable

(Deenergized condition)

1 coil latching

(Reset condition)

2 coil latching (L2)

(Reset condition)

2 coil latching (LT)

(Reset condition)

NOTES

1. Packing style
1) The relay is packed in a tube with the relay orientation mark on the left side, as shown in the figure below.

2) Tape and reel packing (surface-mount terminal type)
(1) Tape dimensions
(i) SA type

Tape coming out direction

(ii) SL type

(iii) SS type
mm inch

Tape coming out direction
(2) Dimensions of plastic reel

2. Automatic insertion

To maintain the internal function of the relay, the chucking pressure should not exceed the values below.
Chucking pressure in the direction A: $4.9 \mathrm{~N}\{500 \mathrm{gf}\}$ or less
Chucking pressure in the direction B: $9.8 \mathrm{~N}\{1 \mathrm{kgf}\}$ or less
Chucking pressure in the direction C : $9.8 \mathrm{~N}\{1 \mathrm{kgf}\}$ or less

Please chuck the \square portion. Avoid chucking the center of the relay. In addition, excessive chucking pressure to the pinpoint of the relay should be avoided.

For Cautions for Use, see Relay Technical Information (page 582).

Panasonic ideas for life

FEATURES

1. Lineup now includes high breakdown voltage type that achieves breakdown voltage between open contacts of $1,500 \mathrm{~V}$ AC.
Surge breakdown voltage between open contacts:
$1,500 \mathrm{~V} 10 \times 160 \mu \mathrm{sec}$. (FCC part 68)
Surge breakdown voltage between contact and coil:
$6,000 \vee 1.2 \times 50 \mu \mathrm{sec}$. (EN60950)
2. Approved to the supplementary insulation class in the EN standards (EN60950).
The insulation distance between the contact and coil meet the supplementary insulation class of the EN60950 standards as required for equipment connected to the telephone lines in Europe.
Satisfies the following conditions:

- Clearances: 2.0 mm . 079 inch or more
- Creepage distance: 2.5 mm .098 inch or more

3. 3,000 V breakdown voltage between contact and coil. (Surge breakdown voltage $6,000 \mathrm{~V}$ type)
The body block construction of the coil that is sealed formation offers a high breakdown voltage of $3,000 \mathrm{~V}$ between contact and coil.
4. Nominal operating power: High sensitivity of 200 mW By using the highly efficient polar magnetic circuit "seesaw balance mechanism", a nominal operating power of 200 mW has been achieved.
5. High contact capacity: 2 A 30 V DC
6. High contact reliability achieved with gold-clad crossbar twin contacts and the use of gas expelling materials during formation.
*We also offer a range of products with AgPd contacts suitable for use in low level load analog circuits (Max. 10V DC 10 mA).
*SX relays designed for low level loads are also available.
(Surge breakdown voltage 2,500 V type only)
7. Outstanding vibration and shock resistance.
Functional shock resistance: $750 \mathrm{~m} / \mathrm{s}^{2}$
Destructive shock resistance:
$1,000 \mathrm{~m} / \mathrm{s}^{2}$
Functional vibration resistance:
10 to 55 Hz (at double amplitude of 3.3 mm .130 inch)

Destructive vibration resistance: 10 to 55 Hz (at double amplitude of 5 mm .197 inch)
8. Sealed construction allows automatic washing.
9. A range of surface-mount types is also available.
SA: Low-profile surface-mount terminal type
SL: High connection reliability surface mount terminal type
SS: Space saving surface-mount terminal type
10. M.B.B. type available (Surge breakdown voltage 2,500 V type only)

TYPICAL APPLICATIONS

1. Facsimile
2. Modem
3. Communications (xDSL)
4. Medical equipment
5. Automotive equipment
6. Security

ORDERING INFORMATION

Note: In case of 5 V transistor drive circuit, it is recommended to use 4.5 V type relay.

TYPES

1. Standard (B.B.M.) type/Surge breakdown voltage (between contact and coil) $2,500 \mathrm{~V} / \mathrm{Breakdown}$ voltage (between open contacts) $1,000 \mathrm{~V}$
1) Standard $P C$ board terminal

Contact arrangement	Nominal coil	Single side stable	1 coil latching
	voltage	Part No.	Part No.
2 Form C	1.5 V DC	TXD2-1.5V	TXD2-L-1.5V
	3V DC	TXD2-3V	TXD2-L-3V
	4.5 V DC	TXD2-4.5V	TXD2-L-4.5V
	5V DC	TXD2-5V	TXD2-L-5V
	6V DC	TXD2-6V	TXD2-L-6V
	9V DC	TXD2-9V	TXD2-L-9V
	12 V DC	TXD2-12V	TXD2-L-12V
	24 V DC	TXD2-24V	TXD2-L-24V

Standard packing: Tube: 40 pcs.; Case: 1,000 pcs.
Note: Please add " -1 " to the end of the part number for AgPd contacts (low level load).

2) Self-clinching terminal

Contact arrangement	Nominal coil	Single side stable	1 coil latching
	voltage	Part No.	Part No.
2 Form C	1.5 V DC	TXD2-H-1.5V	TXD2-L-H-1.5V
	3 V DC	TXD2-H-3V	TXD2-L-H-3V
	4.5 V DC	TXD2-H-4.5V	TXD2-L-H-4.5V
	5V DC	TXD2-H-5V	TXD2-L-H-5V
	6V DC	TXD2-H-6V	TXD2-L-H-6V
	9V DC	TXD2-H-9V	TXD2-L-H-9V
	12 V DC	TXD2-H-12V	TXD2-L-H-12V
	24 V DC	TXD2-H-24V	TXD2-L-H-24V

Standard packing: Tube: 40 pcs.; Case: 1,000 pcs.
Note: Please add " -1 " to the end of the part number for AgPd contacts (low level load).

3）Surface－mount terminal
（1）Tube packing

Contact arrangement	Nominal coil voltage	Single side stable	1 coil latching
		Part No．	Part No．
2 Form C	1.5 V DC	TXD2SD－1．5V	TXD2SD－L－1．5V
	3V DC	TXD2S■－3V	TXD2S】－L－3V
	4.5 V DC	TXD2SD－4．5V	TXD2SD－L－4．5V
	5 V DC	TXD2S】－5V	TXD2S】－L－5V
	6V DC	TXD2S】－6V	TXD2S】－L－6V
	9V DC	TXD2S■－9V	TXD2S】－L－9V
	12 V DC	TXD2S -12 V	TXD2S】－L－12V
	24V DC	TXD2S】－24V	TXD2SD－L－24V

D．For each surface－mount terminal identification，input the following letter．SA type：\underline{A}, SL type：\underline{L}, SS type：\underline{S}
Standard packing：Tube： 40 pcs．；Case：1，000 pcs．
Note：Please add＂-1 ＂to the end of the part number for AgPd contacts（low level load）．

（2）Tape and reel packing			
Contact arrangement	Nominal coil voltage	Single side stable	1 coil latching
		Part No．	Part No．
2 Form C	1．5V DC	TXD2S $-1.5 \mathrm{~V}-\mathrm{Z}$	TXD2S】－L－1．5V－Z
	3 V DC	TXD2S■－3V－Z	TXD2S】－L－3V－Z
	4.5 V DC	TXD2S】－4．5V－Z	TXD2S】－L－4．5V－Z
	5 V DC	TXD2S】－5V－Z	TXD2S】－L－5V－Z
	6 V DC	TXD2S■－6V－Z	TXD2S】－L－6V－Z
	9 V DC	TXD2S■－9V－Z	TXD2S】－L－9V－Z
	12 V DC	TXD2S】－12V－Z	TXD2S－L－12V－Z
	24 V DC	TXD2S】－24V－Z	TXD2S】－L－24V－Z

․：For each surface－mount terminal identification，input the following letter．SA type：$\underline{A}, S L$ type：\underline{L}, SS type：\underline{S}
Standard packing：Tape and reel： 500 pcs．；Case： 1,000 pcs．
Notes：1．Tape and reel packing symbol＂－Z＂is not marked on the relay．＂X＂type tape and reel packing（picked from 1／3／4／5－pin side）is also available．
2．Please add＂-1 ＂to the part number for AgPd contacts（low level load）．（Ex．TXD2SA－1．5V－1－Z）

2．M．B．B type／Surge breakdown voltage（between contact and coil） $2,500 \mathrm{~V} /$ Breakdown voltage（between open contacts） $1,000 \mathrm{~V}$
1）Standard PC board terminal

Contact arrangement	Nominal coil voltage	Single side stable
		Part No．
2 Form C	1.5 V DC	TXD2－2M－1．5V
	3V DC	TXD2－2M－3V
	4.5 V DC	TXD2－2M－4．5V
	5 V DC	TXD2－2M－5V
	6V DC	TXD2－2M－6V
	9V DC	TXD2－2M－9V
	12 V DC	TXD2－2M－12V
	24V DC	TXD2－2M－24V

Standard packing：Tube： 40 pcs．；Case： 1,000 pcs．
2）Self－clinching terminal

Contact arrangement	Nominal coil voltage	Single side stable
		Part No．
2 Form C	1.5 V DC	TXD2－2M－H－1．5V
	3V DC	TXD2－2M－H－3V
	4．5V DC	TXD2－2M－H－4．5V
	5V DC	TXD2－2M－H－5V
	6V DC	TXD2－2M－H－6V
	9V DC	TXD2－2M－H－9V
	12 V DC	TXD2－2M－H－12V
	24V DC	TXD2－2M－H－24V

[^9]3）Surface－mount terminal
（1）Tube packing

Contact arrangement	Nominal coil voltage	Single side stable
		Part No．
2 Form C	1.5 V DC	TXD2SD－2M－1．5V
	3V DC	TXD2SD－2M－3V
	4.5 V DC	TXD2S】－2M－4．5V
	5V DC	TXD2S－2M－5V
	6V DC	TXD2SD－2M－6V
	9V DC	TXD2SD－2M－9V
	12 V DC	TXD2SD－2M－12V
	24V DC	TXD2SD－2M－24V

D：For each surface－mount terminal identification，input the following letter．SA type：\underline{A}, SL type：\underline{L}, SS type：\underline{S}
Standard packing：Tube： 40 pcs．；Case：1，000 pcs．
（2）Tape and reel packing

Contact arrangement	Nominal coil voltage	Single side stable
		Part No．
2 Form C	1．5V DC	TXD2SD－2M－1．5V－Z
	3V DC	TXD2SD－2M－3V－Z
	4.5 V DC	TXD2SD－2M－4．5V－Z
	5 V DC	TXD2S】－2M－5V－Z
	6V DC	TXD2SD－2M－6V－Z
	9V DC	TXD2SD－2M－9V－Z
	12 V DC	TXD2S］－2M－12V－Z
	24V DC	TXD2SD－2M－24V－Z

口：For each surface－mount terminal identification，input the following letter．SA type：\underline{A}, SL type：\underline{L}, SS type：\underline{S}
Standard packing：Tape and reel： 500 pcs．；Case：1，000 pcs．
Notes：1．Types designed to withstand strong vibration caused，for example，by the use of terminal cutters，can also be ordered．
However，please contact us if you need parts for use in low level load．（Ex．TXD2SA－2M－1．5V－1－Z）
2．Tape and reel packing symbol＂－Z＂is not marked on the relay．＂X＂type tape and reel packing（picked from $1 / 3 / 4 / 5$－pin side）is also available．

3．Standard（B．B．M．）type／Surge breakdown voltage（between contact and coil）6，000 V／Breakdown voltage（between open contacts） $1,000 \mathrm{~V}$
1）Standard PC board terminal

Contact	Nominal coil voltage	Single side stable	1 coil latching
arrangement		Part No．	Part No．
2 Form C	1.5 V DC	TXD2－1．5V－6	TXD2－L－1．5V－6
	3V DC	TXD2－3V－6	TXD2－L－3V－6
	4.5 V DC	TXD2－4．5V－6	TXD2－L－4．5V－6
	5V DC	TXD2－5V－6	TXD2－L－5V－6
	6V DC	TXD2－6V－6	TXD2－L－6V－6
	9V DC	TXD2－9V－6	TXD2－L－9V－6
	12 V DC	TXD2－12V－6	TXD2－L－12V－6
	24V DC	TXD2－24V－6	TXD2－L－24V－6

Standard packing：Tube： 40 pcs．；Case：1，000 pcs．
Note：Please add＂－7＂to the end of the part number for AgPd contacts（low level load）．

2）Self－clinching terminal

Contact arrangement	Nominal coil	Single side stable	1 coil latching
	voltage	Part No．	Part No．
2 Form C	1.5 V DC	TXD2－H－1．5V－6	TXD2－L－H－1．5V－6
	3V DC	TXD2－H－3V－6	TXD2－L－H－3V－6
	4.5 V DC	TXD2－H－4．5V－6	TXD2－L－H－4．5V－6
	5 V DC	TXD2－H－5V－6	TXD2－L－H－5V－6
	6 V DC	TXD2－H－6V－6	TXD2－L－H－6V－6
	9V DC	TXD2－H－9V－6	TXD2－L－H－9V－6
	12 V DC	TXD2－H－12V－6	TXD2－L－H－12V－6
	24V DC	TXD2－H－24V－6	TXD2－L－H－24V－6

Standard packing：Tube： 40 pcs．；Case：1，000 pcs．
Note：Please add＂-7 ＂to the end of the part number for AgPd contacts（low level load）．

3）Surface－mount terminal
（1）Tube packing

Contact arrangement	Nominal coil voltage	Single side stable	1 coil latching
		Part No．	Part No．
2 Form C	1.5 V DC	TXD2S】－1．5V－6	TXD2SD－L－1．5V－6
	3V DC	TXD2S】－3V－6	TXD2SD－L－3V－6
	4.5 V DC	TXD2S】－4．5V－6	TXD2SD－L－4．5V－6
	5 V DC	TXD2S】－5V－6	TXD2SD－L－5V－6
	6V DC	TXD2S】－6V－6	TXD2SD－L－6V－6
	9V DC	TXD2S】－9V－6	TXD2SD－L－9V－6
	12 V DC	TXD2S】－12V－6	TXD2SD－L－12V－6
	24V DC	TXD2SD－24V－6	TXD2SD－L－24V－6

ㅁ：For each surface－mount terminal identification，input the following letter．SA type：\underline{A}, SL type：\underline{L}, SS type：\underline{S}
Standard packing：Tube： 40 pcs．；Case：1，000 pcs
Note：Please add＂-7 ＂to the end of the part number for AgPd contacts（low level load）．

（2）Tape and reel packing

Contact arrangement		Single side stable	1 coil latching
	voltage	Part No．	Part No．
2 Form C	1.5 V DC	TXD2SD－1．5V－6－Z	TXD2SD－L－1．5V－6－Z
	3V DC	TXD2S】－3V－6－Z	TXD2SD－L－3V－6－Z
	4．5V DC	TXD2SD－4．5V－6－Z	TXD2SD－L－4．5V－6－Z
	5V DC	TXD2SD－5V－6－Z	TXD2SD－L－5V－6－Z
	6V DC	TXD2SD－6V－6－Z	TXD2SD－L－6V－6－Z
	9V DC	TXD2SD－9V－6－Z	TXD2SD－L－9V－6－Z
	12 V DC	TXD2SD－12V－6－Z	TXD2SD－L－12V－6－Z
	24 V DC	TXD2SD－24V－6－Z	TXD2S】－L－24V－6－Z

－For each surface－mount terminal identification，input the following letter．SA type：\underline{A}, SL type：\underline{L}, SS type：\underline{S}
Standard packing：Tape and reel： 500 pcs．；Case： 1,000 pcs．
Notes：1．Tape and reel packing symbol＂－Z＂is not marked on the relay．＂X＂type tape and reel packing（picked from 1／3／4／5－pin side）is also available．
2．Please add＂-7 ＂to the part number for AgPd contacts（low level load）．（Ex．TXD2SA－1．5V－7－Z）

4．Standard（B．B．M．）type／Surge breakdown voltage（between contact and coil）6，000 V／Breakdown voltage（between open contacts） $1,500 \mathrm{~V}$（High breakdown voltage type）

Contact arrangement	Nominal coil voltage	Single side stable	1 coil latching
		Part No．	Part No．
2 Form C	1.5 V DC	TXD2－1．5V－3	TXD2－L－1．5V－3
	3V DC	TXD2－3V－3	TXD2－L－3V－3
	4.5 V DC	TXD2－4．5V－3	TXD2－L－4．5V－3
	5V DC	TXD2－5V－3	TXD2－L－5V－3
	6V DC	TXD2－6V－3	TXD2－L－6V－3
	9V DC	TXD2－9V－3	TXD2－L－9V－3
	12 V DC	TXD2－12V－3	TXD2－L－12V－3
	24 V DC	TXD2－24V－3	TXD2－L－24V－3

Standard packing：Tube： 40 pcs．；Case： 800 pcs．
Note：Please add＂-4 ＂to the end of the part number for AgPd contacts（low level load）．

2）Surface－mount terminal
（1）Tube packing

Contact arrangement	Nominal coil	Single side stable	1 coil latching
	voltage	Part No．	Part No．
2 Form C	1.5 V DC	TXD2S】－1．5V－3	TXD2SD－L－1．5V－3
	3V DC	TXD2SD－3V－3	TXD2S】－L－3V－3
	4.5 V DC	TXD2S】－4．5V－3	TXD2SD－L－4．5V－3
	5 V DC	TXD2SD－5V－3	TXD2SD－L－5V－3
	6 V DC	TXD2SD－6V－3	TXD2SD－L－6V－3
	9V DC	TXD2SD－9V－3	TXD2SD－L－9V－3
	12 V DC	TXD2SD－12V－3	TXD2SD－L－12V－3
	24 V DC	TXD2SD－24V－3	TXD2SD－L－24V－3

－1：For each surface－mount terminal identification，input the following letter．SA type：$\underline{A}, S L$ type：$\underline{L}, S S$ type：\underline{S} Standard packing：Tube： 40 pcs．；Case： 800 pcs．
Note：Please add＂-4 ＂to the end of the part number for AgPd contacts（low level load）．

TX-D

(2) Tape and reel packing

Contact	Nominal coil	Single side stable	1 coil latching
arrangement	voltage	Part No.	Part No.
2 Form C	1.5 V DC	TXD2SA-1.5V-3-Z	TXD2SA-L-1.5V-3-Z
	3V DC	TXD2SA-3V-3-Z	TXD2SA-L-3V-3-Z
	4.5 V DC	TXD2SA-4.5V-3-Z	TXD2SA-L-4.5V-3-Z
	5 V DC	TXD2SA-5V-3-Z	TXD2SA-L-5V-3-Z
	6V DC	TXD2SA-6V-3-Z	TXD2SA-L-6V-3-Z
	9V DC	TXD2SA-9V-3-Z	TXD2SA-L-9V-3-Z
	12 V DC	TXD2SA-12V-3-Z	TXD2SA-L-12V-3-Z
	24 V DC	TXD2SA-24V-3-Z	TXD2SA-L-24V-3-Z

*Only for SA type.
Standard packing: Tape and reel: 500 pcs.; Case: 1,000 pcs.
Notes: 1. Tape and reel packing symbol "-Z" is not marked on the relay. " X " type tape and reel packing (picked from 1/3/4/5-pin side) is also available.
2. Please add "-4" to the part number for AgPd contacts (low level load). (Ex. TXD2SA-1.5V-4-Z)

RATING

1. Coil data
[Standard (B.B.M.) type]
1) Single side stable

Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Drop-out } \\ \text { voltage } \\ \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{gathered}$	Nominal operating current [$\pm 10 \%$] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		$\begin{gathered} \text { Coil resistance } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$		Nominal operating power		$\begin{aligned} & \text { Max. applied } \\ & \text { voltage } \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$
			Surge breakdown voltage: $2,500 \mathrm{~V} / 6,000 \mathrm{~V}$	Surge breakdown voltage: 6,000 V (High breakdown voltage)	Surge breakdown voltage: $2,500 \mathrm{~V} / 6,000 \mathrm{~V}$	Surge breakdown voltage: 6,000 V (High breakdown voltage)	Surge breakdown voltage: $2,500 \mathrm{~V} / 6,000 \mathrm{~V}$	Surge breakdown voltage: 6,000 V (High breakdown voltage)	
1.5 V DC	75% V or less of nominal voltage* (Initial)	10% V or more of nominal voltage* (Initial)	132.7 mA	187.5 mA	11Ω	8Ω	200mW	280mW	$120 \% \mathrm{~V}$ of nominal voltage
3V DC			66.7 mA	93.5 mA	45Ω	32Ω			
4.5V DC			44.4 mA	62.5 mA	101Ω	72Ω			
5V DC			40.0 mA	56.2 mA	125Ω	89Ω			
6V DC			33.3 mA	46.5 mA	180Ω	129Ω			
9V DC			22.2 mA	31.1 mA	405Ω	289Ω			
12 V DC			16.7 mA	23.3 mA	720Ω	514Ω			
24V DC			9.6 mA	12.9 mA	2,504 Ω	1,858	230 mW	310 mW	

2) 1 coil latching

Nominal coil voltage	$\begin{gathered} \text { Set voltage } \\ \left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right) \end{gathered}$	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating current [$\pm 10 \%$] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Coil resistance$[\pm 10 \%]$ (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Nominal operating power		Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
			Surge breakdown voltage: $2,500 \mathrm{~V} / 6,000 \mathrm{~V}$	Surge breakdown voltage: 6,000 V (High breakdown voltage)	Surge breakdown voltage: $2,500 \mathrm{~V} / 6,000 \mathrm{~V}$	Surge breakdown voltage: 6,000 V (High breakdown voltage)	Surge breakdown voltage: $2,500 \mathrm{~V} / 6,000 \mathrm{~V}$	Surge breakdown voltage: 6,000 V (High breakdown voltage)	
1.5 V DC	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	100.0 mA	153.1 mA	15Ω	10Ω	150 mW	230 mW	$120 \% \mathrm{~V}$ of nominal voltage
3 V DC			50.0 mA	76.9 mA	60Ω	39Ω			
4.5 V DC			33.3 mA	51.1 mA	135Ω	88Ω			
5 V DC			30.0 mA	46.3 mA	166Ω	109Ω			
6V DC			25.0 mA	38.5 mA	240Ω	156Ω			
9 V DC			16.7 mA	25.6 mA	540Ω	352Ω			
12 V DC			12.5 mA	19.2 mA	960Ω	626Ω			
24V DC			7.1 mA	10.4 mA	3,388,	2,304 Ω	170 mW	250mW	

[M.B.B. type]

Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%] \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) }} \end{gathered}$	$\begin{gathered} \text { Coil resistance } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$	Nominal operating power	Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
1.5 V DC	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	$10 \% \mathrm{~V}$ or more of nominal voltage* (Initial)	166.7 mA	9Ω	250 mW	$120 \% \mathrm{~V}$ of nominal voltage
3V DC			83.3 mA	36Ω		
4.5 V DC			55.6 mA	81Ω		
5V DC			50.0 mA	100Ω		
6V DC			41.7 mA	144Ω		
9 V DC			27.8 mA	324Ω		
12 V DC			20.8 mA	576Ω		
24V DC			11.3 mA	2,133	270 mW	

[^10]
2. Specifications

Characteristics	Item		Specifications	
Contact	Arrangement		2 Form C	2 Form D (M.B.B.type)* ${ }^{\text {+1 }}$
	Contact resistance (Initial)		Max. $100 \mathrm{~m} \Omega$ (By voltage drop 6 V DC 1A)	
	Contact material		Standard contact: Ag+Au clad, AgPd contact (low level load): AgPd+Au clad (stationary), AgPd (movable)	
Rating	Nominal switching capacity		Standard contact: 2 A 30 V DC, AgPd contact: 1 A 30 V DC (resistive load)	1 A 30 V DC (resistive load)
	Max. switching power		Standard contact: 60 W (DC), AgPd contact: 30 W (DC) (resistive load)	30 W (DC) (resistive load)
	Max. switching voltage		220 V DC	110 V DC
	Max. switching current		Standard contact: $2 \mathrm{~A}, \mathrm{AgPd}$ contact: 1 A	1 A
	Min. switching capacity (Reference value)* ${ }^{2}$		$10 \mu \mathrm{~A} 10 \mathrm{mV} \mathrm{DC}$	
	Nominal operating power	Single side stable	Surge breakdown voltage 2,500 V and $6,000 \mathrm{~V}$ types: 200 mW (1.5 to 12 V DC), $230 \mathrm{~mW}(24 \mathrm{~V}$ DC) Surge breakdown voltage 6,000 V (High breakdown voltage) type: 280 mW (1.5 to 12 V DC), 310 mW (24 V DC)	250 mW (1.5 to 12 V DC), 270 mW (24 V DC)
		1 coil latching	Surge breakdown voltage 2,500 V and $6,000 \mathrm{~V}$ types: 150 mW (1.5 to 12 V DC), 170 mW (24 V DC) Surge breakdown voltage $6,000 \mathrm{~V}$ (High breakdown voltage) type: 230 mW (1.5 to 12 V DC), 250 mW (24 V DC)	-
Electrical characteristics	Insulation resistance (Initial)		Min. 1,000M Ω (at 500 V DC) Measurement at same location as "Initial breakdown voltage" section.	
	Breakdown voltage (Initial)	Between open contacts	Surge breakdown voltage 2,500 V and $6,000 \mathrm{~V}$ types: $1,000 \mathrm{Vrms}$ for 1 min . (Detection current: 10 mA) Surge breakdown voltage $6,000 \mathrm{~V}$ (High breakdown voltage) type: $1,500 \mathrm{Vrms}$ for 1 min . (Detection current: 10 mA)	500 Vrms for 1 min . (Detection current: 10 mA)
		Between contact and coil	Surge breakdown voltage $2,500 \mathrm{~V}$ type: $2,000 \mathrm{Vrms}$ for 1 min . (Detection current: 10 mA) Surge breakdown voltage $6,000 \mathrm{~V}$ and 6,000 V (High breakdown voltage) types: $3,000 \mathrm{Vrms}$ for 1 min . (Detection current: 10 mA)	2,000 Vrms for 1 min . (Detection current: 10 mA)
		Between contact sets	$1,000 \mathrm{Vrms}$ for 1 min . (Detection current: 10 mA)	
	Surge breakdown voltage (Initial)	Between open contacts	$1,500 \mathrm{~V}(10 \times 160 \mu \mathrm{~s})$ (FCC Part 68)	-
		Between contacts and coil ${ }^{* 1}$	Surge breakdown voltage $2,500 \mathrm{~V}$ type: $2,500 \mathrm{~V}, 2 \times 10 \mu \mathrm{~s}$ (Telcordia) Surge breakdown voltage $6,000 \mathrm{~V}$ and $6,000 \mathrm{~V}$ (High breakdown voltage) types: $6,000 \mathrm{~V}, 1.2 \times 50 \mu \mathrm{~s}$	$2,500 \mathrm{~V}, 2 \times 10 \mu \mathrm{~s}$ (Telcordia)
	Temperature rise (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		$\text { Max. } 50^{\circ} \mathrm{C} 122^{\circ} \mathrm{F}$ (By resistive method, nominal coil voltage applied to the coil; contact carrying current: 2A [1A: M.B.B.].)	
	Operate time [Set time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 4 ms [Max. 4 ms] (Nominal coil voltage applied to the coil, excluding contact bounce time.)	
	Release time [Reset time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 4 ms [Max. 4 ms] (Nominal coil voltage applied to the coil, excluding contact bounce time.) (without diode)	
Mechanical characteristics	Shock resistance	Functional	Min. $750 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 6 ms ; detection time: $10 \mu \mathrm{~s}$.)	Min. $500 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$.)
		Destructive	Min. $1,000 \mathrm{~m} / \mathrm{s}^{2}\{100 \mathrm{G}\}$ (Half-wave pulse of sine wave: 6 ms.$\left.\right)$	
	Vibration resistance	Functional	10 to 55 Hz at double amplitude of 3.3 mm (Detection time: 10 ss .)	
		Destructive	10 to 55 Hz at double amplitude of 5 mm	
Expected life	Mechanical		Min. 10^{8} (at 180 cpm)	Min. 10^{7} (at 180 cpm)
	Electrical		Min. 10^{5} (2 A 30 V DC resistive), Min. 5×10^{5} (1 A 30 V DC resistive) (at 20 cpm)	Min. 10^{5} (1 A 30 V DC resistive) (at 20 cpm)
Conditions	Conditions for operation, transport and storage" ${ }^{3}$		Ambient temperature: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+185^{\circ} \mathrm{F}$; Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature)	
	Max. operating speed (at rated load)		20 cpm	
Unit weight			Approx. 2	. 071 oz

*1 M.B.B. type models are only available in $2,500 \mathrm{~V}$ surge breakdown voltage type.
*2 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load. (AgPd contact type or SX relays are available for low level load switching [10V DC, 10 mA max. level])
*3The upper operation ambient temperature limit is the maximum temperature that can satisfy the coil temperature rise value. Refer to " 6 . Usage, Storage and Transport Conditions" in AMBIENT ENVIRONMENT (page 599).

REFERENCE DATA

1. Maximum switching capacity

2. Electrical life (2 A 30 V DC resistive load)

Tested sample: TXD2-5V, 6 pcs.
Operating speed: 20 cpm
Change of pick-up and drop-out voltage

5-(2). Coil temperature rise
Tested sample: TXD2-24V, 6 pcs
Measured portion: Inside the coil
Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}, 70^{\circ} \mathrm{C} 158^{\circ} \mathrm{F}$

7. Ambient temperature characteristics Tested sample: TXD2-5V, 5 pcs.

2. Life curve

-Switching current, A

Change of contact resistance

6-(1). Operate/release time characteristics (with diode)
Tested sample: TXD2-5V, 10 pcs.

8. High-frequency characteristics (Isolation)
Tested sample: TXD2-12V, 2 pcs.

3. Mechanical life

Tested sample: TXD2-5V, 10 pcs.
Operating speed: 180 cpm

5-(1). Coil temperature rise
Tested sample: TXD2-5V, 6 pcs.
Measured portion: Inside the coil
Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}, 70^{\circ} \mathrm{C} 158^{\circ} \mathrm{F}$

6-(2). Operate/release time characteristics (without diode)
Tested sample: TXD2-5V, 10 pcs.

9. High-frequency characteristics (Insertion loss)
Tested sample: TXD2-12V, 2 pcs.

10. Malfunctional shock (single side stable) Tested sample: TXD2-5V, 6 pcs

11-(1). Influence of adjacent mounting Tested sample: TXD2-12V, 6 pcs.

11-(2). Influence of adjacent mounting Tested sample: TXD2-12V, 6 pcs.

12. Actual load test (35 mA 48 V DC wire spring relay load)
Tested sample: TXD2-5V, 6 pcs.

Circuit

Change of pick-up and drop-out voltage

Change of contact resistance

13-(1). Distribution of M.B.B. time
Tested sample: TXD2-2M-5V, 50 pcs. Terminal No. 3-4-5: ON

Terminal No. 3-4-5: OFF

13-(2). Distribution of M.B.B. time
Tested sample: TXD2-2M-5V, 50 pcs.
Terminal No. 8-9-10: ON

Terminal No. 8-9-10: OFF

14. Surge breakdown voltage test Tested sample: TXD2-3V-6, 30 pcs.

DIMENSIONS (mm inch) Interested in CAD data? You can obtain CAD data for all products with a CAD Data mark from your local Panasonic Electric Works representative.

1. Surge breakdown voltage

2,500 V and 6,000 V types

1) Standard PC board terminal and self-clinching terminal

2) Surface-mount terminal

CAD Data

Type	External dimensions (General tolerance: $\pm 0.3 \pm .012$)	Suggested mounting pad (Top view) (Tolerance: $\pm 0.1 \pm .004$)
	Single side stable and 1 coil latching	Single side stable and 1 coil latching
SA type		
SL type		
SS type		

Schematic (Top view)

Single side stable
1 coil latching

(Deenergized condition)

(Reset condition)

2. Surge breakdown voltage $6,000 \mathrm{~V}$ (High breakdown voltage type)

1) Standard PC board terminal

External dimensions Standard PC board terminal

General tolerance: $\pm 0.3 \pm .012$

PC board pattern
(Bottom view)

Tolerance: $\pm 0.1 \pm .004$

Schematic (Bottom view) Single side stable $\quad 1$ coil latching

(Reset condition)

2) Surface-mount terminal		
Type	External dimensions (General tolerance: $\pm 0.3 \pm .012$)	Suggested mounting pad (Top view) (Tolerance: $\pm 0.1 \pm .004$)
	Single side stable and 1 coil latching	Single side stable and 1 coil latching
SA type		
SL type		
SS type		
Schematic (Top view)		
Single Directio	1 coil latching	
(Deenergi	(Reset condition)	

NOTES

1. Packing style
1) Tube packing

The relay is packed in a tube with the relay orientation mark on the left side, as shown in the figure below.

2) Tape and reel packing (surface-mount terminal type)
(1) Tape dimensions
(i) SA type
mm inch

Tape coming out direction
(ii) SL type
mm inch

(iii) SS type

(2) Dimensions of plastic reel
mm inch

3) Ambient temperature when transporting and during storage with the product in its original packaging:
-40 to $+70^{\circ} \mathrm{C}-40$ to $+158^{\circ} \mathrm{F}$

2. Automatic insertion

To maintain the internal function of the relay, the chucking pressure should not exceed the values below.

Chucking pressure in the direction A : 4.9 N \{500gft or less

Chucking pressure in the direction B :
$9.8 \mathrm{~N}\{1 \mathrm{kgf}\}$ or less
Chucking pressure in the direction C : $9.8 \mathrm{~N}\{1 \mathrm{kgf}\}$ or less
Please chuck the \square portion.
Avoid chucking the center of the relay. In addition, excessive chucking pressure to the pinpoint of the relay should be avoided.

3. M.B.B. type

A small OFF time may be generated by the contact bounce during contact switching. Check the actual circuit carefully.
If the relay is dropped accidentally, check the appearance and characteristics including M.B.B. time before use.

Measuring condition of M.B.B. time

For Cautions for Use, see Relay Technical Information (page 582).

Panasonic ideas for life

FEATURES

1. Nominal operating power:

High sensitivity of 50 mW
By using the highly efficient polar magnetic circuit "seesaw balance mechanism", a nominal operating power of 50 mW (minimum operating power of 32 mW) has been achieved.
2. Compact size
$15.0(\mathrm{~L}) \times 7.4(\mathrm{~W}) \times 8.2(\mathrm{H}) .591(\mathrm{~L}) \times$ $.291(\mathrm{~W}) \times .323(\mathrm{H})$ realized at 50 mW nominal operating power

3. High contact reliability

High contact reliability is achieved by the use of gold-clad twin crossbar contacts, low-gas formation materials, mold sealing the coil section, and by controlling organic gas in the coil.
*We also offer a range of products with AgPd contacts suitable for use in low level load analog circuits (Max. 10V DC 10 mA).
*SX relays designed for low level loads are also available.
4. Outstanding surge resistance

Surge breakdown voltage between open contacts:
$1,500 \vee 10 \times 160 \mu \mathrm{sec}$. (FCC part 68)
Surge breakdown voltage between contact and coil:
$2,500 \vee 2 \times 10 \mu \mathrm{sec}$. (Telcordia)
5. Low thermal electromotive force (approx. $0.3 \mu \mathrm{~V}$)
The structure of the mold-sealed body block of the coil section achieves nominal operating power of 50 mW and high sensitivity, along with low thermal electromotive force, reduced to approximately $0.3 \mu \mathrm{~V}$.
6. A range of surface-mount types is also available.
SA: Low-profile surface-mount terminal type
SL: High connection reliability surfacemount terminal type
SS: Space saving surface-mount terminal type
7. Sealed construction allows automatic washing.

TYPICAL APPLICATIONS

1. Communications
(XDSL, Transmission)
2. Measurement
3. Security
4. Home appliances, and audio/visual equipment
5. Automotive equipment
6. Medical equipment

ORDERING INFORMATION

Contact arrangement
2: 2 Form C
Surface-mount availability
Nil: Standard PC board terminal type or self-clinching terminal type
SA: SA type
SL: SL type
SS: SS type
Operating function
Nil: Single side stable
L: 1 coil latching
L2: 2 coil latching
LT: 2 coil latching
Terminal shape
Nil: Standard PC board terminal or surface-mount terminal
H: Self-clinching terminal
Nominal coil voltage (DC)
1.5, 3, 4.5, $6,9,12,24 \mathrm{~V}$
Contact material
Nil: Standard contact (Ag+Au clad)
1: AgPd contact (low level load); AgPd+Au clad (stationary), AgPd (movable)
Packing style
Nil: Tube packing
X: Tape and reel (picked from 1/3/4/5-pin side)
Z: Tape and reel packing (picked from the 8/9/10/12-pin side)

TYPES

1．Standard PC board terminal

Contact arrangement	Nominal coil voltage	Single side stable	1 coil latching	2 coil latching（L2）	2 coil latching（LT）
		Part No．	Part No．	Part No．	Part No．
2 Form C	1.5 V DC	TXS2－1．5V	TXS2－L－1．5V	TXS2－L2－1．5V	TXS2－LT－1．5V
	3V DC	TXS2－3V	TXS2－L－3V	TXS2－L2－3V	TXS2－LT－3V
	4.5 V DC	TXS2－4．5V	TXS2－L－4．5V	TXS2－L2－4．5V	TXS2－LT－4．5V
	6V DC	TXS2－6V	TXS2－L－6V	TXS2－L2－6V	TXS2－LT－6V
	9V DC	TXS2－9V	TXS2－L－9V	TXS2－L2－9V	TXS2－LT－9V
	12 V DC	TXS2－12V	TXS2－L－12V	TXS2－L2－12V	TXS2－LT－12V
	24V DC	TXS2－24V	TXS2－L－24V	TXS2－L2－24V	TXS2－LT－24V

Standard packing：Tube： 40 pcs．；Case：1，000 pcs．
Note：Please add＂－1＂to the end of the part number for AgPd contacts（low level load）．

2．Self－clinching terminal

Contact arrangement	Nominal coil voltage	Single side stable	1 coil latching	2 coil latching（L2）	2 coil latching（LT）
		Part No．	Part No．	Part No．	Part No．
2 Form C	1.5 V DC	TXS2－H－1．5V	TXS2－L－H－1．5V	TXS2－L2－H－1．5V	TXS2－LT－H－1．5V
	3V DC	TXS2－H－3V	TXS2－L－H－3V	TXS2－L2－H－3V	TXS2－LT－H－3V
	4.5 V DC	TXS2－H－4．5V	TXS2－L－H－4．5V	TXS2－L2－H－4．5V	TXS2－LT－H－4．5V
	6 V DC	TXS2－H－6V	TXS2－L－H－6V	TXS2－L2－H－6V	TXS2－LT－H－6V
	9 V DC	TXS2－H－9V	TXS2－L－H－9V	TXS2－L2－H－9V	TXS2－LT－H－9V
	12 V DC	TXS2－H－12V	TXS2－L－H－12V	TXS2－L2－H－12V	TXS2－LT－H－12V
	24V DC	TXS2－H－24V	TXS2－L－H－24V	TXS2－L2－H－24V	TXS2－LT－H－24V

Standard packing：Tube： 40 pcs．；Case：1，000 pcs．
Note：Please add＂-1 ＂to the end of the part number for AgPd contacts（low level load）．

3．Surface－mount terminal

1）Tube packing

Contact arrangement	Nominal coil	Single side stable	1 coil latching	2 coil latching（L2）	2 coil latching（LT）
	voltage	Part No．	Part No．	Part No．	Part No．
2 Form C	1.5 V DC	TXS2S】－1．5V	TXS2SD－L－1．5V	TXS2SD－L2－1．5V	TXS2SD－LT－1．5V
	3V DC	TXS2S］－3V	TXS2S］－L－3V	TXS2SD－L2－3V	TXS2SD－LT－3V
	4.5 V DC	TXS2S \square－4．5V	TXS2S］－L－4．5V	TXS2SD－L2－4．5V	TXS2SD－LT－4．5V
	6 V DC	TXS2SD－6V	TXS2SD－L－6V	TXS2SD－L2－6V	TXS2SD－LT－6V
	9V DC	TXS2SD－9V	TXS2SD－L－9V	TXS2SD－L2－9V	TXS2SD－LT－9V
	12 V DC	TXS2S］－12V	TXS2SD－L－12V	TXS2SD－L2－12V	TXS2SD－LT－12V
	24V DC	TXS2SD－24V	TXS2SD－L－24V	TXS2S］－L2－24V	TXS2SD－LT－24V

ㅁ：For each surface－mounted terminal identification，input the following letter．SA type：\underline{A}, SL type：$\underline{L}, S S$ type：\underline{S}
Standard packing：Tube： 40 pcs．；Case：1，000 pcs．
Note：Please add＂-1 ＂to the end of the part number for AgPd contacts（low level load）．
2）Tape and reel packing

Contact arrangement	Nominal coil voltage	Single side stable	1 coil latching	2 coil latching（L2）	2 coil latching（LT）
		Part No．	Part No．	Part No．	Part No．
2 Form C	1.5 V DC	TXS2SD－1．5V－Z	TXS2SD－L－1．5V－Z	TXS2SD－L2－1．5V－Z	TXS2SD－LT－1．5V－Z
	3V DC	TXS2SD－3V－Z	TXS2SD－L－3V－Z	TXS2SD－L2－3V－Z	TXS2SD－LT－3V－Z
	4.5 V DC	TXS2SD－4．5V－Z	TXS2SD－L－4．5V－Z	TXS2S】－L2－4．5V－Z	TXS2SD－LT－4．5V－Z
	6V DC	TXS2SD－6V－Z	TXS2S［－L－6V－Z	TXS2SD－L2－6V－Z	TXS2SD－LT－6V－Z
	9V DC	TXS2SD－9V－Z	TXS2SD－L－9V－Z	TXS2SD－L2－9V－Z	TXS2SD－LT－9V－Z
	12 V DC	TXS2SD－12V－Z	TXS2SD－L－12V－Z	TXS2S】－L2－12V－Z	TXS2SD－LT－12V－Z
	24 V DC	TXS2SD－24V－Z	TXS2SD－L－24V－Z	TXS2S】－L2－24V－Z	TXS2SD－LT－24V－Z

■：For each surface－mounted terminal identification，input the following letter．SA type：$\underline{A}, S L$ type：$\underline{L}, S S$ type：\underline{S}
Standard packing：Tape and reel： 500 pcs．；Case： 1,000 pcs．
Notes：1．Tape and reel packing symbol＂$-Z$＂is not marked on the relay．＂X＂type tape and reel packing（picked from $1 / 2 / 3 / 4-$ pin side）is also available．
2．Please add＂-1 ＂to the end of the part number for AgPd contacts（low level load）．（Ex．TXS2SA－1．5V－1－Z）

RATING

1．Coil data

1）Single side stable

Nominal coil voltage	Pick－up voltage （at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$ ）	Drop－out voltage （at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$ ）	$\begin{gathered} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$	Coil resistance ［ $\pm 10 \%$ ］（at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$ ）	Nominal operating power	Max．applied voltage （at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$ ）
1.5 V DC	$80 \% \mathrm{~V}$ or less of nominal voltage＊ （Initial）	$10 \% \mathrm{~V}$ or more of nominal voltage＊ （Initial）	33.3 mA	45Ω	50 mW	$150 \% \mathrm{~V}$ of nominal voltage
3V DC			16.7 mA	180Ω		
4.5 V DC			11.1 mA	405Ω		
6 V DC			8.3 mA	720Ω		
9V DC			5.6 mA	1，620		
12 V DC			4.2 mA	2，880 ${ }^{\text {，}}$		
24 V DC			2.9 mA	8，229 ${ }^{\text {a }}$	70 mW	

2) 1 coil latching

Nominal coil voltage	$\begin{aligned} & \text { Set voltage } \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating current $[\pm 10 \%]$ (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Coil resistance $[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)$	Nominal operating power	Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
1.5 V DC	$80 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	$80 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	23.3 mA	64.3Ω	35 mW	$150 \% \mathrm{~V}$ of nominal voltage
3V DC			11.7 mA	257Ω		
4.5 V DC			7.8 mA	579Ω		
6V DC			5.8 mA	1,029		
9V DC			3.9 mA	2,314 Ω		
12 V DC			2.9 mA	$4,114 \Omega$		
24V DC			2.1 mA	11,520 Ω	50mW	

3) 2 coil latching (L2, LT)

Nominal coil voltage	$\begin{aligned} & \text { Set voltage } \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating current $[\pm 10 \%]$ (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		$\begin{gathered} \text { Coil resistance } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$		Nominal operating power		Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
			Set coil	Reset coil	Set coil	Reset coil	Set coil	Reset coil	
1.5 V DC	$80 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	$80 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	46.7 mA	46.7 mA	32.1Ω	32.1Ω	70 mW	70 mW	$150 \% \mathrm{~V}$ of nominal voltage
3V DC			23.3 mA	23.3 mA	129Ω	129Ω			
4.5 V DC			15.6 mA	15.6 mA	289Ω	289Ω			
6V DC			11.7 mA	11.7 mA	514Ω	514Ω			
9V DC			7.8 mA	7.8 mA	1,157 Ω	1,157 Ω			
12 V DC			5.8 mA	5.8 mA	2,057 Ω	2,057 Ω			
24V DC			6.3 mA	6.3 mA	3,840 Ω	3,840 ${ }^{\text {a }}$	150 mW	150 mW	

*Pulse drive (JIS C 5442-1986)

2. Specifications

Characteristics	Item		Specifications
Contact	Arrangement		2 Form C
	Initial contact resistance, max.		Max. $100 \mathrm{~m} \Omega$ (By voltage drop 6 V DC 1A)
	Contact material		Standard contact: Ag+Au clad, AgPd contact (low level load): AgPd+Au clad (stationary), AgPd (movable)
Rating	Nominal switching capacity		1 A 30 V DC (resistive load)
	Max. switching power		30 W (DC) (resistive load)
	Max. switching voltage		110 V DC
	Max. switching current		1 A
	Min. switching capacity (Reference value)* ${ }^{41}$		$10 \mu \mathrm{~A} 10 \mathrm{mV} \mathrm{DC}$
	Nominal operating power	Single side stable	50 mW (1.5 to 12 V DC), 70 mW (24 V DC)
		1 coil latching	35 mW (1.5 to 12 V DC), 50 mW (24 V DC)
		2 coil latching	70 mW (1.5 to 12 V DC), 150 mW (24 V DC)
Electrical characteristics	Insulation resistance (Initial)		Min. $1,000 \mathrm{M} \Omega$ (at 500 V DC) Measurement at same location as "Initial breakdown voltage" section.
	Breakdown voltage (Initial)	Between open contacts	750 Vrms for 1 min . (Detection current: 10 mA)
		Between contact and coil	1,800 Vrms for 1 min . (Detection current: 10 mA)
		Between contact sets	$1,000 \mathrm{Vrms}$ for 1 min . (Detection current: 10 mA)
	Surge breakdown voltage (Initial)	Between open contacts	$1,500 \mathrm{~V}(10 \times 160 \mu \mathrm{~s})$ (FCC Part 68)
		Between contacts and coil	$2,500 \mathrm{~V}(2 \times 10 \mu \mathrm{~s})$ (Telcordia)
	Temperature rise (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. $50^{\circ} \mathrm{C}$ (By resistive method, nominal coil voltage applied to the coil; contact carrying current: 1A.)
	Operate time [Set time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 5 ms [Max. 5 ms] (Nominal coil voltage applied to the coil, excluding contact bounce time.)
	Release time [Reset time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 5 ms [Max. 5 ms] (Nominal coil voltage applied to the coil, excluding contact bounce time.) (without diode)
Mechanical characteristics	Shock resistance	Functional	Min. $750 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 6 ms ; detection time: $10 \mu \mathrm{~s}$.)
		Destructive	Min. $1,000 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 6 ms .)
	Vibration resistance	Functional	10 to 55 Hz at double amplitude of 3.3 mm (Detection time: $10 \mu \mathrm{~s}$.)
		Destructive	10 to 55 Hz at double amplitude of 5 mm
Expected life	Mechanical		Min. 5×10^{7} (at 180 cpm)
	Electrical		Min. 2×10^{5} (1 A 30 V DC resistive) (at 20 cpm)
Conditions	Conditions for operation, transport and storage*2		Ambient temperature: $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+158^{\circ} \mathrm{F}$; Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature)
	Max. operating speed (at rated load)		20 cpm
Unit weight			Approx. 2 g .071 oz

[^11]
REFERENCE DATA

1. Maximum switching capacity

2. Electrical life (1 A 30 V DC resistive load)

Tested sample: TXS2-4.5V, 6 pcs.
Operating speed: 20 cpm
Change of pick-up and drop-out voltage

5-(2). Coil temperature rise
Tested sample: TXS2-24V, 6 pcs.
Point measured: Inside the coil
Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}, 70^{\circ} \mathrm{C} 158^{\circ} \mathrm{F}$

7. Ambient temperature characteristics Tested sample: TXS2-4.5V, 5 pcs.

2. Life curve

Change of contact resistance

6-(1). Operate and release time (with diode) Tested sample: TXS2-4.5V, 10 pcs.

8-(1). High frequency characteristics (Isolation)
Tested sample: TXS2-4.5V, 2 pcs.

3. Mechanical life

Tested sample: TXS2-4.5V, 10 pcs.
Operating speed: 180 cpm

5-(1). Coil temperature rise
Tested sample: TXS2-4.5V, 6 pcs.
Point measured: Inside the coil
Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}, 70^{\circ} \mathrm{C} 158^{\circ} \mathrm{F}$

6-(2). Operate and release time (without diode) Tested sample: TXS2-4.5V, 10 pcs.

8-(2). High frequency characteristics (Insertion loss)
Tested sample: TXS2-4.5V, 2 pcs.

9-(1). Malfunctional shock (single side stable) Tested sample: TXS2-4.5V, 6 pcs.

9-(2). Malfunctional shock (latching) Tested sample: TXS2-L2-4.5V, 6 pcs.

10. Thermal electromotive force Tested sample: TXS2-4.5V, 6 pcs.

11-(3). Influence of adjacent mounting Tested sample: TXS2-4.5V, 6 pcs.

Change of contact resistance

Note: Data of surface-mount type are the same as those of PC board terminal type.

DIMENSIONS (mm inch) Interested in CAD data? You can obtain CAD data for all products with a CAD Data mark from your local Panasonic Electric Works representative.

1. Standard PC board terminal and Self clinching terminal

2. Surface-mount terminal

CAD Data

Type	External dimensions (General tolerance: $\pm 0.3 \pm .012$)		Suggested mounting pad (Top view) (Tolerance: $\pm 0.1 \pm .004$)	
	Single side stable and 1 coil latching type	2 coil latching type (L2, LT)	Single side stable and 1 coil latching type	2 coil latching type (L2, LT)
SA type				
SL type				
SS type				

Schematic (Top view)

Single side stable

(Deenergized condition)

1 coil latching

(Reset condition)

2 coil latching (L2)

(Reset condition)

2 coil latching (LT)

(Reset condition)

NOTES

1. Packing style
1) The relay is packed in a tube with the relay orientation mark on the left side, as shown in the figure below.

Orientation (indicates PIN No.1) stripe

2) Tape and reel packing (surface-mount terminal type)
(1) Tape dimensions
(i) SA type

(ii) SL type

(iii) SS type

Tape coming out direction
(2) Dimensions of plastic reel

2. Automatic insertion

To maintain the internal function of the relay, the chucking pressure should not exceed the values below.
Chucking pressure in the direction A: $4.9 \mathrm{~N}\{500 \mathrm{gf}\}$ or less
Chucking pressure in the direction B: $9.8 \mathrm{~N}\{1 \mathrm{kgf}\}$ or less
Chucking pressure in the direction C : $9.8 \mathrm{~N}\{1 \mathrm{kgf}\}$ or less

Please chuck the \square portion.
Avoid chucking the center of the relay. In addition, excessive chucking pressure to the pinpoint of the relay should be avoided.

Panasonic ideas for life

FEATURES

1. Small size, controlled 7.5A inrush current possible
2. 2,000 V breakdown voltage between contact and coil
The body block construction of the coil that is sealed at formation offers a high breakdown voltage of $2,000 \mathrm{~V}$ between contact and coil, and 1,000 V between open contacts.
3. Outstanding surge resistance Surge breakdown voltage between open contacts:
$1,500 \vee 10 \times 160 \mu$ psec. (FCC part 68)

Small size, controlled 7.5A inrush current possible

Surge breakdown voltage between contact and coil:
$2,500 \mathrm{~V} 2 \times 10 \mu \mathrm{psec}$. (Bellcore)
4. Nominal operating power: High sensitivity of 140 mW
By using the highly efficient polar magnetic circuit "seesaw balance mechanism", a nominal operating power of 140 mW (minimum operating power of 79 mW) has been achieved.
5. High contact capacity: 2 A 30 V DC
6. Compact size
$15.0(\mathrm{~L}) \times 7.4(\mathrm{~W}) \times 8.2(\mathrm{H}) .591(\mathrm{~L}) \times$ $.291(\mathrm{~W}) \times .323(\mathrm{H})$
7. Outstanding vibration and shock resistance
Functional shock resistance: $750 \mathrm{~m} / \mathrm{s}^{2}$
Destructive shock resistance:
$1,000 \mathrm{~m} / \mathrm{s}^{2}$
Functional vibration resistance:
10 to 55 Hz (at double amplitude of 3.3 mm .130 inch)

Destructive vibration resistance: 10 to 55 Hz (at double amplitude of 5 mm .197 inch)
8. Sealed construction allows automatic washing.
9. A range of surface-mount types is also available
SA: Low-profile surface-mount terminal type
SL: High connection reliability surfacemount terminal type
SS: Space saving surface-mount terminal type

TYPICAL APPLICATIONS

1. Air-conditioning control (solenoid
load)
2. Others, High-capacity control etc.

ORDERING INFORMATION

Contact arrangement
2: 2 Form C
Surface-mount availability
Nil: Standard PC board terminal type or self-clinching terminal type
SA: SA type
SL: SL type
SS: SS type
Operating function
Nil: Single side stable
L: coil latching
L2: 2 coil latching
LT: 2 coil latching
Terminal shape
Nil: Standard PC board terminal or surface-mount terminal
H: Self-clinching terminal
Nominal coil voltage (DC)*
1.5, 3, 4.5, $5,6,9,12,24,48 \mathrm{~V}$
Contact material
TH: Power type (Ag+Au clad/stationary, movable)
Packing style
Nil: Tube packing
X: Tape and reel (picked from 1/3/4/5-pin side)
Z: Tape and reel packing (picked from the 8/9/10/12-pin side)

[^12]2. In case of 5 V transistor drive circuit, it is recommended to use 4.5 V type relay.

TYPES

1．Standard PC board terminal

Contact arrangement	Nominal coil voltage	Single side stable	1 coil latching	2 coil latching（L2）	2 coil latching（LT）
		Part No．	Part No．	Part No．	Part No．
2 Form C	1.5 V DC	TX2－1．5V－TH	TX2－L－1．5V－TH	TX2－L2－1．5V－TH	TX2－LT－1．5V－TH
	3 V DC	TX2－3V－TH	TX2－L－3V－TH	TX2－L2－3V－TH	TX2－LT－3V－TH
	4.5 V DC	TX2－4．5V－TH	TX2－L－4．5V－TH	TX2－L2－4．5V－TH	TX2－LT－4．5V－TH
	5 V DC	TX2－5V－TH	TX2－L－5V－TH	TX2－L2－5V－TH	TX2－LT－5V－TH
	6 V DC	TX2－6V－TH	TX2－L－6V－TH	TX2－L2－6V－TH	TX2－LT－6V－TH
	9V DC	TX2－9V－TH	TX2－L－9V－TH	TX2－L2－9V－TH	TX2－LT－9V－TH
	12 V DC	TX2－12V－TH	TX2－L－12V－TH	TX2－L2－12V－TH	TX2－LT－12V－TH
	24V DC	TX2－24V－TH	TX2－L－24V－TH	TX2－L2－24V－TH	TX2－LT－24V－TH
	48V DC	TX2－48V－TH	－	－	－

Standard packing：Tube： 40 pcs．；Case： 1,000 pcs．

2．Self－clinching terminal

Contact arrangement	Nominal coil voltage	Single side stable	1 coil latching	2 coil latching（L2）	2 coil latching（LT）
		Part No．	Part No．	Part No．	Part No．
2 Fom C	1.5 V DC	TX2－H－1．5V－TH	TX2－L－H－1．5V－TH	TX2－L2－H－1．5V－TH	TX2－LT－H－1．5V－TH
	3V DC	TX2－H－3V－TH	TX2－L－H－3V－TH	TX2－L2－H－3V－TH	TX2－LT－H－3V－TH
	4.5 V DC	TX2－H－4．5V－TH	TX2－L－H－4．5V－TH	TX2－L2－H－4．5V－TH	TX2－LT－H－4．5V－TH
	5V DC	TX2－H－5V－TH	TX2－L－H－5V－TH	TX2－L2－H－5V－TH	TX2－LT－H－5V－TH
	6V DC	TX2－H－6V－TH	TX2－L－H－6V－TH	TX2－L2－H－6V－TH	TX2－LT－H－6V－TH
	9V DC	TX2－H－9V－TH	TX2－L－H－9V－TH	TX2－L2－H－9V－TH	TX2－LT－H－9V－TH
	12 V DC	TX2－H－12V－TH	TX2－L－H－12V－TH	TX2－L2－H－12V－TH	TX2－LT－H－12V－TH
	24 V DC	TX2－H－24V－TH	TX2－L－H－24V－TH	TX2－L2－H－24V－TH	TX2－LT－H－24V－TH
	48V DC	TX2－H－48V－TH	－	－	－

Standard packing：Tube： 40 pcs．；Case：1，000 pcs．

3．Surface－mount terminal

1）Tube packing

Contact arrangement	Nominal coil voltage	Single side stable	1 coil latching	2 coil latching（L2）	2 coil latching（LT）
		Part No．	Part No．	Part No．	Part No．
2c	1.5 V DC	TX2S \square－1．5V－TH	TX2SD－L－1．5V－TH	TX2SD－L2－1．5V－TH	TX2SD－LT－1．5V－TH
	3V DC	TX2S］－3V－TH	TX2S】－L－3V－TH	TX2SD－L2－3V－TH	TX2SD－LT－3V－TH
	4.5 V DC	TX2S $\square-4.5 \mathrm{~V}-\mathrm{TH}$	TX2SD－L－4．5V－TH	TX2S】－L2－4．5V－TH	TX2SD－LT－4．5V－TH
	5V DC	TX2S］－5V－TH	TX2S】－L－5V－TH	TX2SD－L2－5V－TH	TX2SD－LT－5V－TH
	6V DC	TX2SD－6V－TH	TX2SD－L－6V－TH	TX2SD－L2－6V－TH	TX2SD－LT－6V－TH
	9V DC	TX2S］－9V－TH	TX2S】－L－9V－TH	TX2SD－L2－9V－TH	TX2SD－LT－9V－TH
	12 V DC	TX2S］－12V－TH	TX2SD－L－12V－TH	TX2S】－L2－12V－TH	TX2S］－LT－12V－TH
	24V DC	TX2SD－24V－TH	TX2SD－L－24V－TH	TX2S］－L2－24V－TH	TX2SD－LT－24V－TH
	48V DC	TX2SD－48V－TH	－	－	－

ㅁ：For each surface－mounted terminal identification，input the following letter．SA type：$\underline{A}, S L$ type：\underline{L}, SS type：\underline{S}
Standard packing：Tube： 40 pcs．；Case：1，000 pcs．

2）Tape and reel packing

Contact arrangement	Nominal coil voltage	Single side stable	1 coil latching	2 coil latching（L2）	2 coil latching（LT）
		Part No．	Part No．	Part No．	Part No．
2 Form C	1.5 V DC	TX2SD－1．5V－TH－Z	TX2SD－L－1．5V－TH－Z	TX2S \square－L2－1．5V－TH－Z	TX2SD－LT－1．5V－TH－Z
	3 V DC	TX2S］－3V－TH－Z	TX2SD－L－3V－TH－Z	TX2SD－L2－3V－TH－Z	TX2S］－LT－3V－TH－Z
	4.5 V DC	TX2S】－4．5V－TH－Z	TX2SD－L－4．5V－TH－Z	TX2S】－L2－4．5V－TH－Z	TX2S】－LT－4．5V－TH－Z
	5 V DC	TX2SD－5V－TH－Z	TX2SD－L－5V－TH－Z	TX2SD－L2－5V－TH－Z	TX2SD－LT－5V－TH－Z
	6V DC	TX2SD－6V－TH－Z	TX2SD－L－6V－TH－Z	TX2SD－L2－6V－TH－Z	TX2SD－LT－6V－TH－Z
	9V DC	TX2SD－9V－TH－Z	TX2SD－L－9V－TH－Z	TX2SD－L2－9V－TH－Z	TX2SD－LT－9V－TH－Z
	12 V DC	TX2SD－12V－TH－Z	TX2SD－L－12V－TH－Z	TX2S \square－L2－12V－TH－Z	TX2S】－LT－12V－TH－Z
	24 V DC	TX2SD－24V－TH－Z	TX2SD－L－24V－TH－Z	TX2S］－L2－24V－TH－Z	TX2S］－LT－24V－TH－Z
	48V DC	TX2SD－48V－TH－Z	－	－	－

Standard packing：Tape and reel： 500 pcs．；Case： 1,000 pcs．
Note：Tape and reel packing symbol＂－Z＂is not marked on the relay．＂X＂type tape and reel packing（picked from 1／2／3／4－pin side）is also available．

TX-TH

RATING

1. Coil data
1) Single side stable

Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \begin{array}{c} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{array} \end{gathered}$	$\begin{gathered} \text { Coil resistance } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right. \text {) }} \end{gathered}$	Nominal operating power	Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
1.5 V DC	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	$10 \% \mathrm{~V}$ or more of nominal voltage* (Initial)	93.8 mA	16Ω	140 mW	$150 \% \mathrm{~V}$ of nominal voltage
3V DC			46.7 mA	64.3Ω		
4.5 V DC			31 mA	145Ω		
5V DC			28.1 mA	178Ω		
6 V DC			23.3 mA	257Ω		
9V DC			15.5 mA	579Ω		
12 V DC			11.7 mA	1,028 Ω		
24V DC			5.8 mA	4,114 Ω		
48 V DC			5.6 mA	8,533	270 mW	$\begin{gathered} 120 \% \mathrm{~V} \text { of } \\ \text { nominal voltage } \end{gathered}$

2) 1 coil latching

Nominal coil voltage	$\begin{aligned} & \text { Set voltage } \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating current $[\pm 10 \%]$ (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Coil resistance } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$	Nominal operating power	Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
1.5 V DC	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	66.7 mA	22.5Ω	100 mW	$150 \% \mathrm{~V}$ of nominal voltage
3V DC			33.3 mA	90Ω		
4.5 V DC			22.2 mA	202.5Ω		
5V DC			20 mA	250Ω		
6 V DC			16.7 mA	360Ω		
9V DC			11.1 mA	810Ω		
12 V DC			8.3 mA	1,440 Ω		
24V DC			4.2 mA	$5,760 \Omega$		

3) 2 coil latching (L2, LT)

Nominal coil voltage	Set voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		perating nt $0^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{array}{r} \text { Coil r } \\ {[\pm 10 \%](8} \end{array}$	stance $\left.20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)$	Nomina p	perating er	Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$
			Set coil	Reset coil	Set coil	Reset coil	Set coil	Reset coil	
1.5 V DC	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	93.8 mA	93.8 mA	16Ω	16Ω	140 mW	140mW	$150 \% \mathrm{~V}$ of nominal voltage
3V DC			46.7 mA	46.7 mA	64.3Ω	64.3Ω			
4.5 V DC			31 mA	31 mA	145Ω	145Ω			
5V DC			28.1 mA	28.1 mA	178Ω	178Ω			
6V DC			23.3 mA	23.3 mA	257Ω	257Ω			
9V DC			15.5 mA	15.5 mA	579Ω	579Ω			
12 V DC			11.7 mA	11.7 mA	1,028 ${ }^{\text {a }}$	1,028 Ω			
24V DC			5.8 mA	5.8 mA	$4,114 \Omega$	$4,114 \Omega$			

*Pulse drive (JIS C 5442-1986)

2. Specifications

Characteristics	Item		Specifications
Contact	Arrangement		2 Form C
	Initial contact resistance, max.		Max. $100 \mathrm{~m} \Omega$ (By voltage drop 6 V DC 1A)
	Contact material		Ag+Au plating
Rating	Nominal switching capacity		2 A 30 V DC, 0.5 A $125 \mathrm{~V} \mathrm{AC} \mathrm{(resistive} \mathrm{load)}$
	Max. switching power		$60 \mathrm{~W}, 60 \mathrm{VA}$ (resistive load)
	Max. switching voltage		220 V DC, 250 V AC
	Max. switching current		7.5 A (When used at 7.5 A. Regarding connection method, you must follow the precaution, below*.)
	Min. switching capacity (Reference value)* ${ }^{+1}$		$10 \mu \mathrm{~A} 10 \mathrm{mV}$ DC
	Nominal operating power	Single side stable	140 mW (1.5 to 24 V DC), 270 mW (48 V DC)
		1 coil latching	100 mW (1.5 to 24 V DC)
		2 coil latching	140 mW (1.5 to 24 V DC)
Electrical characteristics	Insulation resistance (Initial)		Min. 1,000M Ω (at 500 V DC) Measurement at same location as "Initial breakdown voltage" section.
	Breakdown voltage (Initial)	Between open contacts	$1,000 \mathrm{Vrms}$ for 1 min . (Detection current: 10 mA)
		Between contact and coil	2,000 Vrms for 1min. (Detection current: 10mA)
		Between contact sets	$1,000 \mathrm{Vrms}$ for 1 min . (Detection current: 10 mA)
	Temperature rise (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. $50^{\circ} \mathrm{C}$ (By resistive method, nominal coil voltage applied to the coil; contact carrying current: 2A.)
	Surge breakdown voltage (Initial)	Between open contacts	$1,500 \mathrm{~V}(10 \times 160 \mu \mathrm{~s})$ (FCC Part 68)
		Between contacts and coil	$2,500 \mathrm{~V}(2 \times 10 \mu \mathrm{~s})$ (Telcordia)
	Operate time [Set time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 4 ms [Max. 4 ms] (Nominal coil voltage applied to the coil, excluding contact bounce time.)
	Release time [Reset time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 4 ms [Max. 4 ms] (Nominal coil voltage applied to the coil, excluding contact bounce time.) (without diode)
Mechanical characteristics	Shock resistance	Functional	Min. $750 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 6 ms ; detection time: $10 \mu \mathrm{~s}$.)
		Destructive	Min. 1,000 m/s ${ }^{2}$ (Half-wave pulse of sine wave: 6 ms .)
	Vibration resistance	Functional	10 to 55 Hz at double amplitude of 3.3 mm (Detection time: $10 \mu \mathrm{~s}$.)
		Destructive	10 to 55 Hz at double amplitude of 5 mm
Expected life	Mechanical		Min. 10^{8} (at 180 cpm)
	Electrical		Min. 10^{5} (2 A 30 V DC resistive), 5×10^{5} (1 A 30 V DC resistive), Min. 10^{5} (0.5 A 125 V AC resistive) (at 20 cpm) Min. $2 \times 10^{5}(7.5 \mathrm{~A}$ inrush $(250 \mathrm{~ms}) / 1.5 \mathrm{~A}$ normal $30 \mathrm{VAC}(\cos \phi=0.4))(\mathrm{ON} / \mathrm{OFF}=1 \mathrm{~s} / 9 \mathrm{~s})$
Conditions	Conditions for operation, transport and storage*2		Ambient temperature: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (up to 24 V coil) $-40^{\circ} \mathrm{F}$ to $+185^{\circ} \mathrm{F}$ $\left[-40^{\circ} \mathrm{C}\right.$ to $+70^{\circ} \mathrm{C}\left(48 \mathrm{~V}\right.$ coil) $-40^{\circ} \mathrm{F}$ to $\left.+158^{\circ} \mathrm{F}\right]$; Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature)
	Max. operating speed (at rated load)		20 cpm
Unit weight			Approx. 2 g .071 oz

*1This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load. *2Refer to "6. Usage, Storage and Transport Conditions" in AMBIENT ENVIRONMENT (page 599).

TX-TH

REFERENCE DATA

1. Electrical life (2×10^{5} operation is possible)

Tested sample: TX2SA-24V-TH, 6 pcs.
Switching frequency: ON:OFF = 1s:9s
Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$
Circuit

*Precaution

When using at 7.5 A , connection of NO (pin \#5 and \#8) and COM (pin \#4 and \#9) in the circuit is required.

Condition: 30 V AC
Inrush current 7.5 A (execution value),
inrush time 250 ms
Normal current 1.5 A (execution value)
(inductive load $\cos \phi=0.4$)

Pin layout and schematic (BOTTOM VIEW)

For general REFERENCE DATA, DIMENSIONS and NOTES, please refer to the TX Relay (page 99).

For Cautions for Use, see Relay Technical Information (page 582).

VDE

Panasonic ideas for life

COMPACT
 HIGH-INSULATION POLARIZED POWER RELAY

DE RELAYS (ADE)

FEATURES

- Conforms to European safety

 standards (VDE0700 and VDE0631)Insulating distance between coil and contacts:
Clearance Min. 8mm . 315 inch
Creepage distance Min. 8 mm .315 inch

- Extensive product line-up
- Surge voltage between contact and coil 12 kV
- Low operating power

Nominal operating power at 200 mW (Single side stable, 2 coil latching)

- Compact body saves space

Size: $12.5(\mathrm{~W}) \times 25.0(\mathrm{~L}) \times 12.5(\mathrm{H}) \mathrm{mm}$ $.492(\mathrm{~W}) \times .984(\mathrm{~L}) \times .492(\mathrm{H})$ inch

- UL/CSA, VDE approved

SPECIFICATIONS

Contact

Arrangement		1 Form A	1 Form A 1 Form B	2 Form A
Contact material		AgSnO_{2} type		
Initial contact resistance, max. (By voltage drop 6V DC 1A)		$30 \mathrm{~m} \Omega$		
Rating (resistive load)	Nominal switching capacity	$\begin{aligned} & \text { 10A 250V AC, } \\ & \text { 10A 30V DC } \end{aligned}$	$\begin{aligned} & \text { 8A 250V AC, } \\ & 8 \mathrm{~A} 30 \mathrm{~V} \text { DC } \end{aligned}$	$\begin{aligned} & \text { 8A 250V AC, } \\ & 8 \mathrm{~A} 30 \mathrm{~V} \text { DC } \end{aligned}$
	Max. switching power	$\begin{gathered} 2,500 \mathrm{VA}^{*}, \\ 300 \mathrm{~W} \end{gathered}$	$\begin{gathered} 2,000 \mathrm{VA}^{*}, \\ 240 \mathrm{~W} \end{gathered}$	$\begin{gathered} 2,000 \mathrm{VA}^{*}, \\ 240 \mathrm{~W} \end{gathered}$
	Max. switching voltage	$\begin{aligned} & 440 \mathrm{~V} \text { AC, } \\ & 230 \mathrm{DC} \end{aligned}$	$\begin{aligned} & 440 \mathrm{~V} \text { AC, } \\ & 230 \mathrm{DC} \end{aligned}$	$\begin{aligned} & \text { 440V AC, } \\ & 230 \mathrm{~V} \text { D } \end{aligned}$
	Max. switching current	10A (16A)*	8A (16A)*	8A (16A)*
	Min. switching capacity\#1	$100 \mathrm{~mA}, 5 \mathrm{~V}$ DC		
Expected life (min. operations)	Mechanical (at 300cpm)	10^{7}		
	Electrical (at 20 cpm) (resistive load)	10^{5}	$\begin{gathered} 10^{5}(\mathrm{AC}) \\ 5 \times 10^{4}(\mathrm{DC}) \end{gathered}$	
	Electrical (16A / 230 V AC resistive)*	25000	20000	

Coil (at $20^{\circ} \mathrm{C}, 68^{\circ} \mathrm{F}$)

	Nominal operating power
Single side stable	200 mW
1 coil latching	100 mW
2 coil latching	200 mW

\#1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.

Characteristics

Max. operating speed			20 cpm (at rated load)
Initial insulation resistance*1			Min. 1,000 M (at 500 V DC)
Initial breakdown voltage*2	Between open contacts		1,000 Vrms
	Between contact sets		$\begin{aligned} & \text { 4,000 Vrms (2 Form A, } \\ & 1 \text { Form A } 1 \text { Form B) } \end{aligned}$
	Between contact and coil		5,000 Vrms
Surge voltage between contact and coil*3			Min. 12,000 V (initial)
Operate time [Set time]*4			Max. 10ms (typ. 5ms) [Max. 10ms (typ. 4ms)] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
Release time (without diode) [Reset time] ${ }^{* 4}$			Max. 5ms (typ. 2ms) [Max. 10ms (typ. 4ms)] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
Temperature rise (at $\left.70^{\circ} \mathrm{C}\right)^{* 5}$			Max. $50^{\circ} \mathrm{C}$
Shock resistance		Functional*6	Min. $196 \mathrm{~m} / \mathrm{s}^{2}\{20 \mathrm{G}\}$
		Destructive*7	Min. $980 \mathrm{~m} / \mathrm{s}^{2}\{100 \mathrm{G}\}$
Vibration resistance		Functional*8	10 to 55 Hz at double amplitude of 2 mm
		Destructive	10 to 55 Hz at double amplitude of 3 mm
Conditions for operation, transport and storage*9 (Not freezing and condensing at low temperature)		Ambient temp.	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{F} \text { to } 158^{\circ} \mathrm{F} \end{aligned}$
		Humidity	5 to 85\% R.H.
Unit weight			Approx. 7 g .25 oz

Remarks

* 16A possible for one contact set only with max. 4000 VA switching power.
*1 Measurement at same location as "Initial breakdown voltage" section.
*2 Detection current: 10 mA
*3 Wave is standard shock voltage of $\pm 1.2 \times 50 \mu \mathrm{~s}$ according to JEC-212-1981
${ }^{*} 4$ Nominal operating voltage applied to the coil, excluding contact bounce time.
${ }^{*} 5$ By resistive method
${ }^{*}$ * Half-wave pulse of sine wave: 11 ms , detection time: 10 ms .
*7 Half-wave pulse of sine wave: 6 ms
*8 Detection time: 10 ms
*9 Refer to " 6 . Usage, Storage and Transport Conditions" in AMBIENT ENVIRONMENT (page 599).

TYPICAL APPLICATIONS ORDERING INFORMATION

- Temperature controller
- Automatic meter reading
- OA equipment
- FA equipment

Product name	Contact arrangement	Operating function	Coil voltage, V DC
DE	1a: 1 Form A 1a1b: 1 Form A 1 Form B 2a: 2 Form A	Nil: Single side stable L: 1 coil latching L2: 2 coil latching	$\begin{aligned} & \text { 1.5, 3, 4.5, 5, } \\ & 6,9,12,24,48^{\star *} \end{aligned}$

Notes: 1) Standard packing; Carton (tube package)
**just for single side stable 20 pcs. Case 500 pcs.
2) UL/CSA, VDE approved type is standard.

TYPES AND COIL DATA (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)

- Single side stable type

1 Form A, 1 Form A 1 Form B, 2 Form A

Part No.	Nominal voltage, V DC	Pick-up voltage, V DC (max.) (initial)	Drop-out voltage, V DC (min.) (initial)	Coil resistance, $\Omega(\pm 10 \%)$	Nominal operating current, $m A(\pm 10 \%)$	Nominal operating power, mW	Max. allowable voltage, V DC
DED-1.5V	1.5	1.05	0.15	11.3	132.7	200	1.95
DED-3V	3	2.1	0.3	45	66.6	200	3.9
DED-4.5V	4.5	3.15	0.45	101	44.5	200	5.85
DED-5V	5	3.5	0.5	125	40	200	6.5
DED-6V	6	4.2	0.6	180	33.3	200	7.8
DED-9V	9	6.3	0.9	405	22.2	200	11.7
DED-12V	12	8.4	1.2	720	16.6	200	15.6
DED-24V	24	16.8	2.4	2,880	8.3	200	31.2
DED-48V	48	33.6	4.8	11,520	4.2	200	62.4

- 1 coil latching type

1 Form A

Part No.	Nominal voltage, V DC	Set voltage, V DC (max.) (initial)	Reset voltage, V DC (min.) (initial)	Coil resistance, $\Omega(\pm 10 \%)$	Nominal operating current, $\mathrm{mA}(\pm 10 \%)$	Nominal operating power, mW	Max. allowable voltage, V DC
DED-L-1.5V	1.5	1.05	1.05	22.5	66.6	100	1.95
DED-L-3V	3	2.1	2.1	90	33.3	100	3.9
DED-L-4.5V	4.5	3.15	3.15	202	22.3	100	5.85
DED-L-5V	5	3.5	3.5	250	20	100	6.5
DED-L-6V	6	4.2	4.2	360	16.7	100	7.8
DED-L-9V	9	6.3	6.3	812	11.1	100	11.7
DED-L-12V	12	8.4	8.4	1,440	8.3	100	15.6
DED-L-24V	24	16.8	16.8	5,760	4.2	100	31.2

- 2 coil latching type

1 Form A

Part No.	Nominal voltage, V DC	Set voltage, V DC (max.) (initial)	Reset voltage, V DC (min.) (initial)	Coil resistance, Ω ($\pm 10 \%$)		Nominal operating current, $\mathrm{mA}(\pm 10 \%)$		Nominal operating power, mW		Max. allowable voltage, V DC
				Set coil	Reset coil	Set coil	Reset coil	Set coil	Reset coil	
DED-L2-1.5V	1.5	1.05	1.05	11.3	11.3	66.6	66.6	200	200	1.95
DED-L2-3V	3	2.1	2.1	45	45	66.6	66.6	200	200	3.9
DED-L2-4.5V	4.5	3.15	3.15	101	101	44.5	44.5	200	200	5.85
DED-L2-5V	5	3.5	3.5	125	125	40	40	200	200	6.5
DED-L2-6V	6	4.2	4.2	180	180	33.3	33.3	200	200	7.8
DED-L2-9V	9	6.3	6.3	405	405	22.2	22.2	200	200	11.7
DED-L2-12V	12	8.4	8.4	720	720	16.6	16.6	200	200	15.6
DED-L2-24V	24	16.8	16.8	2,880	2,880	8.3	8.3	200	200	31.2

[^13]Interested in CAD data? You can obtain CAD data for all products with a

Single side stable 1 coil latching type

2 coil latching type

Tolerance: $\pm 0.3 \pm .012$
Single side stable 1 coil latching type

PC board pattern (Bottom view)
(1 Form A)

(5,6: dummy terminal)

Tolerance : $\pm 0.1 \pm .004$
Schematic (Bottom view)
Single side stable
1 Form A 1 Form B)
(2 Form A)
(1 Form A)

(Deenergized condition)
1coil latching type
(1 Form A 1 Form B)

(2 Form A)

(Reset condition)
2coil latching type
(1 Form A 1 Form B)

(Reset condition)

REFERENCE DATA

3.-(1) Coil temperature rise (1 Form A) Tested sample: ADE109
Quantity: $n=6$
Ambient temperature: $25^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$ to $158^{\circ} \mathrm{F}$

4-1. Operate/release time (1 Form A) Tested sample: DE1a-5V Quantity: $n=5$

5-1. Ambient temperature characteristics (1 Form A)
Tested sample: DE1a-5V, Ambient temperature: $-40^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $176^{\circ} \mathrm{F}$, Quantity: $\mathrm{n}=6$

3.-(2) Coil temperature rise (1 Form A 1 Form B) Tested sample: ADE309
Quantity: n=6
Ambient temperature: $25^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$ to $158^{\circ} \mathrm{F}$

4-2. Operate/release time (1 Form A 1 Form B)
Tested sample: DE1a1b-5V, Quantity: n=5

5-2. Ambient temperature characteristics (1 Form A 1 Form B)
Tested sample: DE1a1b-5V, Ambient temperature: $-40^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $176^{\circ} \mathrm{F}$, Quantity: $\mathrm{n}=6$

3.-(3) Coil temperature rise (2 Form A) Tested sample: ADE209
Quantity: $n=6$
Ambient temperature: $25^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$ to $158^{\circ} \mathrm{F}$

4-3. Operate/release time (2 Form A) Tested sample: DE2a-5V, Quantity: n=5

5-3. Ambient temperature characteristics (2 Form A)
Tested sample: DE2a-5V, Ambient temperature: $-40^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $176^{\circ} \mathrm{F}$, Quantity: $\mathrm{n}=6$

6. Change of contact resistance

For Cautions for Use, see Relay Technical Information (page 582).

Panasonic ideas for life

Without test button

With test button

FEATURES

1. Variety of contact arrangements Wide lineup of 1 Form C, 1 Form A, 1 Form B, 2 Form C, 2 Form A, 2 Form B, 1 Form A 1 Form B.
2. Latching operation

Latching via a polarized magnetic circuit structure allows remote operation and lower energy consumption
3. Compact with high capacity 16A (1-pole type) contact rating in a compact $29 \times 13 \times 16.5 \mathrm{~mm}(\mathrm{~L} \times \mathrm{W} \times \mathrm{H})$ size.
4. Low power consumption

1 coil latching: 150 mW
2 coil latching, single side stable:
250 mW
5. High insulation

Both clearance and creepage distance between coil and contact are at 8 mm min.
6. With operation verification function A test button (manual lever) type to facilitate circuit checks is also available (1 Form C, 1 Form A, 1 Form B types only).

TYPICAL APPLICATIONS

1. FA equipment (brake circuits of industrial machine and robots, etc.)
2. Electric power devices (remote surveillance devices, etc.)
3. Household appliance networks (Motor control and lighting control, etc.)
4. Time switches

ORDERING INFORMATION

TYPES

1. Without a test button
1) Flux-resistant type

Contact arrangement	Nominal coil voltage	Single side stable type	1 coil latching type	2 coil latching type
		Part No.	Part No.	Part No.
1 Form C	5V DC	ADJ15005	ADJ11005	ADJ13005
	6 V DC	ADJ15006	ADJ11006	ADJ13006
	12V DC	ADJ15012	ADJ11012	ADJ13012
	24 V DC	ADJ15024	ADJ11024	ADJ13024
	48 V DC	ADJ15048	ADJ11048	ADJ13048
1 Form A	5 V DC	ADJ25005	ADJ21005	ADJ23005
	6V DC	ADJ25006	ADJ21006	ADJ23006
	12 V DC	ADJ25012	ADJ21012	ADJ23012
	24V DC	ADJ25024	ADJ21024	ADJ23024
	48 V DC	ADJ25048	ADJ21048	ADJ23048
1 Form B	5V DC	ADJ35005	Please use 1 Form A.	Please use 1 Form A.
	6 V DC	ADJ35006		
	12 V DC	ADJ35012		
	24V DC	ADJ35024		
	48 V DC	ADJ35048		
1 Form A 1 Form B	5 V DC	ADJ45005	ADJ41005	ADJ43005
	6 V DC	ADJ45006	ADJ41006	ADJ43006
	12 V DC	ADJ45012	ADJ41012	ADJ43012
	24V DC	ADJ45024	ADJ41024	ADJ43024
	48 V DC	ADJ45048	ADJ41048	ADJ43048
2 Form C	5 V DC	ADJ55005	ADJ51005	ADJ53005
	6V DC	ADJ55006	ADJ51006	ADJ53006
	12 V DC	ADJ55012	ADJ51012	ADJ53012
	24V DC	ADJ55024	ADJ51024	ADJ53024
	48 V DC	ADJ55048	ADJ51048	ADJ53048
2 Form A	5V DC	ADJ65005	ADJ61005	ADJ63005
	6 V DC	ADJ65006	ADJ61006	ADJ63006
	12 V DC	ADJ65012	ADJ61012	ADJ63012
	24 V DC	ADJ65024	ADJ61024	ADJ63024
	48 V DC	ADJ65048	ADJ61048	ADJ63048
2 Form B	5V DC	ADJ75005	Please use 2 Form A.	Please use 2 Form A.
	6 V DC	ADJ75006		
	12 V DC	ADJ75012		
	24V DC	ADJ75024		
	48 V DC	ADJ75048		

Standard packing: Tube: 100 pcs.; Case: 500 pcs.

DJ (ADJ)
2) Sealed type

Contact arrangement	Nominal coil voltage	Single side stable type	1 coil latching type	2 coil latching type
		Part No.	Part No.	Part No.
1 Form C	5V DC	ADJ16005	ADJ12005	ADJ14005
	6 V DC	ADJ16006	ADJ12006	ADJ14006
	12 V DC	ADJ16012	ADJ12012	ADJ14012
	24V DC	ADJ16024	ADJ12024	ADJ14024
	48 V DC	ADJ16048	ADJ12048	ADJ14048
1 Form A	5 V DC	ADJ26005	ADJ22005	ADJ24005
	6 V DC	ADJ26006	ADJ22006	ADJ24006
	12 V DC	ADJ26012	ADJ22012	ADJ24012
	24 V DC	ADJ26024	ADJ22024	ADJ24024
	48 V DC	ADJ26048	ADJ22048	ADJ24048
1 Form B	5V DC	ADJ36005	Please use 1 Form A.	Please use 1 Form A.
	6V DC	ADJ36006		
	12 V DC	ADJ36012		
	24 V DC	ADJ36024		
	48 V DC	ADJ36048		
1 Form A 1 Form B	5V DC	ADJ46005	ADJ42005	ADJ44005
	6 V DC	ADJ46006	ADJ42006	ADJ44006
	12 V DC	ADJ46012	ADJ42012	ADJ44012
	24 V DC	ADJ46024	ADJ42024	ADJ44024
	48 V DC	ADJ46048	ADJ42048	ADJ44048
2 Form C	5 V DC	ADJ56005	ADJ52005	ADJ54005
	6 V DC	ADJ56006	ADJ52006	ADJ54006
	12 V DC	ADJ56012	ADJ52012	ADJ54012
	24 V DC	ADJ56024	ADJ52024	ADJ54024
	48 V DC	ADJ56048	ADJ52048	ADJ54048
2 Form A	5V DC	ADJ66005	ADJ62005	ADJ64005
	6 V DC	ADJ66006	ADJ62006	ADJ64006
	12 V DC	ADJ66012	ADJ62012	ADJ64012
	24V DC	ADJ66024	ADJ62024	ADJ64024
	48 V DC	ADJ66048	ADJ62048	ADJ64048
2 Form B	5V DC	ADJ76005	Please use 2 Form A.	Please use 2 Form A.
	6 V DC	ADJ76006		
	12 V DC	ADJ76012		
	24V DC	ADJ76024		
	48V DC	ADJ76048		

Standard packing: Tube: 100 pcs.; Case: 500 pcs.

2. With a test button

Flux-resistant type

Contact arrangement	Nominal coil voltage	Single side stable type	1 coil latching type	2 coil latching type
		Part No.	Part No.	Part No.
1 Form C	5V DC	ADJ15105	ADJ11105	ADJ13105
	6 V DC	ADJ15106	ADJ11106	ADJ13106
	12 V DC	ADJ15112	ADJ11112	ADJ13112
	24 V DC	ADJ15124	ADJ11124	ADJ13124
	48 V DC	ADJ15148	ADJ11148	ADJ13148
1 Form A	5V DC	ADJ25105	ADJ21105	ADJ23105
	6V DC	ADJ25106	ADJ21106	ADJ23106
	12 V DC	ADJ25112	ADJ21112	ADJ23112
	24V DC	ADJ25124	ADJ21124	ADJ23124
	48 V DC	ADJ25148	ADJ21148	ADJ23148
1 Form B	5V DC	ADJ35105	Please use 1 Form A.	Please use 1 Form A.
	6 V DC	ADJ35106		
	12 V DC	ADJ35112		
	24V DC	ADJ35124		
	48 V DC	ADJ35148		

Standard packing: Tube: 100 pcs.; Case: 500 pcs.

RATING

1. Coil data
1) Single side stable

Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Coil resistance } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$	Nominal operating power	Max. allowable voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
5V DC	$75 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$10 \% \mathrm{~V}$ or more of nominal voltage (Initial)	100Ω	250 mW	$130 \% \mathrm{~V}$ of nominal voltage
6 V DC			144Ω		
12 V DC			576Ω		
24V DC			2,304 Ω		
48 V DC			9,216 ${ }^{\text {a }}$		

2) 1 coil latching

Nominal coil voltage	$\begin{gathered} \text { Set voltage } \\ \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{gathered}$	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Coil resistance } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$	Nominal operating power	Max. allowable voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
5V DC	$70 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$70 \% \mathrm{~V}$ or less of nominal voltage (Initial)	167Ω	150 mW	$130 \% \mathrm{~V}$ of nominal voltage
6V DC			240Ω		
12 V DC			960Ω		
24 V DC			3,840 2		
48V DC			15,360		
3) 2 coil latching					
Nominal coil voltage	Set voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Coil resistance } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$	Nominal operating power	Max. allowable voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
5V DC	$70 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$70 \% \mathrm{~V}$ or less of nominal voltage (Initial)	100Ω	250 mW	$130 \% \mathrm{~V}$ of nominal voltage
6 V DC			144Ω		
12 V DC			576Ω		
24V DC			2,304 Ω		
48V DC			9,216 Ω		

2. Specifications

Characteristics	Item		Specifications
Contact	Arrangement		1 Form C, 1 Form A, 1 Form B, 1 Form A 1 Form B, 2 Form C, 2 Form A, 2 Form B
	Initial contact resistance, max.		Max. $100 \mathrm{~m} \Omega$ (By voltage drop 6 V DC 1A)
	Contact material		AgSnO2 type (1 Form C, 1 Form A, 1 Form B), Au-flashed AgSnO_{2} type (1 Form A 1 Form B, 2 Form C, 2 Form A, 2 Form B)
Rating	Nominal switching capacity (resistive load)		16 A 250V AC (1 Form C, 1 Form A, 1 Form B), 10 A 250V AC (2 Form C, 2 Form A, 2 Form B, 1 Form A 1 Form B)
	Max. switching power (resistive load)		$4,000 \mathrm{~V} \mathrm{~A}$
	Max. switching voltage		250 V AC
	Max. switching current		16 A (1 Form C, 1 Form A, 1 Form B), 10 A (1 Form A 1 Form B, 2 Form C, 2 Form A, 2 Form B)
	Nominal operating power		150 mW (1 coil latching), 250 mW (Single side stable, 2 coil latching)
	Min. switching capacity (Reference value)* ${ }^{* 1}$		100 mA 5 V DC
Electrical characteristics	Insulation resistance (Initial)		Min. $1,000 \mathrm{M} \Omega$ (at 500 V DC) Measurement at same location as "Initial breakdown voltage" section.
	Breakdown voltage (Initial)	Between open contacts	$1,000 \mathrm{Vrms}$ for 1 min . (Detection current: 10 mA .)
		Between contact and coil	$4,000 \mathrm{Vrms}$ for 1 min . (Detection current: 10 mA .)
	Surge breakdown voltage ${ }^{*}$	Between contact and coil	Min. 10,000 V (initial)
	Temperature rise (at $70^{\circ} \mathrm{C} 158^{\circ} \mathrm{F}$)		Max. $55^{\circ} \mathrm{C}$ (By resistive method, nominal voltage applied to the coil, max. switching current.)
	Operate time [Set time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 20 ms [20 ms] (Nominal voltage applied to the coil, excluding contact bounce time.)
	Release time [Reset time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 20 ms [20 ms] (Nominal voltage applied to the coil, excluding contact bounce time.)
Mechanical characteristics	Shock resistance	Functional	Min. $200 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$.)
		Destructive	Min. $1,000 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 6 ms .)
	Vibration resistance	Functional	10 to 55 Hz at double amplitude of 2 mm (Detection time: $10 \mu \mathrm{~s}$.)
		Destructive	10 to 55 Hz at double amplitude of 3 mm
Expected life	Mechanical		Min. 5×10^{6} (at 180 cpm)
	Electrical (Resistive load)*3 (at 20 cpm)		Min. 10^{5} (at 16A 250V AC): 1 Form C, 1 Form A, 1 Form B Min. 10^{5} (at 10A 250V AC): 2 Form C, 2 Form A, 2 Form B, 1 Form A 1 Form B
Conditions	Conditions for operation, transport and storage*4		Ambient temperature: $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+158^{\circ} \mathrm{F}$ Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature)
Unit weight			Approx. 14 g .49 oz

*1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.
*2Wave is standard shock voltage of $\pm 1.2 \times 50 \mu \mathrm{~s}$ according to JEC-212-1981
*3With breathing holes open
*4Refer to "6. Usage, Storage and Transport Conditions" in AMBIENT ENVIRONMENT (page 599).

REFERENCE DATA

1. Max. switching capacity

2. Temperature rise

Tested sample: ADJ12024, 6 pcs.
Coil applied voltage: $0 \% \mathrm{~V}$, Contact current: $16 \mathrm{~A}, 20 \mathrm{~A}$ Measured portion: Contact, Ambient temperature:
$25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}, 85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$

3. Coil temperature rise

Tested sample: ADJ56024, 6 pcs.
Coil applied voltage: $100 \% \mathrm{~V}, 130 \% \mathrm{~V}$ of rating
Contact current: 0 A, 10 A
Measured portion: Inside the coil, Ambient temperature: Room temperature, $70^{\circ} \mathrm{C} 158^{\circ} \mathrm{F}$

4. Set and Reset time

Tested sample: ADJ12024, 10 pcs
Coil applied voltage: $80 \% \mathrm{~V}, 100 \% \mathrm{~V}, 120 \% \mathrm{~V}$ of rating

5. Ambient temperature characteristics

Tested sample: ADJ12024, 6pcs
Ambient temperature: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $185^{\circ} \mathrm{F}$
6. Influence of adjacent mounting Tested sample: ADJ12024, 6pcs
Ambient temperature: Room temperature

DIMENSIONS(mm inch)
Interested in CAD data? You can obtain CAD data for all products with a CAD Data mark from your local Panasonic Electric Works representative.

1. 1 Form C, without a test button

CAD Data External dimensions

PC board pattern (Bottom view)

Single side stable type 1 coil latching type 2 coil latching type

Tolerance: $\pm 0.1 \pm .004$

2. 1 Form C, with a test button

CAD Data External dimensions

2 coil latching type

PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$

\[

\]

3. 1 Form A, without a test button

General tolerance: $\pm 0.3 \pm .012$
Schematic (Bottom view)
Single side stable type

4. 1 Form A , with a test button

General tolerance: $\pm 0.3 \pm .012$
Schematic (Bottom view)

2 coil latching type

PC board pattern (Bottom view)

5. 1 Form B, without a test button

External dimensions

Single side stable type

General tolerance: $\pm 0.3 \pm .012$

PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$

6. 1 Form B, with a test button

CAD Data External dimensions

PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$

7. 1 Form A 1 Form B, without a test button

CAD Data External dimensions

PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$

Schematic (Bottom view)

2 coil latching type

8. 2 Form C, without a test button

General tolerance: $\pm 0.3 \pm .012$

Schematic (Bottom view)

PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$

9. 2 Form A, without a test button

CAD Data External dimensions

Single side stable type

2 coil latching type

General tolerance: $\pm 0.3 \pm .012$

Schematic (Bottom view)

2 coil latching type

10. 2 Form B, without a test button

CAD Data External dimensions

Single side stable type

PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$

Schematic (Bottom view)

DJ (ADJ)

NOTES

1. Coil operating power

Pure DC current should be applied to the coil. The wave form should be
rectangular. If it includes ripple, the ripple factor should be less than 5%. However, check it with the actual circuit since the characteristics may be slightly different.

2. Coil connection

When connecting coils, refer to the wiring diagram to prevent mis-operation or malfunction.

3. Soldering

We recommend the following soldering conditions
Soldering: $260^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C} 500^{\circ} \mathrm{F} \pm 41^{\circ} \mathrm{F}$, max. 6 s
4. Others

1) If the relay has been dropped, the appearance and characteristics should always be checked before use.
2) The cycle lifetime is defined under the standard test condition specified in the JIS* C 5442-1996 standard (temperature 15 to $35^{\circ} \mathrm{C} 59$ to $95^{\circ} \mathrm{F}$, humidity 25 to $85 \%)$. Check this with the real device as it is affected by coil driving circuit, load type, activation frequency, activation phase, ambient conditions and other factors.
Also, be especially careful of loads such as those listed below.

- When used for AC load-operating and the operating phase is synchronous.
Rocking and fusing can easily occur due to contact shifting.
- High-frequency load-operating When high-frequency opening and closing of the relay is performed with a load that causes arcs at the contacts, nitrogen and oxygen in the air is fused by the arc energy and HNO_{3} is formed. This can corrode metal materials.
Three countermeasures for these are listed here.
- Incorporate an arc-extinguishing circuit.
- Lower the operating frequency
- Lower the ambient humidity

3) For secure operations, the voltage applied to the coil should be nominal voltage. In addition, please note that pickup and drop-out voltage will vary according to the ambient temperature and operation conditions.
4) Heat, smoke, and even a fire may occur if the relay is used in conditions outside of the allowable ranges for the coil ratings, contact ratings, operating cycle lifetime, and other specifications. Therefore, do not use the relay if these ratings are exceeded. Also, make sure that the relay is wired correctly.
5) Incorrect wiring may cause unexpected events or the generation of heat or flames.
6) Check the ambient conditions when storing or transporting the relays and devices containing the relays. Freezing or condensation may occur in the relay, causing functional damage. Avoid subjecting the relays to heavy loads, or strong vibration and shocks.
5. Usage, transport and storage conditions
1) Ambient temperature, humidity, and atmospheric pressure during usage, transport, and storage of the relay:

- Temperature:
-40 to $+70^{\circ} \mathrm{C}-40$ to $+158^{\circ} \mathrm{F}$
- Humidity: 5 to 85% RH (Avoid freezing and condensation.) The humidity range varies with the temperature. Use within the range indicated in the graph below.

- Atmospheric pressure: 86 to 106 kPa Temperature and humidity range for usage, transport, and storage

2) Condensation

Condensation forms when there is a sudden change in temperature under high temperature and high humidity conditions. Condensation will cause deterioration of the relay insulation.
3) Freezing

Condensation or other moisture may
freeze on the relay when the temperatures is lower than $0^{\circ} \mathrm{C} 32^{\circ} \mathrm{F}$. This causes problems such as sticking of movable parts or operational time lags. 4) Low temperature, low humidity environments
The plastic becomes brittle if the relay is exposed to a low temperature, low humidity environment for long periods of time.
6. Test button (manual lever) operation The relay contacts switch over as follows:

Panasonic ideas for life

10 A MINIATURE

 POWER RELAY
FEATURES

 250 V AC. operating power

1. Compact with high capacity High capacity switching in a small package: 1 Form A, 10 A 250 V AC; 1 Form A 1 Form B and 2 Form A, 8 A
2. High sensitivity: $\mathbf{2 0 0} \mathrm{mW}$ nominal
3. High breakdown voltage

Independent coil and the contact structure improves breakdown voltage.

Between contact and coil	Between open contacts
$4,000 \mathrm{Vrms}$ for 1 min.	$1,000 \mathrm{Vrms}$ for 1 min.
$10,000 \mathrm{~V}$ surge	
breakdown voltage	breakdown voltage
Conforms with FCC Part 68	

4. Latching types available
5. Sealed construction allows automatic washing.
6. Sockets are also available
7. Complies with safety standards Complies with Japan Electrical Appliance and Material Safety Law requirements for operating 200 V power supply circuits, and complies with UL, CSA, and TÜV safety standards.

TYPICAL APPLICATIONS

1. Switching power supply
2. Power switching for various OA equipment
3. Control or driving relays for industrial machines (robotics, numerical control machines, etc.)
4. Output relays for programmable logic controllers, temperature controllers, timers and so on.
5. Home appliances

About Cd-free contacts We have introduced Cadmium free type products to reduce Environmental Hazardous Substances.
(The suffix "F" should be added to the part number)
(Note: The Suffix "F" is required only for 1 Form A contact type. The 2 Form A and
1 Form A 1 Form B contact type is originally Cadmium free, the suffix " F " is not required.)
Please replace parts containing
Cadmium with Cadmium-free products and evaluate them with your actual application before use because the life of a relay depends on the contact material and load.

ORDERING INFORMATION

Notes: 1. UL/CSA, TÜV approved type is standard.
2. VDE approved type is available.
3. 1 coil latching type available

DK

TYPES

Contact arrangement	Nominal coil	Single side stable	2 coil latching
	voltage	Part No.	Part No.
1 Form A	3V DC	DK1a-3V-F	DK1a-L2-3V-F
	5 V DC	DK1a-5V-F	DK1a-L2-5V-F
	6 V DC	DK1a-6V-F	DK1a-L2-6V-F
	9 V DC	DK1a-9V-F	DK1a-L2-9V-F
	12 V DC	DK1a-12V-F	DK1a-L2-12V-F
	24 V DC	DK1a-24V-F	DK1a-L2-24V-F
1 Form A 1 Form B	3 V DC	DK1a1b-3V	DK1a1b-L2-3V
	5 V DC	DK1a1b-5V	DK1a1b-L2-5V
	6 V DC	DK1a1b-6V	DK1a1b-L2-6V
	9 V DC	DK1a1b-9V	DK1a1b-L2-9V
	12 V DC	DK1a1b-12V	DK1a1b-L2-12V
	24 V DC	DK1a1b-24V	DK1a1b-L2-24V
2 Form A	3 V DC	DK2a-3V	DK2a-L2-3V
	5 V DC	DK2a-5V	DK2a-L2-5V
	6 V DC	DK2a-6V	DK2a-L2-6V
	9 V DC	DK2a-9V	DK2a-L2-9V
	12 V DC	DK2a-12V	DK2a-L2-12V
	24 V DC	DK2a-24V	DK2a-L2-24V

Standard packing: Tube: 50 pcs.; Case: 500 pcs.

RATING

1. Coil data

1) Single side stable

Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$	Coil resistance [$\pm 10 \%$] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating power	Max. allowable voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
3V DC	$70 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$10 \% \mathrm{~V}$ or more of nominal voltage (Initial)	66.6 mA	45Ω	200mW	$130 \% \mathrm{~V}$ of nominal voltage
5V DC			40 mA	125Ω		
6 V DC			33.3 mA	180Ω		
9V DC			22.2 mA	405Ω		
12 V DC			16.6 mA	720Ω		
24V DC			8.3 mA	2,880 ${ }^{\text {a }}$		

2) 2 coil latching

Nominal coil voltage	$\begin{aligned} & \text { Set voltage } \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$		$\begin{gathered} \text { Coil resistance } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$		Nominal operating power		Max. allowable voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
			Set coil	Reset coil	Set coil	Reset coil	Set coil	Reset coil	
3V DC	$70 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$70 \% \mathrm{~V}$ or less of nominal voltage (Initial)	66.6 mA	66.6 mA	45Ω	45Ω	200mW	200mW	$130 \% \mathrm{~V}$ of nominal voltage
5V DC			40 mA	40 mA	125Ω	125Ω			
6 V DC			33.3 mA	33.3 mA	180Ω	180Ω			
9 V DC			22.2 mA	22.2 mA	405Ω	405Ω			
12 V DC			16.6 mA	16.6 mA	720Ω	720Ω			
24 V DC			8.3 mA	8.3 mA	2,880	2,880			

2. Specifications

Characteristics		Item	Specifications		
Contact	Arrangement		1 Form A	1 Form A 1 Form B	2 Form A
	Initial contact resistance, max.		Max. $30 \mathrm{~m} \Omega$ (By voltage drop 6 V DC 1A)		
	Contact material		Au-flashed AgSnO_{2} type	Au-flashed AgNi type	
Rating	Nominal switching capacity (resistive load)		$\begin{gathered} 10 \mathrm{~A} 250 \mathrm{~V} \mathrm{AC}, 10 \mathrm{~A} 30 \mathrm{~V} \\ \text { DC } \end{gathered}$	8 A 250 V AC, 8 A 30 V DC	8 A 250 V AC, 8 A 30 V DC
	Max. switching power (resistive load)		2,500VA, 300 W	2,000 VA, 240 W	2,000 VA, 240 W
	Max. switching voltage		250 V AC, 125 V DC	250 V AC, 125 V DC	250 V AC, 125 V DC
	Max. switching current		10 A	8 A	8 A
	Nominal operating power		200 mW		
	Min. switching capacity (Reference value)* ${ }^{+1}$		10 m A 5 V DC		
Electrical characteristics	Insulation resistance (Initial)		Min. $1,000 \mathrm{M} \Omega$ (at 500 V DC) Measurement at same location as "Initial breakdown voltage" section.		
	Breakdown voltage (Initial)	Between open contacts	$1,000 \mathrm{Vrms}$ for 1 min . (Detection current: 10 mA .)		
		Between contact and coil	$4,000 \mathrm{Vrms}$ for 1min. (Detection current: 10 mA .)		
	Surge breakdown voltage*2	Between contacts and coil	10,000 V (Initial)		
	Temperature rise (at $65^{\circ} \mathrm{C} 149^{\circ} \mathrm{F}$)		Max. $40^{\circ} \mathrm{C}$ (By resistive method, nominal voltage applied to the coil; max. switching current)		
	Operate time [Set time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 10 ms (Approx. 5 ms) [10 ms (Approx. 5 ms)] (Nominal voltage applied to the coil, excluding contact bounce time.)		
	Release time [Reset time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 8 ms (Approx. 3 ms) [10 ms (Approx. 3 ms)] (Nominal voltage applied to the coil, excluding contact bounce time.) (without diode)		
Mechanical characteristics	Shock resistance	Functional	Min. $98 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$.)		
		Destructive	Min. $980 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 6 ms .)		
	Vibration resistance	Functional	10 to 55 Hz at double amplitude of 1.5 mm (Detection time: $10 \mu \mathrm{~s}$.)		
		Destructive	10 to 55 Hz at double amplitude of 3 mm		
Expected life	Mechanical		Min. 5×10^{7} (at 300 cpm)		
	Electrical		Min. 10^{5} (resistive load, at 20 cpm , at rated capacity)		
Conditions	Conditions for operation, transport and storage ${ }^{* 3}$		Ambient temperature: $-40^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+149^{\circ} \mathrm{F}$, Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature)		
	Max. operating speed (at rated load)		20 cpm		
Unit weight			Approx. 5 g .18 oz	Approx. 6 g .21 oz	Approx. 6 g .21 oz
Notes:					

*1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.
*2Wave is standard shock voltage of $\pm 1.2 \times 50 \mu \mathrm{~s}$ according to JEC-212-1981.
*3Refer to "6. Usage, Storage and Transport Conditions" in AMBIENT ENVIRONMENT (page 599).

REFERENCE DATA

1-(1). Maximum operating power (1 Form A)

\longrightarrow Contact voltage, V

2-(2). Life curve

(1 Form A 1 Form B, 2 Form A)

1-(2). Maximum operating power (1 Form A 1 Form B, 2 Form A)

Contact voltage, V
3-(1). Operate/Release time (1 Form A) Tested sample: DK1a-24V, 5 pcs.

2-(1). Life curve (1 Form A)

3-(2). Operate/Release time
(1 Form A 1 Form B, 2 Form A)
Tested sample: DK1a1b-12V, 5 pcs.

4-(1). Coil temperature rise (1 Form A)
Tested sample: DK1a-12V, 5 pcs.
Ambient temperature: $30^{\circ} \mathrm{C} 86^{\circ} \mathrm{F}$

4-(2). Coil temperature rise
(1 Form A 1 Form B, 2 Form A)
Tested sample: DK1a1b-12V, 5 pcs. Ambient temperature: $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$

5-(1). Ambient temperature characteristics (1 Form A)
Tested sample: DK1a-24V, 6 pcs
Ambient temperature: $-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$

5-(2). Ambient temperature characteristics (1 Form A 1 Form B, 2 Form A)

DIMENSIONS (mm inch) Interested in CAD data? You can obtain CAD data for all products with a CAD Data mark from your local Panasonic Electric Works representative.

1. 1 Form A type

PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$

Schematic
(Bottom view) Single side stable

(Deenergized condition)

2 coil latching

(Reset condition)

2. 1 Form A 1 Form B type, 2 Form A type

CAD Data

External dimensions

2 coil latching type

General tolerance: $\pm 0.3 \pm .012$

PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$

Schematic
(Bottom view)
<1 Form A 1 Form B type> Single side stable

(Deenergized condition) 2 coil latching

(Reset condition)
<2 Form A>
Single side stable

(Deenergized condition)
2 coil latching

(Reset condition)
Since this is a polarized relay, the connection to the coil should be done according to the above schematic.

NOTES

1. Soldering should be done under the following conditions:
$250^{\circ} \mathrm{C} 482^{\circ} \mathrm{F}$ within 10 s
$300^{\circ} \mathrm{C} 572^{\circ} \mathrm{F}$ within 5 s
$350^{\circ} \mathrm{C} 662^{\circ} \mathrm{F}$ within 3 s
Soldering depth: $2 / 3$ terminal pitch
2. External magnetic field

Since DK relays are highly sensitive polarized relays, their characteristics will be affected by a strong external magnetic field. Avoid using the relay under that condition.
3. When using, please be aware that the a contact and b contact sides of 1 Form A and 1 Form B types may go on simultaneously at operate time and release time.

For Cautions for Use, see Relay Technical Information (page 582).

Panasonic ideas for life

ACCESSORIES

DK RELAY SOCKET

FEATURES

DK relay sockets that can be used also for DY relay.

TYPES

Type		Part No.
1 Form A	Single side stable	DK1a-PS
	2 coil latching	DK1a-PSL2
	Single side stable	DK2a-PS
	2 coil latching	DK2a-PSL2

Standard packing: Tube: 50 pcs.; Case: 500 pcs Note: * 2 Form A type is DK relays only.

RELAY COMPATIBILITY

- When using the DK relays
- When using the DY relays

Socket	1 Form A		1 Form A 1 Form B		
	Single side stable type	2 coil latching type	Single side stable type	2 coil latching type	
1 Form A	Single side stable type	\bullet	\bullet	-	-
	2 2 coil latching type	-	\bullet	-	-
1 Form A 1 Form B	Single side stable type	-	-	\bullet	\bullet
	2 coil latching type	-	-	-	\bullet

DIMENSIONS (Unit: mm inch)

PC board pattern (Bottom view)

The above shows 2 coil latching type. No. 2 and 5 terminal are eliminated on single side stable type.

SPECIFICATIONS

Item	Specifications
Breakdown voltage	4,000 Vrms (Detection current: 10 mA) (Except the portion between coil terminals)
Insulation resistance	Min. 1,000 m Ω (at $500 \mathrm{~V} \mathrm{DC)}$
Heat resistance	$150^{\circ} \mathrm{C}$ (for 1 hour)
Max. continuous current	10 A (DK1a-PS, DK1a-PSL2), 8 A (DK2a-PS, DK2a-PSL2)

General tolerance: $\pm 0.3 \pm .012$

The above shows 2 coil latching type. No. 2 and 7 terminal are eliminated on single side stable type.

FIXING AND REMOVAL METHOD

1. Match the direction of relay and socket.

2. Both ends of the relay are to be secured firmly so that the socket hooks on the top surface of the relay.

NO GOOD
3. Remove the relay, applying force in the direction shown below.

4. In case there is not enough space to grasp relay with fingers, use screwdrivers in the way shown below.

Notes: 1. Exercise care when removing relays. If greater than necessary force is applied at the socket hooks, deformation may alter the dimensions so that the hook will no longer catch, and other damage may also occur. 2. It is hazardous to use IC chip sockets.

30A POWER LATCHING RELAY

DQ RELAYS (ADQ)

FEATURES

1. 30A capacity in small size
2. Latching type
3. High insulation

4,000V AC (between contacts and coil)
Surge 10,000V (between contacts and coil)
4. Cd-free, Pb-free
5. Sealed construction
6. UL/C-UL approved

TYPICAL APPLICATIONS

1. Time switches
2. Electric water heaters
3. Remote control of electric power meters

ORDERING INFORMATION

TYPES

Contact arrangement	Nominal coil voltage	1 coil latching	2 coil latching
	4.5 V DC	Part No.	Part No.
1 Form A	6 V DC	ADQ13Q04H	ADQ23Q04H
	9 V DC	ADQ13Q006	ADQ23Q006
	12 V DC	ADQ13Q009	ADQ23Q009
	24 V DC	ADQ13Q012	ADQ23Q012

Standard packing: Tube: 20 pcs.; Case: 200 pcs.

RATING

1. Coil data

1) 1 coil latching

Nominal coil voltage	$\begin{aligned} & \text { Set voltage* } \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Reset voltage* (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating current $[\pm 10 \%]$ (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Coil resistance } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$	Nominal operating power	Max. allowable voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
4.5 V DC	$70 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$70 \% \mathrm{~V}$ or less of nominal voltage (Initial)	111.1 mA	40.5Ω	500 mW	$130 \% \mathrm{~V}$ of nominal voltage
6V DC			83.3 mA	72Ω		
9 V DC			55.6 mA	162Ω		
12 V DC			41.7 mA	288Ω		
24V DC			20.8 mA	1,152 Ω		

* Pulse, direction of measurement: Terminal is downward.

2) 2 coil latching

Nominal coil voltage	Set voltage* (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Reset voltage* (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%] \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) }} \end{gathered}$		$\begin{gathered} \text { Coil resistance } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$		Nominal operating power		Max. allowable voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
			Set coil	Reset coil	Set coil	Reset coil	Set coil	Reset coil	
4.5 V DC	$70 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$70 \% \mathrm{~V}$ or less of nominal voltage (Initial)	221.7 mA	221.7 mA	20.3Ω	20.3Ω	1,000mW	1,000mW	$130 \% \mathrm{~V}$ of nominal voltage
6 V DC			166.7 mA	166.7 mA	36Ω	36Ω			
9V DC			111.1 mA	111.1 mA	81Ω	81Ω			
12V DC			83.3 mA	83.3mA	144Ω	144Ω			
24V DC			41.7 mA	41.7 mA	576Ω	576Ω			

[^14]
2. Specifications

*1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load. *2Wave is standard shock voltage of $\pm 1.2 \times 50 \mu$ s according to JEC-212-1981.
*3Refer to "6. Usage, Storage and Transport Conditions" in AMBIENT ENVIRONMENT (page 599).
DIMENSIONS $_{\text {(mm inc }}$
Interested in CAD data? You can obtain CAD data for all products with a CAD Data mark from your local Panasonic Electric Works representative.

NOTES

1. Coil operating power

Pure DC current should be applied to the coil. The wave form should be rectangular. If it includes ripple, the ripple factor should be less than 5%. However, check it with the actual circuit since the characteristics may be slightly different.

2. Coil connection

When connecting coils, refer to the wiring diagram to prevent mis-operation or malfunction.

3. Soldering and cleaning

1) When soldering the relays, ensure conformance with the conditions listed below.
[Automatic soldering]
(1) Preheating: less than $120^{\circ} \mathrm{C} 248^{\circ} \mathrm{F}$ (solder target surface of terminal) for less than 120 sec
(2) Soldering: less than $265^{\circ} \mathrm{C} 509^{\circ} \mathrm{F}$ (solder temperature) for less than 6 sec (soldering time)
[Manual soldering]
(1) Soldering tip temperature: less than $350^{\circ} \mathrm{C} 662^{\circ} \mathrm{F}$
(2) Soldering iron: 60 W to 100 W
(3) Soldering time: less than 3 sec

Furthermore, because the type of PC
board used and other factors may influence the relays, test that the relays function properly on the actual board on which they are mounted.
2) Ultrasonic cleaning has adverse effects on relay characteristics: never use ultrasonic cleaning. For liquid cleaning, use alcohol-based liquids.

4. Others

1) If the relay has been dropped, the appearance and characteristics should always be checked before use.
2) The cycle lifetime is defined under the standard test condition specified in the JIS* C 5442-1996 standard (temperature 15 to $35^{\circ} \mathrm{C} 59$ to $95^{\circ} \mathrm{F}$, humidity 25 to $75 \%)$. Check this with the real device as it is affected by coil driving circuit, load type, activation frequency, activation phase, ambient conditions and other factors.
Also, be especially careful of loads such as those listed below.
(1) When used for AC load-operating and the operating phase is synchronous.

Rocking and fusing can easily occur due to contact shifting.
(2) High-frequency load-operating When high-frequency opening and closing of the relay is performed with a load that causes arcs at the contacts, nitrogen and oxygen in the air is fused by the arc energy and HNO_{3} is formed. This can corrode metal materials.
Three countermeasures for these are listed here.

1. Incorporate an arc-extinguishing circuit.
2. Lower the operating frequency
3. Lower the ambient humidity
3) For secure operations, the voltage applied to the coil should be nominal voltage. In addition, please note that pickup and drop-out voltage will vary according to the ambient temperature and operation conditions.
4) Heat, smoke, and even a fire may occur if the relay is used in conditions outside of the allowable ranges for the coil ratings, contact ratings, operating cycle lifetime, and other specifications. Therefore, do not use the relay if these ratings are exceeded. Also, make sure that the relay is wired correctly.
5) Incorrect wiring may cause
unexpected events or the generation of heat or flames.
6) Check the ambient conditions when storing or transporting the relays and devices containing the relays. Freezing or condensation may occur in the relay, causing functional damage. Avoid subjecting the relays to heavy loads, or strong vibration and shocks.
7) Relays are shipped in a 'reset' state. During shipping and handling, however, shocks may change the state to 'set.' Consequently, at time of use (at power on) it is recommended to ensure that circuits are returned to the desired state ('set' or 'reset').
8) If more than $20 A$ is delivered via the plug-in terminal connection, to prevent loosening of contacts loss long periods of operation, ensure that the plug-in terminal is soldered to the receptacle terminal.

5. Usage, transport and storage conditions

1) Ambient temperature, humidity, and atmospheric pressure during usage, transport, and storage of the relay:
(1) Temperature:
-40 to $+65^{\circ} \mathrm{C}-40$ to $+149^{\circ} \mathrm{F}$
(2) Humidity: 5 to 75% RH
(Avoid freezing and condensation.) The humidity range varies with the temperature. Use within the range indicated in the graph below.

(3) Atmospheric pressure: 86 to 106 kPa Temperature and humidity range for usage, transport, and storage:
2) Condensation

Condensation forms when there is a sudden change in temperature under high temperature and high humidity conditions. Condensation will cause deterioration of the relay insulation. 3) Freezing

Condensation or other moisture may freeze on the relay when the temperatures is lower than $0^{\circ} \mathrm{C} 32^{\circ} \mathrm{F}$. This causes problems such as sticking of movable parts or operational time lags. 4) Low temperature, low humidity environments
The plastic becomes brittle if the relay is exposed to a low temperature, low humidity environment for long periods of time.

Panasonic ideas for life

60A POWER LATCHING RELAY

DQ-MRELAYS (ADOM)

FEATURES

1. Miniature and high capacity

Miniature relay capable of high 60 A capacity control.
Size: $29.0(\mathrm{~L}) \times 38.0(\mathrm{~W}) \times 17.3(\mathrm{H}) \mathrm{mm}$ $1.142(\mathrm{~L}) \times 1.496(\mathrm{~W}) \times .681(\mathrm{H})$ inch
Nominal switching capacity:
60A 250V AC
2. Latching type

Latching type contributes to device energy efficiency.
Nominal operating power

- 500 mW (1 coil latching)
-1W (2 coil latching)

3. High insulation

Between contact and coil
Breakdown voltage: 4,000 V AC
Surge breakdown voltage: $10,000 \mathrm{~V}$
4. Cd-free, Pb-free
5. Flux-Resistant type

TYPICAL APPLICATIONS

1. Remote control of electric power meters
2. Time switches

ORDERING INFORMATION

TYPES

Contact arrangement	Nominal coil voltage	Part No.	
		1 coil latching	2 coil latching
1 Form A	4.5 V DC	ADQM1604H	ADQM2604H
	6 V DC	ADQM16006	ADQM26006
	9 V DC	ADQM16009	ADQM26009
	12 V DC	ADQM16012	ADQM26012
	24 V DC	ADQM16024	ADQM26024

[^15]
DQM (ADQM)

RATING

1. Coil data
1) 1 coil latching

Nominal coil voltage	$\begin{aligned} & \text { Set voltage } \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%] \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) }} \end{gathered}$	$\begin{gathered} \text { Coil resistance } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right. \text {) }} \end{gathered}$	Nominal operating power	Max. allowable voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
4.5V DC	$80 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$80 \% \mathrm{~V}$ or less of nominal voltage (Initial)	111.1 mA	40.5Ω	500 mW	$130 \% \mathrm{~V}$ of nominal voltage
6 V DC			83.3 mA	72Ω		
9 V DC			55.6 mA	162Ω		
12 V DC			41.7 mA	288Ω		
24V DC			20.8 mA	1,152 Ω		

2) 2 coil latching

Nominal coil voltage	$\begin{aligned} & \text { Set voltage } \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%] \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) }} \end{gathered}$	$\begin{gathered} \text { Coil resistance } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$	Nominal operating power	Max. allowable voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
4.5V DC	$80 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$80 \% \mathrm{~V}$ or less of nominal voltage (Initial)	221.7 mA	20.3Ω	1,000mW	$130 \% \mathrm{~V}$ of nominal voltage
6 V DC			166.7 mA	36Ω		
9V DC			111.1 mA	81Ω		
12 V DC			83.3 mA	144Ω		
24V DC			41.7 mA	576Ω		

2. Specifications

Characteristics	Item		Specifications
Contact	Arrangement		1 Form A
	Contact resistance (Initial)		Max. $30 \mathrm{~m} \Omega$ (By voltage drop 6 V DC 1A)
	Contact material		Ag alloy (Cadmium free)
Rating	Nominal switching capacity (resistive load)		60 A 250V AC
	Max. switching power (resistive load)		15,000 V A
	Max. switching voltage		250 V AC
	Max. switching current		60 A
	Nominal operating power		500 mW (1 coil latching), 1,000 mW (2 coil latching)
	Min. switching capacity (Reference value)* ${ }^{*}$		100 mA 5 V DC
Electrical characteristics	Insulation resistance (Initial)		Min. $1,000 \mathrm{M} \Omega$ (at 500 V DC) Measurement at same location as "Initial breakdown voltage" section.
	Breakdown voltage (Initial)	Between open contacts	1,500 Vrms for 1 min . (Detection current: 10 mA .)
		Between contact and coil	$4,000 \mathrm{Vrms}$ for 1 min . (Detection current: 10 mA .)
	Surge breakdown voltage" ${ }^{2}$	Between contact and coil	Min. 10,000 V (initial)
	Temperature rise (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. $50^{\circ} \mathrm{C}$ (By resistive method, max. switching current) (Coil; de-energized)
	Set time (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 20 ms (Nominal voltage applied to the coil, excluding contact bounce time.)
	Reset time (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 20 ms (Nominal voltage applied to the coil, excluding contact bounce time.)
Mechanical characteristics	Shock resistance	Functional	Min. $200 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$.)
		Destructive	Min. $1,000 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 6 ms .)
	Vibration resistance	Functional	10 to 55 Hz at double amplitude of 1.5 mm (Detection time: $10 \mu \mathrm{~s}$.)
		Destructive	10 to 55 Hz at double amplitude of 2.0 mm
Expected life	Mechanical		Min. 10^{6} (at 180 cpm)
	Electrical		60A 250V AC Min. 10^{3} (resistive load, operating frequency: 15 s ON, 45s OFF)
			50A 250V AC Min. 10^{4} (resistive load, operating frequency: 15 s ON, 45s OFF)
Conditions	Conditions for operation, transport and storage*3		Ambient temperature: $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+158^{\circ} \mathrm{F}$ Humidity: 5 to 75% R.H. (Not freezing and condensing at low temperature)
	Max. operating speed		1 cpm (at rated load)
Unit weight			Approx. 35 g 1.23 oz
Notes:			

*1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.
*2Wave is standard shock voltage of $\pm 1.2 \times 50 \mu \mathrm{~s}$ according to JEC-212-1981
*3The upper operation ambient temperature limit is the maximum temperature that can satisfy the coil temperature rise value. Refer to "6. Usage, Storage and Transport Conditions" in AMBIENT ENVIRONMENT (page 599).

DIMENSIONS (mm inch) Interested in CAD data? You can obtain CAD data for all products with a CAD Data mark from your local Panasonic Electric Works representative.

CAD Data

Note 1)
These are dummy terminals for the strength reinforcement for the M4 screw terminal connection. Fix or solder these to the PC board in case setting M4 screw. However, do not use the dummy terminals as wiring to the PC board. In case wiring of the dummy terminals, the conductor destruction may occur due to the high current.
Note 2)
No 3rd terminal on 1 coil latching type.

External dimensions

General tolerance: $\pm 0.3 \pm .012$

PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .00$
Schematic (Bottom view) 1 coil latching type 2 coil latching type

NOTES

1. Coil operating power

Pure DC current should be applied to the coil. The wave form should be rectangular. If it includes ripple, the ripple factor should be less than 5%. However, check it with the actual circuit since the characteristics may be slightly different.

2. Coil connection

When connecting coils, refer to the wiring diagram to prevent mis-operation or malfunction.

3. Soldering and cleaning

1) When soldering the relays, ensure conformance with the conditions listed below.
[Automatic soldering]
(1) Preheating: less than $120^{\circ} \mathrm{C} 248^{\circ} \mathrm{F}$ (solder target surface of terminal) for less than 120 sec
(2) Soldering: less than $260 \pm 5^{\circ} \mathrm{C}$
$500 \pm 41^{\circ} \mathrm{F}$ (solder temperature) for less than 6 sec (soldering time)
[Manual soldering]
(1) Soldering tip temperature: less than $350^{\circ} \mathrm{C} 662^{\circ} \mathrm{F}$
(2) Soldering iron: 60 W to 100 W
(3) Soldering time: less than 3 sec

Furthermore, because the type of PC
board used and other factors may influence the relays, test that the relays function properly on the actual board on which they are mounted.
2) This relay is not sealed. Do not wash it. Also, make sure that any flux overflowing upward from the PC board does not get inside the relay.

4. Others

1) If the relay has been dropped, the appearance and characteristics should always be checked before use.
2) The cycle lifetime is defined under the standard test condition specified in the JIS C 5442-1996 standard (temperature 15 to $35^{\circ} \mathrm{C} 59$ to $95^{\circ} \mathrm{F}$, humidity 25 to $75 \%)$. Check this with the real device as it is affected by coil driving circuit, load type, activation frequency, activation phase, ambient conditions and other factors.
Also, be especially careful of loads such as those listed below.
(1) When used for AC load-operating and the operating phase is synchronous.
Rocking and fusing can easily occur due to contact shifting.
(2) High-frequency load-operating

When high-frequency opening and
closing of the relay is performed with a
load that causes arcs at the contacts, nitrogen and oxygen in the air is fused by the arc energy and HNO_{3} is formed. This can corrode metal materials.
Three countermeasures for these are listed here.

1. Incorporate an arc-extinguishing circuit.
2. Lower the operating frequency
3. Lower the ambient humidity
3) For secure operations, the voltage applied to the coil should be nominal voltage. In addition, please note that pickup and drop-out voltage will vary according to the ambient temperature and operation conditions.
4) Heat, smoke, and even a fire may occur if the relay is used in conditions outside of the allowable ranges for the coil ratings, contact ratings, operating cycle lifetime, and other specifications. Therefore, do not use the relay if these ratings are exceeded. Also, make sure that the relay is wired correctly. 5) Incorrect wiring may cause unexpected events or the generation of heat or flames.
5) Check the ambient conditions when storing or transporting the relays and devices containing the relays. Freezing or condensation may occur in the relay, causing functional damage. Avoid subjecting the relays to heavy loads, or strong vibration and shocks.
6) The minimum switching capacity is given as a guide to the lowest level that switching is possible when using minute loads. This value can change due to switching frequency, environmental conditions, and desired reliability level. Therefore, please conduct sufficient tests under actual conditions.
7) Relays are shipped in a 'reset' state. During shipping and handling, however, shocks may change the state to 'set.' Consequently, at time of use (at power on) it is recommended to ensure that circuits are returned to the desired state ('set' or 'reset').
8) Do not use parts that generate organic silicon. When present in the vicinity, conduction failure may occur.
9) This relay is designed to flux-resistant type. Malfunction and contact failure may result if small insects get inside the relay. 11) Installation of M4 securing screw Do not apply excessive pressure on the terminals. This could adversely affect
relay performance. Secure to the PC board a dummy terminal designed for reinforcement of the terminal and use a washer in order to prevent deformation. Keep the installation torque to within 1.2 and $1.4 \mathrm{~N} \cdot \mathrm{~m}$ (12 to $14 \mathrm{kgf} \cdot \mathrm{cm}$). Also, use a spring washer to prevent it from loosening. Do not use the dummy terminals as wiring to the PC board. In case wiring of the dummy terminals, the conductor destruction may occur due to the high current.

5. Usage, transport and storage conditions

1) Ambient temperature, humidity, and atmospheric pressure during usage, transport, and storage of the relay:
(1) Temperature:
-40 to $+70^{\circ} \mathrm{C}-40$ to $+158^{\circ} \mathrm{F}$
(2) Humidity: 5 to 75% RH
(Avoid freezing and condensation.) The humidity range varies with the temperature. Use within the range indicated in the graph below.
(3) Atmospheric pressure: 86 to 106 kPa Temperature and humidity range for usage, transport, and storage:

2) Condensation

Condensation forms when there is a sudden change in temperature under high temperature and high humidity conditions. Condensation will cause deterioration of the relay insulation. 3) Freezing

Condensation or other moisture may freeze on the relay when the temperature is lower than $0^{\circ} \mathrm{C} 32^{\circ}$. This causes problems such as sticking of movable parts or operational time lags.
4) Low temperature, low humidity environments
The plastic becomes brittle if the relay is exposed to a low temperature, low humidity environment for long periods of time.

TUV

Panasonic ideas for life

FEATURES

1. Compact with high contact rating Even with small 10 mm .394 inch (H) x 11 mm .433 inch (W) $\times 20 \mathrm{~mm} .787$ inch (L) (dimensions, high capacity switching is provided: 1a, 8 A 250 V AC; 2a and 1a1b, 5 A 250 V AC.
2. High switching capability High contact pressure, low contact bounce, and wiping operation improve resistance to weld bonding. Resistant against lamp load and dielectric loading: 1a achieves maximum switching capacity of 2,000 VA (8A 250 V AC).

8 A MINIATURE POWER RELAY IN DS RELAY SERIES

3. High sensitivity

Using the same type of highperformance polar magnetic circuits as DS relays, by matching the spring load to the magnetic force of attraction, greater sensitivity has been achieved. The resultant pick up sensitivity of about 190 mW makes possible direct driving of transistors and chips.
4. High breakdown voltage

Breakdown voltage has been raised by keeping the coil and contacts separate.

Between contact and coil	Between contacts
3,000 Vrms for 1 min.	$1,000 \mathrm{Vrms}$ for 1 min.
$5,000 \mathrm{~V}$ surge	
breakdown voltage	$1,500 \mathrm{~V}$ surge
breakdown voltage	

Conforms with FCC Part 68

5. Latching types available

6. Wide variation

Three types of contact arrangement are offered: 1a, 2a, and 1a1b. In addition, each is available in standard and reversed polarity types.
7. Sealed construction allows automatic washing
8. Complies with safety standards

- Complies with Japan Electrical Appliance and Material Safety Law requirements for operating 200 V power supply circuits
- Complies with UL, CSA and TÜV safety standards
- Complies with EN 60335 / GWT (test report available)

TYPICAL APPLICATIONS

1. Office and industrial electronic devices
2. Terminal devices of information processing equipment, such as printer, data recorder.
3. Office equipment (copier, facsimile)
4. Measuring instruments
5. NC machines, temperature controllers and programmable logic controllers.

About Cd-free contacts

We have introduced cadmium-free type products to reduce environmentally hazardous substances. Please replace parts that contain cadmium with Cd-free products. Evaluate them with your actual application before use because the life of a relay depends on the contact material and load.

ORDERING INFORMATION

Contact arrangement
1a: 1 Form A
1: 1 Form A 1 Form B
2a: 2 Form A
Operating function
Nil: Single side stable
L: 1 coil latching
L2: 2 coil latching
Coil voltage
DC 3, 5, 6, 9, 12, 24 V

Polarity

Nil: Standard polarity
R: Reverse polarity
Contact material

- AgSnO2 type

F: 1 Form A 1 Form B
Nil: 1 Form A, 2 Form A
Notes: 1. Reverse polarity types available (add suffix-R)
2. UL/CSA, TÜV approved type is standard.

TYPES

Contact arrangement	Nominal coil	Single side stable	1 coil latching	2 coil latching
	voltage	Part No.	Part No.	Part No.
1 Form A	3V DC	DSP1a-DC3V	DSP1a-L-DC3V	DSP1a-L2-DC3V
	5V DC	DSP1a-DC5V	DSP1a-L-DC5V	DSP1a-L2-DC5V
	6V DC	DSP1a-DC6V	DSP1a-L-DC6V	DSP1a-L2-DC6V
	9 V DC	DSP1a-DC9V	DSP1a-L-DC9V	DSP1a-L2-DC9V
	12 V DC	DSP1a-DC12V	DSP1a-L-DC12V	DSP1a-L2-DC12V
	24 V DC	DSP1a-DC24V	DSP1a-L-DC24V	DSP1a-L2-DC24V
1 Form A 1 Form B	3V DC	DSP1-DC3V-F	DSP1-L-DC3V-F	DSP1-L2-DC3V-F
	5V DC	DSP1-DC5V-F	DSP1-L-DC5V-F	DSP1-L2-DC5V-F
	6V DC	DSP1-DC6V-F	DSP1-L-DC6V-F	DSP1-L2-DC6V-F
	9 V DC	DSP1-DC9V-F	DSP1-L-DC9V-F	DSP1-L2-DC9V-F
	12 V DC	DSP1-DC12V-F	DSP1-L-DC12V-F	DSP1-L2-DC12V-F
	24V DC	DSP1-DC24V-F	DSP1-L-DC24V-F	DSP1-L2-DC24V-F
2 Form A	3V DC	DSP2a-DC3V	DSP2a-L-DC3V	DSP2a-L2-DC3V
	5V DC	DSP2a-DC5V	DSP2a-L-DC5V	DSP2a-L2-DC5V
	6V DC	DSP2a-DC6V	DSP2a-L-DC6V	DSP2a-L2-DC6V
	9V DC	DSP2a-DC9V	DSP2a-L-DC9V	DSP2a-L2-DC9V
	12 V DC	DSP2a-DC12V	DSP2a-L-DC12V	DSP2a-L2-DC12V
	24V DC	DSP2a-DC24V	DSP2a-L-DC24V	DSP2a-L2-DC24V

Standard packing: Carton: 50 pcs.; Case: 500 pcs
Note: Reverse polarity type are manufactured by lot upon receipt of order. Self-clinching types are also available, please consult us.

RATING

1. Coil data
1) Single side stable

Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating current $[\pm 10 \%]$ (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Coil resistance [$\pm 10 \%$] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating power	Max. allowable voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
3V DC	$80 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$10 \% \mathrm{~V}$ or more of nominal voltage (Initial)	100 mA	30Ω	300 mW	$130 \% \mathrm{~V}$ of nominal voltage
5 V DC			60 mA	83Ω		
6V DC			50 mA	120Ω		
9 V DC			33.3 mA	270Ω		
12 V DC			25 mA	480Ω		
24V DC			12.5 mA	1,920		

2) 1 coil latching

Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		perating nt $0^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{array}{r} \text { Coil re } \\ {[\pm 10 \%](\mathrm{a}} \end{array}$	stance $\left.20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)$	Nomina p	perating er	Max. allowable voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
			Set coil	Reset coil	Set coil	Reset coil	Set coil	Reset coil	
3V DC	$80 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$80 \% \mathrm{~V}$ or less of nominal voltage (Initial)	50 mA	50 mA	60Ω	60Ω	150 mW	150 mW	$130 \% \mathrm{~V}$ of nominal voltage
5V DC			30 mA	30 mA	167Ω	167Ω			
6 V DC			25 mA	25 mA	240Ω	240Ω			
9V DC			16.7 mA	16.7 mA	540Ω	540Ω			
12 V DC			12.5 mA	12.5 mA	960Ω	960Ω			
24V DC			6.3 mA	6.3 mA	3,840 Ω	3,840 Ω			

3) 2 coil latching

Nominal coil voltage	$\begin{aligned} & \text { Set voltage } \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		perating nt $0^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Coil re } \\ {[\pm 10 \%](\mathrm{a}} \end{gathered}$	stance $\left.0^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)$	Nomina	perating er	Max. allowable voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
			Set coil	Reset coil	Set coil	Reset coil	Set coil	Reset coil	
3V DC	$80 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$80 \% \mathrm{~V}$ or less of nominal voltage (Initial)	100mA	100 mA	30Ω	30Ω	300 mW	300 mW	$130 \% \mathrm{~V}$ of nominal voltage
5V DC			60 mA	60 mA	83Ω	83Ω			
6 V DC			50 mA	50 mA	120Ω	120Ω			
9V DC			33.3 mA	33.3 mA	270Ω	270Ω			
12 V DC			25 mA	25 mA	480Ω	480Ω			
24V DC			12.5 mA	12.5 mA	1,920	1,920			

2. Specifications

Characteristics	Item		Specifications		
Contact	Arrangement		1 Form A	1 Form A 1 Form B	2 Form A
	Initial contact resistance, max.		Max. $30 \mathrm{~m} \Omega$ (By voltage drop 6 V DC 1A)		
	Contact material		Au-flashed AgSnO_{2} type		
Rating	Nominal switching capacity (resistive load)		8 A 250 V AC, 5 A 30 V DC	5 A 250 V AC, 5 A 30 V DC	
	Max. switching power (resistive load)		2,000 VA, 150 W	1,250 VA, 150 W	
	Max. switching voltage		380 V AC, 125 V DC		
	Max. switching current		8 A AC, 5 A DC	5 A AC, DC	
	Nominal operating power		Single side stable, 2 coil latching: 300 mW . 1 coil latching: 150 mW		
	Min. switching capacity (Reference value)*1		10 m A 5 V DC		
Electrical characteristics	Insulation resistance (Initial)		Min. 1,000M Ω (at 500 V DC)Measurement at same location as "Initial breakdown voltage" section.		
	Breakdown voltage (Initial)	Between open contacts	1,000 Vrms for 1 min . (Detection current: 10 mA .)		
		Between contact sets	2,000 Vrms (1 Form A 1 Form B, 2 Form A) (Detection current: 10mA.)		
		Between contact and coil	3,000 Vrms for 1min. (Detection current: 10mA.)		
	Surge breakdown voltage*2	between contacts and coil	$5,000 \mathrm{~V}$		
	Temperature rise (at $65^{\circ} \mathrm{C} 149{ }^{\circ} \mathrm{F}$)		Max. $55^{\circ} \mathrm{C}$	Max. $40^{\circ} \mathrm{C}$	Max. $55^{\circ} \mathrm{C}$
	Operate time [Set time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 10 ms [10 ms] (Nominal voltage applied to the coil, excluding contact bounce time.)		
	Release time [Reset time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 5 ms [10 ms] (Nominal voltage applied to the coil, excluding contact bounce time.) (without diode)		
Mechanical characteristics	Shock resistance	Functional	Min. $196 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$.)		
		Destructive	$\mathrm{Min} .980 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 6 ms .)		
	Vibration resistance	Functional	10 to 55 Hz at double amplitude of 2 mm (Detection time: $10 \mu \mathrm{~s}$.)		
		Destructive	10 to 55 Hz at double amplitude of 3.5 mm		
Expected life	Mechanical		Min. 5×10^{7} (at 180 cpm)		
	Electrical		Min. 10^{5} (resistive load)		
Conditions	Conditions for operation, transport and storage*3 (Not freezing and condensing at low temperature)		Ambient temperature: $-40^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$ $-40^{\circ} \mathrm{F}$ to $+140^{\circ} \mathrm{F}$	Ambient temperature: $-40^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$ $-40^{\circ} \mathrm{F}$ to $+149^{\circ} \mathrm{F}$	Ambient temperature: $-40^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$ $-40^{\circ} \mathrm{F}$ to $+140^{\circ} \mathrm{F}$
	Solder heating		$250^{\circ} \mathrm{C} 482^{\circ} \mathrm{F}$ (10s), $300^{\circ} \mathrm{C} 572^{\circ} \mathrm{F}$ (5s), $350^{\circ} \mathrm{C} 662^{\circ} \mathrm{F}$ (3s) (Soldering depth: $2 / 3$ terminal pitch)		
	Max. operating speed		3 cps		
Unit weight			Approx. 4.5 g .16 oz		

Notes:
*1This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.
*2Wave is standard shock voltage of $\pm 1.2 \times 50 \mu$ s according to JEC-212-1981
*3Refer to "6. Usage, Storage and Transport Conditions" in AMBIENT ENVIRONMENT (page 599)

REFERENCE DATA

1. Max. switching capacity
2.-(1) Life curve (1 Form A 1 Form B)

2.-(2) Life curve (1 Form A 1 Form B)

3.-(1) Coil temperature rise (1 Form A) Tested sample: DSP1a-DC12V, 5 pcs.

4.-(1) Operate \& release time (without diode, 1 Form A)
Tested sample: DSP1a-DC12V, 5 pcs.

4.-(4) Operate \& release time (with diode, 1 Form A)
Tested sample: DSP1a-DC12V, 5 pcs.

5.-(1) Change of pick-up and drop-out voltage (1 Form A)
Tested sample: DSP1a-DC12V, 5 pcs

3.-(2) Coil temperature rise
(1 Form A 1 Form B)
Tested sample: DSP1-DC12V, 5 pcs

4.-(2) Operate \& release time
(without diode, 1 Form A 1 Form B)
Tested sample: DSP1-DC12V, 5 pcs

4.-(5) Operate \& release time (with diode, 1 Form A 1 Form B) Tested sample: DSP1-DC12V, 5 pcs.

5.-(2) Change of pick-up and drop-out voltage (1 Form A 1 Form B)
Tested sample: DSP1-DC12V, 5 pcs

3.-(3) Coil temperature rise (2 Form A) Tested sample: DSP2a-DC12V, 5 pcs.

4.-(3) Operate \& release time (without diode, 2 Form A)
Tested sample: DSP2a-DC12V, 5 pcs.)

4.-(6) Operate \& release time
(with diode, 2 Form A)
Tested sample: DSP2a-DC12V, 5 pcs.

5.-(3) Change of pick-up and drop-out voltage (2 Form A)
Tested sample: DSP2a-DC12V, 5 pcs.

6.-(1) Influence of adjacent mounting
(1 Form A)
Tested sample: DSP1a-DC12V, 5 pcs.

6.-(2) Influence of adjacent mounting (1 Form A 1 Form B)
Tested sample: DSP1-DC12V, 5 pcs.

6.-(3) Influence of adjacent mounting (2 Form A)
Tested sample: DSP2a-DC12V, 5 pcs.

DIMENSIONS(mm inch)
Interested in CAD data? You can obtain CAD data for all products with a
CAD Data
mark from your local Panasonic Electric Works representative.

1. 1 Form A type

CAD Data

Schematic (Bottom view)

2. 1 Form A 1 Form B type

3. 2 Form A type

CAD Data

2 coil latching 8-1.2 dia.

Schematic (Bottom view)

NOTES

1. Soldering should be done under the following conditions:
$250^{\circ} \mathrm{C} 482^{\circ} \mathrm{F}$ within 10 s
$300^{\circ} \mathrm{C} 572^{\circ} \mathrm{F}$ within 5 s
$350^{\circ} \mathrm{C} 662^{\circ} \mathrm{F}$ within 3 s
2. Cleaning

For automatic cleaning, the boiling method is recommended. Avoid ultrasonic cleaning which subjects the relays to high frequency vibrations, which may cause the contacts to stick. It is recommended that a fluorinated hydrocarbon or other alcoholic solvents be used.

3. External magnetic field

 Since DY relays are highly sensitive polarized relays, their characteristics will be affected by a strong external magnetic field. Avoid using the relay under that condition.
4. Coil operating power

Pure DC current should be applied to the coil. The wave form should be rectangular. If it includes ripple, the ripple factor should be less than 5\%.
However, check it with the actual circuit since the characteristics may be slightly different.
5. When using, please be aware that the a contact and b contact sides of 1 Form A and 1 Form B types may go on simultaneously at operate time and release time.

For Cautions for Use, see Relay Technical Information (page 582).

Panasonic ideas for life

ACCESSORIES

TYPES AND APPLICABLE RELAYS

Applicable relays Type No.	For DSP1a		For DSP1a, DSP1, DSP2a	
	DSP1a-PS	DSP1a-PSL2	DSP2a-PS	DSP2a-PSL2
DSP1a relays	OK	OK	OK	OK
DSP1a-L2 relays		OK		OK
DSP1 relays			OK	OK
DSP1-L2 relays				OK
DSP2a relays			OK	OK
DSP2a-L2 relays				OK

SPECIFICATIONS

Item	Specifications
Breakdown voltage	$3,000 \mathrm{Vrms}$ between terminals (Except for the portion between coil terminals)
Insulation resistance	$1,000 \mathrm{M} \Omega$ between terminals at 500 V
Heat resistance	$150^{\circ} \mathrm{C}$ for 1 hour
Max. continuous current	8 A

DIMENSIONS
(Unit: mm inch)

External dimensions

DSP1a-PS, DSP1a-PSL2

Terminal No. 2 and 15 are for DSP1a-PSL2 only.

Terminal No. 2 and 15 are for DSP2a-PSL2 only.

FIXING AND REMOVAL METHOD

1. Match the direction of relay and socket.

2. Both ends of relays are fixed so tightly that the socket hooks on the top surface of relays.

3. Remove the relay, applying force in the direction shown below.

4. In case there is not enough space for finger to pick relay up, use screw drivers in the way shown below.

Notes: 1. Exercise care when removing relays. If greater than necessary force is applied at the socket hooks, deformation may alter the dimensions so that the hook will no longer catch, and other damage may also occur.
2. It is hazardous to use IC chip sockets.

10A MINIATURE

 POWER RELAY FOR INDUCTIVE LOADS
FEATURES

1. Compact size:

1 Form A (10A 250V AC),
1 Form A 1 Form B (8A 250V AC)
2. Latching types available
3. Compliant with IEC EN61010-1. Reinforced insulation with 6 mm distance between input and output.
4. Electrical life of Min. 2×10^{5} times
(1 Form A type) realized with inductive load ($\cos \varphi=0.4, L / R=7 \mathrm{~ms}$,
5A 250V AC)
5. Socket also available.

Product name		Part No.
1 Form A	Single side stable type	DK1a-PS
	2 coil latching type	DK1a-PSL2
1 Form A	Single side stable type	DK2a-PS
1 Form B	2 coil latching type	DK2a-PSL2
Please see "DK relay socket" for details.		

ORDERING INFORMATION

Note: UL/CSA, TÜV approved type is standard.

TYPES

Contact arrangement	Nominal coil	Single side stable	2 coil latching
	voltage	Part No.	Part No.
1 Form A	3V DC	ADY10003	ADY12003
	5 V DC	ADY10005	ADY12005
	6 V DC	ADY10006	ADY12006
	12 V DC	ADY10012	ADY12012
	24 V DC	ADY10024	ADY12024
1 Form A 1 Form B	3V DC	ADY30003	ADY32003
	5 V DC	ADY30005	ADY32005
	6 V DC	ADY30006	ADY32006
	12 V DC	ADY30012	ADY32012
	24V DC	ADY30024	ADY32024

[^16]
RATING

1. Coil data
1) Single side stable

Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$	$\begin{gathered} \text { Coil resistance } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$	Nominal operating power	Max. allowable voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
3V DC	$70 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$10 \% \mathrm{~V}$ or more of nominal voltage (Initial)	66.6 mA	45Ω	200 mW	$130 \% \mathrm{~V}$ of nominal voltage
5V DC			40 mA	125Ω		
6V DC			33.3 mA	180Ω		
12 V DC			16.6 mA	720Ω		
24V DC			8.3 mA	2,880		

2) 2 coil latching

Nominal coil voltage	$\begin{aligned} & \text { Set voltage } \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		perating nt $0^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{array}{r} \text { Coil re } \\ {[\pm 10 \%] \text { (at }} \end{array}$	stance $0^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nomina po	perating er	Max. allowable voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
			Set coil	Reset coil	Set coil	Reset coil	Set coil	Reset coil	
3V DC	$70 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$70 \% \mathrm{~V}$ or less of nominal voltage (Initial)	66.6 mA	66.6 mA	45Ω	45Ω	200 mW	200 mW	$130 \% \mathrm{~V}$ of nominal voltage
5V DC			40 mA	40 mA	125Ω	125Ω			
6V DC			33.3 mA	33.3 mA	180Ω	180Ω			
12V DC			16.6 mA	16.6 mA	720Ω	720Ω			
24V DC			8.3 mA	8.3 mA	2,880 2	2,880			

2. Specifications

Characteristics	Item		Specifications	
Contact	Arrangement		1 Form A	1 Form A 1 Form B
	Initial contact resistance, max.		Max. $30 \mathrm{~m} \Omega$ (By voltage drop 6 V DC 1A)	
	Contact material		Au -flashed AgSnO_{2} type	
Rating	Nominal switching capacity	Resistive load	10A 250V AC, 10A 30V DC	8A 250V AC, 8A 30V DC
		Inductive load $(\cos \phi=0.4, \mathrm{~L} / \mathrm{R}=7 \mathrm{~ms})$	5A 250V AC	3.5 A 250 V AC
	Max. switching capacity (Reference value)	Resistive load	2,500V A, 300W	2,000V A, 240W
		Inductive load $(\cos \phi=0.4, \mathrm{~L} / \mathrm{R}=7 \mathrm{~ms})$	1,250V A	875 V A
	Max. switching voltage		250V AC, 30V DC	
	Max. switching current		10 A	8 A
	Min. switching capacity (Reference value)**		5 V 10 mA	
	Nominal operating power		200 mW	
Electrical characteristics	Insulation resistance (Initial)		Min. $1,000 \mathrm{M} \Omega$ (at 500 V DC) Measurement at same location as "Initial breakdown voltage" section.	
	Breakdown voltage (Initial)	Between open contacts	1,000 Vrms for 1 min . (Detection current: 10 mA)	
		Between contact and coil	$4,000 \mathrm{Vrms}$ for 1 min . (Detection current: 10 mA)	
	Surge breakdown voltage"2	Between contact and coil	10,000 V (initial)	
	Temperature rise (at $70^{\circ} \mathrm{C} 158^{\circ} \mathrm{F}$)		Max. $40^{\circ} \mathrm{C}$ (By resistive method, nominal voltage applied to the coil; max. switching current)	
	Operate time [Set time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 10 ms [10 ms] (Nominal voltage applied to the coil, excluding contact bounce time.)	
	Release time [Reset time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 8 ms [10 ms] (Nominal voltage applied to the coil, excluding contact bounce time.) (without diode)	
Mechanical characteristics	Shock resistance	Functional	Min. $98 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$.)	
		Destructive	Min. $980 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 6 ms .)	
	Vibration resistance	Functional	10 to 55 Hz at double amplitude of 1.5 mm (Detection time: $10 \mu \mathrm{~s}$.)	
		Destructive	10 to 55 Hz at double amplitude of 3 mm	
Expected life	Mechanical		Min. 5×10^{7} (at 300 cpm)	
	Electrical		Min. 2×10^{5} : 1 Form A inductive load (at 20 cpm) (at rated load); Min. 105: 1 Form A resistive load,1 Form A 1 Form B resistive load, 1 Form A 1 Form B inductive load (at 20 cpm) (at rated load)	
Conditions	Conditions for operation, transport and storage*3		Ambient temperature: $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+158^{\circ} \mathrm{F}$; Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature)	
	Max. operating speed (at rated load)		20 cpm	
Unit weight			Approx. 6g . 210 z	

[^17]
DY

REFERENCE DATA

1-(1). Maximum switching capacity (1 Form A)
Tested sample: ADY10024

3-(1). Coil temperature rise
(1 Form A)
Tested sample: ADY10024, 6 pcs.
Ambient temperature: $20^{\circ} \mathrm{C}, 68^{\circ} \mathrm{F}$

1-(2). Maximum switching capacity
(1 Form A 1 Form B)
Tested sample: ADY30024

3-(2). Coil temperature rise
(1 Form A 1 Form B)
Tested sample: ADY30024, 6 pcs.
Ambient temperature: $20^{\circ} \mathrm{C}, 68^{\circ} \mathrm{F}$

2. Life curve (1 Form A, 1 Form A 1 Form B) Tested sample: ADY10024 (1 Form A), ADY30024 (1 Form A 1 Form B)

4-(1). Ambient temperature characteristics (1 Form A)
Tested sample: ADY10024, 6 pcs.
Ambient temperature: $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $158^{\circ} \mathrm{F}$

4-(2). Ambient temperature characteristics

 (1 Form A 1 Form B)Tested sample: ADY30024, 6 pcs.
Ambient temperature: $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $158^{\circ} \mathrm{F}$

DIMENSIONS(mm inch)
Interested in CAD data? You can obtain CAD data for all products with a
CAD Data
mark from your local Panasonic Electric Works representative.

1. 1 Form A type
CAD Data

External dimensions
Single side stable type

2 coil latching type

General tolerance: $\pm 0.3 \pm .012$

PC board pattern
(BOTTOM VIEW)
Single side stable type

2 coil latching type
2-0.9 dia.
$2-0.9 \mathrm{dia}$.
$2-.035 \mathrm{dia}$

Schematic (BOTTOM VIEW)
Single side stable

2 coil latching type

Since this is a polarized relay, the connection to the coil should be done according to the above schematic.

2. 1 Form A 1 Form B type

CAD Data

Single side stable type

2 coil latching type

General tolerance: $\pm 0.3 \pm .012$

PC board pattern (BOTTOM VIEW)
Single side stable type

2 coil latching type
2-0.9 dia.

Tolerance: $\pm 0.1 \pm .004$

Schematic (BOTTOM VIEW)
Single side stable

(Deenergized condition)

2 coil latching type

(Reset condition)
Since this is a polarized relay, the connection to the coil should be done according to the above schematic.

DY

NOTES

1. Soldering should be done under the following conditions:
$250^{\circ} \mathrm{C} 482^{\circ} \mathrm{F}$ within 10 s
$300^{\circ} \mathrm{C} 572^{\circ} \mathrm{F}$ within 5 s
$350^{\circ} \mathrm{C} 662^{\circ} \mathrm{F}$ within 3 s
Soldering depth: $2 / 3$ terminal pitch
2. External magnetic field

Since DY relays are highly sensitive polarized relays, their characteristics will be affected by a strong external magnetic field. Avoid using the relay under that condition.
3. When using, please be aware that the A contact and B contact sides of 1 Form A and 1 Form B types may go on simultaneously at operate time and release time.

For Cautions for Use, see Relay Technical Information (page 582).

Panasonic ideas for life

80A Connector type

300A Connector type

FEATURES

1. High-voltage, high-current control capable
400V DC high-voltage switching cutoff has been achieved thanks to a sealed construction with mixed hydrogen gas and the magnetic arc motion through use of a permanent magnet.
2. Compact \& Low Operating Sound

By using a capsule contact mechanism that is enclosed with hydrogen gas, highcapacity cutoff is possible even with a tiny contact gap. There is little operating sound, which does not change even when large currents are cut off.

3. Arc space unnecessary

The enclosure box can be made smaller thanks to an arc-space-free construction beyond which the arc will not go.

4. Safety

Since the contacts are enclosed in a sealed capsule structure, beyond which the arc will not go, safety is ensured.
5. High contact reliability

The contact part is hermetically sealed with H_{2} mixed gas, hence the contact resistance remains stable regardless of the ambient conditions.
6. Mounting direction is not specified The weight of the movable parts is light, and also the restoring force is large, hence the relay is relatively unaffected by gravity.
7. Wide selection of models available. Types include PC board type, TM type (10A), screw terminal type (60A), and connector type (80A and 300A).

8. Standard compliance

The 60A type is UL and C-UL standard certified.

TYPICAL APPLICATIONS

1. Cogeneration systems
2. Battery inspection and testing equipment (charge and discharge control)
3. Construction machinery
4. AGV (Automatic guided vehicle)
(Unmanned transport carts)
5. Welding equipment
6. Inverter control
7. Solar power generation systems
8. Elevator, etc.

ORDERING INFORMATION

AEP	0
EP Relay	
Contact arrangement 1: 1 Form A 3: 1 Form A PC board type* 5: 1 Form A TM type*	
Contact rating 1: 10A 6: 60A 8: 80A 9: 300A	
Coil voltage 12: 12V DC 24: 24V DC 48: 48V DC* X0: 100V DC*	

[^18]
TYPES

Ttpe	Nominal coil voltage	Contact arrangement	Part No.	Packing quantity	
				Carton	Case
10A PC board type	12 V DC	1 Form A	AEP31012	25pcs.	100pcs.
10A TM type			AEP51012	25pcs.	100pcs.
60A			AEP16012	1pc.	20 pcs .
80A Connector type*			AEP18012	1pc.	20 pcs .
300A Connector type*			AEP19012	1pc.	5 pcs .
10A PC board type	24 V DC		AEP31024	25pcs.	100pcs.
10A TM type			AEP51024	25pcs.	100pcs.
60A			AEP16024	1pc.	20 pcs .
80A Connector type*			AEP18024	1pc.	20pcs.
300A Connector type*			AEP19024	1pc.	5 pcs .
10A PC board type	48 V DC		AEP31048	25pcs.	100pcs.
10A TM type			AEP51048	25 pcs .	100pcs.
10A PC board type	100V DC		AEP310X0	25pcs.	100pcs.
10A TM type			AEP510X0	25pcs.	100pcs.

Notes: * One female connector lead wire for connecting is packaged with the 80A and 300A connector types.
-Specifications: Housing: Yazaki 7283 -1020 (light gray); Lead wire: $0.5 \mathrm{~mm}^{2}$ dia. and $300 \pm 10 \mathrm{~mm}$ length Lead wire coating color: Pin No. 1: white; Pin No. 2: green

RATING

1. Coil data

Type	Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal coil current [$\pm 10 \%$] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating power (Nominal voltage applied to the coil, at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Max. allowable voltage
10A	12V DC	$75 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$8 \% \mathrm{~V}$ or more of nominal voltage (Initial)	0.103A	Max.1.4W	$130 \% \mathrm{~V}$ of nominal voltage
60A				0.415A	Max. 5W	
80A				0.375A	Max. 5W	
300A				3.3A (during peak)	When input: 40 W max. (0.1 sec . from time of input) When retained: 4 W max.	
10A	24 V DC			0.052A	Max.1.4W	
60A				0.208A	Max. 5W	
80A				0.188A	Max. 5W	
300A				1.85A (during peak)	When input: 45 W max. (0.1 sec . from time of input) When retained: 4 W max.	
10A	48 V DC			0.026A	Max.1.4W	
10A	100V DC			0.012A		

[^19]
2. Specifications

Characteristics	Item		Specifications			
			10A type	60A type	80A type	300A type
Rating	Arrangement		1 Form A	1 Form A	1 Form A	1 Form A
	Nominal switching capacity (resistive load)		10A 400V DC	60 A 400 V DC	80A 400V DC	300A 400V DC
	Short term current		$\begin{aligned} & \text { 15A (2min), } \\ & 30 \mathrm{~A}(30 \mathrm{~s}) \end{aligned}$	120A (15min) (harness wire: $15 \mathrm{~mm}^{2}$)		$\begin{aligned} & \text { 400A }(10 \mathrm{~min}) \text { (harness } \\ & \text { wire: } 100 \mathrm{~mm}^{2} \text {) } \\ & \hline \end{aligned}$
	Max. cut-off current		-	600A 300V DC (5 cycles) ${ }^{* 1}$	$\begin{array}{\|l} \hline \begin{array}{l} 800 \mathrm{~A} 300 \mathrm{~V} \\ (1 \text { cycle) })^{41} \end{array} \\ \hline \end{array}$	2,500A 300V DC (3 cycles) ${ }^{2}$
	Overload opening/closing rating		30A 400V DC (Min. 50 cycles)* ${ }^{*}$	180A 400V DC (Min. 100 cycles) ${ }^{+1}$	120A 400 V DC (Min. 50 cycles) ${ }^{* 1}$	600A 400V DC (Min. 300 cycles)
	Reverse cut-off current		$\begin{array}{\|l\|} \hline-10 \mathrm{~A} 200 \mathrm{~V} \text { DC } \\ \left(\text { Min. } 2.5 \times 10^{4} \text { cycles) }{ }^{* 1}\right. \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline-60 \mathrm{~A} 200 \mathrm{~V} \text { DC } \\ \text { (Min. 1,000 cycles)* } \\ \hline \end{array}$	-120A 200V DC (Min. 50 cycles) ${ }^{* 1}$	-300A 200 V DC (Min. 100 cycles)
	Min. switching capacity		1A 6V DC	-	-	-
	Contact voltage drop		Max. 0.5V	Max. 0.1V	Max. 0.067 V (By voltage drop 6V DC 20A)	Max. 0.06V
Electrical characteristics	Insulation resistance (Initial)		Min. 100M Ω (at 500V DC) Measurement at same location as "Initial breakdown voltage" section.			
	Breakdown voltage (Initial)	Between open contacts	2,500 Vrms for 1 min . (Detection current: 10mA.)			
		Between contact and coil	2,500 Vrms for 1 min . (Detection current: 10 mA .)			
	Operate time (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 50ms (Nominal voltage applied to the coil, excluding contact bounce time.)			Max. 30ms (Nominal voltage applied to the coil, excluding contact bounce time.)
	Release time (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 30ms (After the nominal operation voltage stops)			Max. 10ms (After the nominal operation voltage stops)
Mechanical characteristics	Shock resistance	Functional	Min. $196 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$.)			
		Destructive	Min. $490 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 6 ms .)			
	Vibration resistance	Functional	10 to 200 Hz , acceleration $43 \mathrm{~m} / \mathrm{s}^{2}$ constant (Detection time: $10 \mu \mathrm{~s}$.)			
		Destructive	10 to 200 Hz , acceleration $43 \mathrm{~m} / \mathrm{s}^{2}$ constant (3 directions, each 4 hours)			
	Mechanical		Min. 10^{5}	Min. 2×10^{5}		
Expected life	Electrical		$\begin{array}{\|l} \hline 7.5 \times 10^{4} \\ 10 \mathrm{~A} 400 \mathrm{~V} C^{* 2} \\ \mathrm{~L} / \mathrm{R} \leqq 1 \mathrm{~ms} \end{array}$	$\begin{array}{\|l} \hline 3 \times 10^{3} \\ 60 \mathrm{~A} 400 \mathrm{VC}{ }^{* 2} \\ \mathrm{~L} / \mathrm{R} \leqq 1 \mathrm{~ms} \end{array}$	$\begin{array}{\|l} \hline 10^{3} \\ 80 \mathrm{~A} 400 \mathrm{~V} \mathrm{DC}^{\star 2} \\ \mathrm{~L} / \mathrm{R} \leqq 1 \mathrm{~ms} \end{array}$	$\begin{array}{\|l} \hline 10^{3} \\ 300 \mathrm{~A} 400 \mathrm{~V} D \mathrm{DC} \\ \mathrm{~L} / \mathrm{R} \leqq 1 \mathrm{~ms} \end{array}$
Conditions	Conditions for operation, transport and storage*3		Ambient temperature: $-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+176^{\circ} \mathrm{F}$ (Storage: Max. $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$), Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature)			
Unit weight			Approx. 80 g 2.820 zz	Approx. $340 \mathrm{~g} \mathrm{12.000z}$	Approx. $400 \mathrm{~g} \mathrm{14.110z}$	Approx. 750 g 26.460 z

Notes
*1 Conditions: Varistor used for coil surge absorption. Note: If a diode is used the life will be lower.
*2Condition: Switches rated number of 10 cycles each time there is a $2,500 \mathrm{~A}$ cutoff.
*3The upper operation ambient temperature limit is the maximum temperature that can satisfy the coil temperature rise value. Refer to " 6 . Usage, Storage and Transport Conditions" in AMBIENT ENVIRONMENT (page 599).

REFERENCE DATA

1.-(1) Ambient temperature characteristics (10A type)
Tested sample: 10A type EP relay, 3pcs

1.-(2) Ambient temperature characteristics (60A type)
Tested sample: 60A type EP relay, 3pcs

1.-(3) Ambient temperature characteristics (80A type)
Tested sample: 80A type EP relay, 3pcs

EP
1.-(4) Ambient temperature characteristics (300A type)
Tested sample: 300A type EP relay, 3pcs

2.-(1) Max. value for switching capacity (10A and 60A types)

2.-(2) Max. value for switching capacity (80A and 300A types)

3.-(1) Switching life curve (10A type)

3.-(2) Switching life curve (60A type)

3.-(3) Switching life curve (80A type)

3.-(4) Switching life curve (300A type)

4. Cut-off curve (forward direction)

5.-(1) Carrying performance curve $\left(80^{\circ} \mathrm{C}\right)$ (10A and 60A types)

5.-(2) Carrying performance curve $\left(80^{\circ} \mathrm{C}\right)$ (80A and 300A types)

DIMENSIONS (mm inch) Interested in CAD data? You can obtain CAD data for all products with a CAD Data mark from your local Panasonic Electric Works representative.

1. 10A PC board type

CAD Data External dimensions

Schematic (Bottom view)

Load sides have polarities (+) and (-).

PC board pattern (Bottom view)

Notes: 1. We recommend through-hole plating with land on both sides.
2. Be careful of the insulation distance between land patterns with regards to the circuit voltage you will use.

General tolerance:

Max. $10.394 \pm 0.3 \pm .012$
10.394 to $501.969 \pm 0.6 \pm .024$

Min. $501.969 \pm 1.0 \pm .039$

2. 10A TM type

CAD Data External dimensions

Schematic (Top view)

Load sides have polarities (+) and (-).
Panel cut-off

General tolerance:

Max. $10.394 \pm 0.3 \pm .012$
10.394 to $501.969 \pm 0.6 \pm .024$

Min. $501.969 \pm 1.0 \pm .039$

CAD Data External dimensions

Schematic (Top view)

Load side has polarities (+) and ($(-)$.

Panel cut-off

General tolerance:

Max. $10.394 \pm 0.3 \pm .012$
10.394 to $501.969 \pm 0.6 \pm .024$

Min. $501.969 \pm 1.0 \pm .039$

4. 80A type

CAD Data External dimensions

Schematic (Top view)

Panel cut-off

*Accessories (included)

General tolerance:

Max. 10 .394: $\pm 0.3 \pm .012$
10.394 to 50 1.969: $\pm 0.6 \pm .024$

Min. 50 1.969: $\pm 1.0 \pm .039$

5. 300A type

CAD Data External dimensions

Schematic (Top view)

Input and load sides have polarities (+) and (-).

*Accessories (included)

General tolerance:

Max. 10 .394: $\pm 0.3 \pm .012$
10.394 to 50 1.969: $\pm 0.6 \pm .024$

Min. 50 1.969: $\pm 1.0 \pm .039$

NOTES

1. When installing the relay, always use washers to prevent the screws from loosening.
Tighten each screw within the rated range given below. Exceeding the maximum torque may result in breakage.
Mounting is possible in either direction.

- M5 screw (60A, 80A and 300A main unit mounting section): 3 to $4 \mathrm{~N} \cdot \mathrm{~m}$
- M3.5 screw (60A input terminal): 0.84 to $1.2 \mathrm{~N} \cdot \mathrm{~m}$
- M4 screw (10A PC board type main unit mounting section): 0.98 to $1.2 \mathrm{~N} \cdot \mathrm{~m}$ (10A TM type main unit mounting section): 1.8 to $2.7 \mathrm{~N} \cdot \mathrm{~m}$
Recommended securing torque on load side terminals
- 60A/M5 screw: 2.5 to $3.6 \mathrm{~N} \cdot \mathrm{~m}$
- 80A/M5 bolt: 3.5 to $6.5 \mathrm{~N} \cdot \mathrm{~m}$
-300A/M8 bolt: 10 to $12 \mathrm{~N} \cdot \mathrm{~m}$

2. The contacts of the relay are polarized. Please follow instructions in the connection schematic when connecting the contacts.
We recommend installing a surge protector varistor (ZNR) for the 10A , 60A and 80A types. Avoid using a diode as this may result in decreased cut-off capability.
3. Do not use a relay if it has been dropped.
4. Avoid mounting the relay in strong magnetic fields (near a transformer or magnet) or close to an object that radiates heat.

5. Electrical life

This relay is a high-voltage direct-current switch. In its final breakdown mode, it may lose the ability to provide the proper cut-off. Therefore, do not exceed the indicated switching capacity and life.
(Please treat the relay as a product with limited life and replace it when necessary.)
In the event that the relay loses cut-off ability, there is a possibility that burning may spread to surrounding parts, so configure the layout so that the power is turned off within one second and from the point of view of safety, consider installing a failsafe circuit in the device.
Also, in order to avoid increased contact resistance, do not operate when there is no switching load.

6. Permeation life of internal gas

This relay uses a hermetically encased contact (capsule contact) with gas inside. The gas has a permeation life that is affected by the temperature inside the
capsule contact (ambient temperature + temperature rise due to flow of electrical current). For this reason, make sure the ambient operating temperature is between -40 and $80^{\circ} \mathrm{C}-40$ and $+176^{\circ} \mathrm{F}$, and the ambient storage temperature is between -40 and $85^{\circ} \mathrm{C}-40$ and $+185^{\circ} \mathrm{F}$. 7. Do not disassemble the relay. Please note that disassembling the relay will invalidate the warranty. 8. If the power is turned off and then immediately on after applying the rated voltage (current) continuously to the relay's coil and contact, the resistance of the coil will increase due to a rise in the coil temperature. This causes the pick-up voltage to rise, and possibly exceed the rated pick-up voltage. In these circumstances, take measures such as reducing the load current, limiting the duration of current flow, and applying a coil voltage higher than the rated operating voltage.

9. Coil operating power

Pure DC current should be applied to the coil. The wave form should be rectangular. If it includes ripple, the ripple factor should be less than 5%. However, check the actual circuit since the characteristics may be slightly different. The power supply waveform supplied to the coil should be rectangular.
10. Don't exceed maximum coil voltage. Exceeding maximum allowable coil voltage on continuous basis will damage the relay and could case failure.
11. Ensure that the rated contacts voltage and current values are not exceeded.
12. The rated control capacity and life are given as general guides.
The contact life is heavily influenced by the type of load and other related conditions, and these factors must be kept in consideration when using the relay.
13. Main contact ratings in the ratings apply to when there is a resistive load. If you are using an inductive load (L load) such that $L / R>1 \mathrm{~ms}$, add surge protection in parallel with the inductive load. If this is not done, the electrical life will decrease and cut-off failure may occur.
14. Be careful that foreign matter and oils and fats kind don't stick to the main terminal parts because it is likely to cause terminal parts to give off
unusual heat. Also, please use the following materials for connected harnesses and bus bars.

- 10A TM type: Faston terminal for \#187 tab terminal, 0.5 mm board thickness (JIS C2809-1992 compliant, flat type connection terminal)
Harness nominal cross-sectional area
Load input terminal: min. $2.0 \mathrm{~mm}^{2}$
Coil input terminal: min. $0.3 \mathrm{~mm}^{2}$
-60A and 80A types: Min. 14mm² nominal cross sectional area
-300A type: Min. $100 \mathrm{~mm}^{2}$ nominal cross sectional area

15. Use 40 N to 70 N of force as a guide to fasten the terminal connected to the 10A TM type. Please use caution when inserting or removing the terminal as the relay tab terminal may cause injuly.
16. Place the PC board mount type (10A PC board type) securely by hand soldering after attaching it using M4 screw. Don't submerge assembled board in cleaning solvent or water. Also, be careful not let flux overflow up from the PC board or adhere to the base of the relay.
Recommended hand soldering conditions

- Soldering iron: 30 to 60 W
- Tip temperature: $400^{\circ} \mathrm{C} 752^{\circ} \mathrm{F}$
- Solder time: within approx. 5 seconds

17. Make sure the power is turned off when wiring.
18. Incorrect wiring may cause unexpected malfunction and failure.
19. Regarding AC cutoff, although there is no contact polarity, generally it is thought that the electrical life will shorten due to cutoff in the reverse direction, compared to DC cutoff. Confirm electrical life using actual load. In the case of DC cut-off, please note the contact polarity.
20. Lead-free solder (tin, silver and copper) is used as pre-solder for the terminals of the PC board mount type (10A PC board type).
21. The warranted tensile strength of the female connector lead wire used for connection that comes with the 80A and 300A connector type when attaching it to the relay body is 100 N . Avoid excessive tension as this is a cause of broken wires and damage. Also, insert the female connector deeply and make sure the connection is secure.

For Cautions for Use, see Relay Technical Information (page 582).

Panasonic ideas for life

FEATURES

1. Compact with high sensitivity The high-efficiency polarized electromagnetic circuits of the 4-gap balanced armature and our exclusive spring alignment method achieves, with high-sensitivity in a small package, a relay that can be directly controlled by a driver chip.
2. Strong resistance to vibration and shock
Use of 4G-BA technology realizes strong resistance to vibration and shock.

4 A CAPACITY, THE VARIETY OF CONTACT ARRANGEMENTS

3. High reliability and long life

 Our application of 4G-BA technology, along with almost perfectly complete twin contact, ensures minimal contact bounce and high reliability.4. Ability to provide wide-ranging control
Use of 4G-BA technology with goldclad silver alloy contacts in a twin contact structure enables control across a broad range from microcurrents of $100 \mu \mathrm{~A} 100 \mathrm{mV}$ DC to 4 A 250 V AC.
5. Latching types available With 4G-BA technology, as well as single side stable types, convenient 2 coil latching types for circuit memory applications are also available.
6. Wide variety of contact formations available
The compact size of the 4G-BA mechanism enables the provision of many kinds of package, including 2a2b, 3a1b, and 4a. These meet your needs across a broad range of applications.
7. Low thermal electromotive force relay
High sensitivity (low power consumption) is realized by 4G-BA technology. Separation of the coil and spring sections has resulted in a relay with extremely low levels of thermal electromotive force (approx. $0.3 \mu \mathrm{~V}$).
8. DIL terminal array Deployed to fit a 2.54 mm .100 inch grid, the terminals are presented in DIL arrays which match the printed circuit board terminal patterns commonly in international use.
9. Relays that push the boundaries of relay efficiency
High-density S relays take you close to the limits of relay efficiency.

TYPICAL APPLICATIONS

Telecommunications equipment, data processing equipment, facsimiles, alarm equipment, measuring equipment.

4-GAP BALANCED ARMATURE MECHANISM

1. Armature mechanism has excellent resistance to vibration and shock

 The armature structure enables free rotation around the armature center of gravity. Because the mass is maintained in balance at the fulcrum of the axis of rotation, large rotational forces do not occur even if acceleration is applied along any vector. The mechanism has proven to have excellent resistance to vibration and shock. All our S relays are based on this balanced armature mechanism, which is able to further provide many other characteristics.
2. High sensitivity and reliability provided by 4-gap balanced armature

 mechanismAs a (polarized) balanced armature, the S relay armature itself has two permanent magnets. Presenting four interfaces, the armature has a 4-gap structure. As a result, the rotational axis at either end of the armature is symmetrical and, in an energized into a polarized state, the twin magnetic armature interfaces are subject to repulsion on one side and attraction on the other. This mechanism, exclusive to

Panasonic Electric Works, provides a highly efficient polarized magnetic circuit structure that is both highly sensitive and has a small form factor. Moreover, suitability for provision with many types of contact array and other advantages promise to make it possible to provide many of the various characteristics that are coming to be demanded of relays.

HOW IT WORKS (single side stable type)

Abstract

1) When current is passed through the coil, the yoke becomes magnetic and polarized. 2) At either pole of the armature, repulsion on one side and attraction on the other side is caused by the interaction of the poles and the permanent magnets of the armature.

3) At this time, opening and closing operates owing to the action of the simultaneously moulded balanced armature mechanism, so that when the force of the contact breaker spring closes the contact on one side, on the other side, the balanced armature opens the contact (2a2b).

ORDERING INFORMATION

| | |
| :--- | :--- | :--- | :--- |
| Contact arrangement | |
| 2: 2 Form A 2 Form B | |
| 3: 3 Form A 1 Form B | |
| 4: 4 Form A | |
| Operating function | |
| Nil: Single side stable | |
| L: 1 coil latching | |
| L2: 2 coil latching | |
| Coil voltage (DC) | |
| 3, 5, 6, 12, $24,48 \mathrm{~V}$ | |

Note: UL/CSA approved type is standard.

TYPES

Contact arrangement	Nominal coil voltage	Single side stable	1 coil latching	2 coil latching
		Part No.	Part No.	Part No.
2 Form A 2 Form B	3V DC	S2-3V	S2-L-3V	S2-L2-3V
	5V DC	S2-5V	S2-L-5V	S2-L2-5V
	6V DC	S2-6V	S2-L-6V	S2-L2-6V
	12V DC	S2-12V	S2-L-12V	S2-L2-12V
	24V DC	S2-24V	S2-L-24V	S2-L2-24V
	48 V DC	S2-48V	S2-L-48V	S2-L2-48V
3 Form A 1 Form B	3V DC	S3-3V	S3-L-3V	S3-L2-3V
	5 V DC	S3-5V	S3-L-5V	S3-L2-5V
	6 V DC	S3-6V	S3-L-6V	S3-L2-6V
	12 V DC	S3-12V	S3-L-12V	S3-L2-12V
	24V DC	S3-24V	S3-L-24V	S3-L2-24V
	48 V DC	S3-48V	S3-L-48V	S3-L2-48V
4 Form A	3V DC	S4-3V	S4-L-3V	S4-L2-3V
	5V DC	S4-5V	S4-L-5V	S4-L2-5V
	6V DC	S4-6V	S4-L-6V	S4-L2-6V
	12 V DC	S4-12V	S4-L-12V	S4-L2-12V
	24V DC	S4-24V	S4-L-24V	S4-L2-24V
	48 V DC	S4-48V	S4-L2-48V	S4-L2-48V

Standard packing: Tube: 50 pcs.; Case: 500 pcs.

RATING

1. Coil data

1) Single side stable

Type	Nominal coil voltage	$\begin{gathered} \text { Pick-up } \\ \text { voltage } \\ \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{gathered}$	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating current [$\pm 10 \%$] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{aligned} & \text { Coil resistance } \\ & {[\pm 10 \%]} \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Nominal operating power	Coil inductance	Max. allowable voltage (at $40^{\circ} \mathrm{C} 104^{\circ} \mathrm{F}$)
Standard	3V DC	$70 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$10 \% \mathrm{~V}$ or more of nominal voltage (Initial)	66.7 mA	45Ω	200 mW	Approx. 23 mH	5.5 V DC
	5V DC			38.5 mA	130Ω	192 mW	Approx. 65 mH	9.0 V DC
	6V DC			33.3 mA	180Ω	200 mW	Approx. 93mH	11.0 V DC
	12 V DC			16.7 mA	720Ω	200 mW	Approx. 370 mH	22.0 V DC
	24 V DC			8.4 mA	2,850	202 mW	Approx. 1,427mH	44.0 V DC
	48 V DC			5.6 mA	8,500 Ω	271 mW	Approx. $3,410 \mathrm{mH}$	75.0 V DC

2) 1 coil latching

Type	Nominal coil voltage	$\begin{gathered} \text { Pick-up } \\ \text { voltage } \\ \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{gathered}$	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating current $[\pm 10 \%$] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{aligned} & \text { Coil resistance } \\ & {[\pm 10 \%]} \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Nominal operating power	Coil inductance	Max. allowable voltage (at $40^{\circ} \mathrm{C} 104^{\circ} \mathrm{F}$)
Standard	3V DC	$70 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$10 \% \mathrm{~V}$ or more of nominal voltage (Initial)	33 mA	90Ω	99 mW	Approx. 0.04 mH	8.4V DC
	5V DC			16 mA	300Ω	80 mW	Approx. 0.14 mH	15.3V DC
	6V DC			16 mA	360Ω	96 mW	Approx. 0.14 mH	16.8 V DC
	12 V DC			8 mA	1450Ω	96 mW	Approx. 0.6 mH	33.7 V DC
	24 V DC			4 mA	5,700	96 mW	Approx. 2.05 mH	66.7 V DC
	48 V DC			3 mA	16,000	144mW	Approx. 8.9 mH	111 V DC

3) 2 coil latching

Type	Nominal coil voltage		$\begin{aligned} & \text { Set voltage } \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating current $[\pm 10 \%$] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		$\begin{gathered} \text { Coil resistance } \\ {[\pm 10 \%]} \\ \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \\ \hline \end{gathered}$		Nominal operating power (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Coil inductance		Max. allowable voltage (at $40^{\circ} \mathrm{C} 104^{\circ} \mathrm{F}$)		
			Set coil		$\begin{aligned} & \text { Rese } \\ & \text { coil } \end{aligned}$	Set coil	Reset coil	Set coil	Reset coil	Set coil	Reset coil				
Standard	3V DC			$70 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$70 \% \mathrm{~V}$ or less of nominal voltage (Initial)	66.7 mA	66.7 m	45Ω	45Ω	200mW	200 mW	Approx. 10 mH	Approx. 10 mH	5.5V DC	
	5V DC		38.5 mA			38.5 m	130Ω	130Ω	192mW	192mW	Approx. 31 mH	Approx. 31 mH	9.0V DC		
	6V DC		33.7 mA			33.7m	180Ω	180Ω	200 mW	200 mW	Approx. 40 mH	Approx. 40 mH	11.0 V DC		
	12V DC		16.7 mA			16.7 m	720Ω	720Ω	200 mW	200 mW	Approx. 170 mH	Approx. 170 mH	22.0 V DC		
	24 V DC		8.4 mA			8.4 m	2,850 Ω	2,850	202mW	202 mW	Approx. 680mH	Approx. 680 mH	44.0 V DC		
	48 V DC		7.4 mA			7.4 m	6,500 Ω	6,500	355 mW	355 mW	Approx. $1,250 \mathrm{mH}$	Approx. $1,250 \mathrm{mH}$	65.0V DC		
2. Specifications															
Characteristics		Item					Specifications								
Contact	Arrangement						2 Form A 2 Form B, 3 Form A 1 Form B, 4 Form A								
	Initial contact resistance, max.						Max. $50 \mathrm{~m} \Omega$ (By voltage drop 6 V DC 1A)								
	Electrostatic capacitance (initial)						Approx. 3pF								
	Contact material						Au clad Ag alloy (Cd free)								
	Thermal electromotive force (at nominal coil voltage) (initial)						Approx. $3 \mu \mathrm{~V}$								
Rating		Nominal switching capacity (resistive load)					4 A 250 V AC, 3 A 30 V DC								
		Max. switching power (resistive load)					1,000 VA, 90 W								
		Max. switching voltage					$250 \mathrm{~V} \mathrm{AC}, 48 \mathrm{~V}$ DC (30 to 48 V DC at less than 0.5 A)								
		Max. switching current					4 A (AC), 3 A (DC)								
		Minimum operating power					100 mW (Single side stable, latching)								
		Nominal operating power					200 mW (Single side stable, latching)								
		Min. switching capacity (Reference value) ${ }^{+1}$				$100 \mu \mathrm{~A} 100 \mathrm{~m}$ V DC									
Electrical characteristics		Insulation resistance (Initial)					Min. 10,000M Ω (at 500V DC) Measurement at same location as "Initial breakdown voltage" section.								
		Breakdown voltage (Initial)		Between open	ontacts		750 Vrms for 1 min . (Detection current: 10 mA .)								
		Between contact sets	$1,000 \mathrm{Vrms}$ for 1 min . (Detection current: 10 mA .)												
		Between contact and coil	$1,500 \mathrm{Vrms}$ for 1 min . (Detection current: 10 mA .)												
		Temperature rise (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. $35^{\circ} \mathrm{C}$ (By resistive method, nominal voltage applied to the coil; contact carrying current: 4A.)											
		Operate time [Set time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 15 ms [15 ms] (Nominal voltage applied to the coil, excluding contact bounce time.)											
		Release time [Reset time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. $10 \mathrm{~ms}[15 \mathrm{~ms}]$ (Nominal voltage applied to the coil, excluding contact bounce time.) (without diode)											
Mechanical characteristics				Shock resistance		Functional		Min. $490 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$.)							
		Destructive				Min. $980 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 6 ms .)									
		Vibration resistance		Functional			10 to 55 Hz at double amplitude of 3 mm (Detection time: $10 \mu \mathrm{~s}$.)								
		Destructive		10 to 55 Hz at double amplitude of 4 mm											
Expected life				Mechanical					Min. 10^{8} (at 50 cps)						
		Electrical					Min. 10^{5} (4 A 250 V AC), Min. 2×10^{5} (3 A 30 V DC) (at 20 cpm)								
Conditions		Conditions for operation, transport and storage ${ }^{2}$					Ambient temperature: $-55^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}-67^{\circ} \mathrm{F}$ to $+149^{\circ} \mathrm{F}$ Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature)								
		Max. operating speed					20 cpm for maximum load, 50 cps for low-level load (1 mA 1 V DC)								
Unit weight							Approx. 8 g .28 oz								

*1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.
*2Refer to "6. Usage, Storage and Transport Conditions" in AMBIENT ENVIRONMENT (page 599).

REFERENCE DATA

1. Maximum switching power

4.-(1) Coil temperature rise

Tested Sample: S4-24V, 4 Form A

6. Influence of adjacent mounting

Note: When installing an S-relay near another, and there is no effect from an external magnetic field, be sure to leave at least 10 mm . 394 inch between relays in order to achieve the performance listed in the catalog.

3. Contact reliability

Condition: 1V DC, 1mA
Detection level 10Ω
Tasted Sample: S4-24V, 10pcs

5. Operate and release time (Single side stable type)
Tested Sample: S4-24V, 10pcs

7. Thermal electromotive force

8. Effect from an external magnetic field

DIMENSIONS (mm inch) Interested in CAD data? You can obtain CAD data for all products with a CAD Data mark from your local Panasonic Electric Works representative.

CAD Data

External dimensions

PC board pattern (Copper-side view)

Schematic (Bottom view)

	Single side stable (Deenergized position)	2 coil latching (Reset condition)
2 a 2 b		
3a1b		
4a		

NOTES

1. Based on regulations regarding insulation distance, there is a restriction on same-channel load connections between terminals No. 2, 3 and 4, 5, as well as between No. 8,9 and 10, 11. See the figure below for an example.

Between 2, 3 and 4, 5:
different channels, therefore not possible Between 10,11 and 8,9 : different channels, therefore not possible No good

- Between 2, 3 and 4,5:
same channels, therefore possible Between 10, 11 and 8, 9 :

Good
2. Please note that when this relay
(1 Form A 1 Form B types) operates and releases, contacts a and b may go ON at the same time.

For Cautions for Use, see Relay Technical Information (page 582).

Panasonic ideas for life

S RELAYS SOCKET

DIMENSIONS (Unit: mm inch)
External dimensions

PC board pattern (Copper-side view)

12-1.6 dia. hole 200.200.200.200.200
$12-.063$ dia. hole
Tolerance: $\pm 0.1 \pm .004$

SPECIFICATIONS

Maximum continuous current	Note: Don't insert or remove relays while in the energized condition.
Breakdown voltage	$1,500 \mathrm{Vrms}$ between terminals
Insulation resistance	More than $100 \mathrm{M} \Omega$ between terminals at 500 V DC Mega
Heat resistance	$150 \pm 3^{\circ} \mathrm{C}\left(302 \pm 5.4^{\circ} \mathrm{F}\right)$ for 1 hour.

Inserting and removing method

 Inserting method: Insert the relay as shown in Fig. 1 unit the rib of the relay snaps into the clip of the socket.

Removing method:
(1) Remove the relay straight from the socket holding the shaded portion of the
 relay as shown in Fig. 2.
(2) When sockets are mounted in close proximity, use a slotted screw driver as shown in Fig. 3.

Panasonic ideas for life

Taking advantage of the 4-gap balanced armature mechanism, S relays have met a number of relay needs and earned a reputation for the characteristics that they provide. Building on the same structure, the SP relay was introduced as a highsensitivity power relay to provide nominal operating power of 300 mW and minimum operating power of 150 mW (single side stable and 2 coil latching types). Even so, with the nominal switching capacity for the 2 Form C at 15 A , and for the 4 Form C at 10 A , highcapacity switching is possible with small input. Moreover, taking full advantage of the excellence of the 4-gap balanced armature mechanism, we have realized a small, slim form factor that also has superior resistance to vibration and shock. This power relay is often chosen for NC machines and electrical power remote monitoring control panels, and for power supplies used in computers and other equipment. The SP also often provides power control for high-end business and industrial equipment.

FEATURES

1. Small, slim form factor

Facilitating the form factor reduction of devices, the overall height of the relay package is less than half that of our HP relay.
2. High sensitivity

The high-efficiency polarized electromagnetic mechanism in conjunction with our exclusive spring alignment method achieves levels of sensitivity higher than relays that have been available up to now. For both the 2 Form C and 4 Form C single side stable and 2 coil latching types, the 150 mW minimum operating power level allows direct driving by transistor or chip controllers.
3. High reliability and long life With a structure that ensures almost perfectly complete twin contact and minimal contact bounce, you get greater reliability than has so far been provided by power relays.
4. Latching types also available 1 coil latching and 2 coil latching types are available. In cases where it was formerly unavoidable to use plural relays for large power memory, you can now use a single SP relay.
5. Strong resistance to vibration and shock
Our balanced armature technology well withstands vibration and shocks. It provides strong resistance to vibration and shock.

ORDERING INFORMATION

Contact arrangement
2: 2 Form C
4: 4 Form C
Terminal shape
Nil: Plug-in type
P: PC board type
Standard - $1.4 \mathrm{~mm} \times 0.5 \mathrm{~mm}$ (without UL/CSA marking)
Optional - $2.0 \mathrm{~mm} \times 0.5 \mathrm{~mm}$ (with UL/CSA marking)
Operating function
Nil: Single side stable
L: 1 coil latching
L2: 2 coil latching
Coil voltage
DC 3, 5, 6, 12, 24, 48 V
Notes: 1. PC board type and 1 coil latching type are manufactured by lot upon receipt of order.
2. UL/CSA and TÜV approved type is standard.

TYPES

Contact arrangement	Nominal coil voltage	Single side stable	2 coil latching
		Part No.	Part No.
2 Form C	3V DC	SP2-DC3V	SP2-L2-DC3V
	5V DC	SP2-DC5V	SP2-L2-DC5V
	6 V DC	SP2-DC6V	SP2-L2-DC6V
	12 V DC	SP2-DC12V	SP2-L2-DC12V
	24V DC	SP2-DC24V	SP2-L2-DC24V
	48 V DC	SP2-DC48V	SP2-L2-DC48V
4 Form C	3V DC	SP4-DC3V	SP4-L2-DC3V
	5V DC	SP4-DC5V	SP4-L2-DC5V
	6 V DC	SP4-DC6V	SP4-L2-DC6V
	12 V DC	SP4-DC12V	SP4-L2-DC12V
	24V DC	SP4-DC24V	SP4-L2-DC24V
	48 V DC	SP4-DC48V	SP4-L2-DC48V

Standard packing (2 Form C): Tube: 20 pcs.; Case: 200 pcs.
Standard packing (4 Form C): Tube: 10 pcs.; Case: 100 pcs.
Note: PC board type and 1 coil latching type are manufactured by lot upon receipt of order.

RATING

1. Coil data

1) Single side stable

Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \\ \hline \end{gathered}$	Coil resistance $[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)$	Nominal operating power	Max. allowable voltage
3V DC	$70 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$10 \% \mathrm{~V}$ or more of nominal voltage (Initial)	100 mA	30Ω	300 mW	$150 \% \mathrm{~V}$ of nominal voltage
5V DC			60.2 mA	83Ω		
6V DC			50 mA	120Ω		
12V DC			25 mA	480Ω		
24 V DC			12.5 mA	1,920		
48 V DC			6.2 mA	7,700		

2) 2 coil latching

Nominal coil voltage	Set voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operatingcurrent$[\pm 10 \%]$ (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		$\begin{gathered} \text { Coil resistance } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$		Nominal operating power		Max. allowable voltage
			Set coil	Reset coil	Set coil	Reset coil	Set coil	Reset coil	
3V DC	$70 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$70 \% \mathrm{~V}$ or less of nominal voltage (Initial)	100 mA	100 mA	30Ω	30Ω	300 mW	300 mW	$150 \% \mathrm{~V}$ of nominal voltage
5V DC			60.2 mA	60.2 mA	83Ω	83Ω			
6 V DC			50 mA	50 mA	120Ω	120Ω			
12V DC			25 mA	25 mA	480Ω	480Ω			
24V DC			12.5 mA	12.5 mA	1,920	1,920			
48 V DC			6.2 mA	6.2 mA	7,680 ${ }^{\text {d }}$	7,680			

2. Specifications

Characteristics	Item		Specifications
Contact	Initial contact pressure		2 Form C: Approx. $0.392 \mathrm{~N}(40 \mathrm{~g} 1.41 \mathrm{oz})$, 4 Form C: Approx. $0.196 \mathrm{~N}(20 \mathrm{~g} 0.71 \mathrm{oz}$)
	Arrangement		2 Form C, 4 Form C
	Initial contact resistance, max.		Max. $30 \mathrm{~m} \Omega$ (By voltage drop 6 V DC 1A)
	Contact material		Stationary contact: Au flashed AgSnO_{2} type, Movable contact: AgSnO_{2} type
Rating	Nominal switching capacity (resistive load)		2 Form C: 15 A 250 V AC, 4 Form C: 10 A 250 V AC
	Max. switching power (resistive load)		2 Form C: $3,750 \mathrm{VA}, 300 \mathrm{~W}, 4$ Form C: $2,500 \mathrm{VA}, 300 \mathrm{~W}$
	Max. switching voltage		2 Form C, 4 Form C: 250 V AC, 30 V DC (48V DC: Max. 2A)
	Max. switching current		2 Form C: 15 A (AC) 10 A (DC), 4 Form C: 10 A
	Minimum operating power		150 mW (Single side stable, 2 coil latching)
	Nominal operating power		300 mW (Single side stable, 2 coil latching)
	Min. switching capacity (Reference value)* ${ }^{4}$		100 mA 5 V DC
Electrical characteristics	Insulation resistance (Initial) $\left(25^{\circ} \mathrm{C}, 50 \%\right.$ relative humidity)		Min. 1,000M Ω (at 500 V DC) Measurement at same location as "Initial breakdown voltage" section.
	Breakdown voltage (Initial)	Between open contacts	1,500 Vrms for 1 min . (Detection current: 10 mA)
		Between contact and coil	3,000 Vrms for 1 min . (Detection current: 10 mA)
		Between contact sets	3,000 Vrms for 1 min . (Detection current: 10 mA)
	Operate time [Set time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 30 ms [Max. 30 ms] (Nominal voltage applied to the coil, excluding contact bounce time.)
	Release time [Reset time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 20 ms [Max. 30 ms] (Nominal voltage applied to the coil, excluding contact bounce time.) (without diode)
	Temperature rise (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. $40^{\circ} \mathrm{C}$ (By resistive method, nominal voltage applied to the coil; nominal switching capacity.)
Mechanical characteristics	Shock resistance	Functional	Min. $392 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$.)
		Destructive	Min. $980 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 6 ms .)
	Vibration resistance	Functional	10 to 55 Hz at double amplitude of 3 mm (Detection time: $10 \mu \mathrm{~s}$.)
		Destructive	10 to 55 Hz at double amplitude of 3 mm
Expected life	Mechanical		Min. 5×10^{7} (at 180 cpm)
	Electrical (resistive load)		2 Form C: Min. $10^{5}(15 \mathrm{~A} 250 \mathrm{~V} \mathrm{AC}$ [at 20 cpm$\left.]\right)$, Min. $10^{5}(10 \mathrm{~A} 30 \mathrm{~V}$ DC [at 20 cpm$\left.]\right)$ 4 Form C: Min. $10^{5}(15 \mathrm{~A} 250 \mathrm{~V}$ AC [at 20 cpm$\left.]\right)$, Min. $10^{5}(10 \mathrm{~A} 30 \mathrm{~V}$ DC [at 20 cpm) 4 Form C: Min. 10^{5} (15 A $250 \mathrm{~V} \mathrm{AC} \mathrm{[at} 20 \mathrm{cpm}$), Min. 10^{5} (10 A 30 V DC [at 20 cpm])
Conditions	Conditions for operation, transport and storage*2		Ambient temperature: $-50^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}-58^{\circ} \mathrm{F}$ to $+140^{\circ} \mathrm{F}$; Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature)
	Max. operating speed		20 cpm (at rated load)
Unit weight			2 Form C: 50 g 1.76 oz; 4 Form C: 65 g 2.29 oz

*1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load. *2Refer to "6. Usage, Storage and Transport Conditions" in AMBIENT ENVIRONMENT (page 599).

REFERENCE DATA

Operate and release time (Single side stable) SP2

Tested sample: SP4-DC24V
Ambient temperature: 27 to $29^{\circ} \mathrm{C} 81$ to $84^{\circ} \mathrm{F}$

Coil temperature rise

Tested sample: SP2-DC24V
Ambient temperature: 20 to $22^{\circ} \mathrm{C} 68$ to $72^{\circ} \mathrm{F}$

Electrical life
(SP2, 15 A 250 V AC resistive load)

Electrical life
(SP4, 10 A 250 V AC resistive load)

DIMENSIONS $(\mathrm{mm}$ inch) Interested in CAD data? You can obtain CAD data for all products with a CAD Data mark from your local Panasonic Electric Works representative.

2 Form C

Plug-in terminal

General tolerance: $\pm 0.3 \pm .012$

PC board type
CAD Data External dimensions

General tolerance: $\pm 0.3 \pm .012$
PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$

Schematic (Bottom view) Single side stable

(Deenergized condition)
2 coil latching

(Reset condition)
Diagram shows the "reset" position $\frac{0}{0}$ when terminals 3 and 4 are energized. Energize terminals 1 and 2 to transfer contacts.

PC board terminal

With UL/CSA approval: pin $2 \mathrm{~mm} \times 0.5 \mathrm{~mm}$ standard type:
pin $1.4 \mathrm{~mm} \times 0.5 \mathrm{~mm}$

PC board type

Tolerance: $\pm 0.1 \pm .004$

Schematic (Bottom view) Single side stable

(Deenergized condition)

2 coil latching

(Reset condition)
Diagram shows the "reset" position when terminals 3 and 4 are energized. Energize terminals 1

PC board terminal

With UL/CSA pprova:
pin $2 \mathrm{~mm} \times 0.5 \mathrm{~mm}$
standard type:
pin $1.4 \mathrm{~mm} \times 0.5 \mathrm{~mm}$

For Cautions for Use, see Relay Technical Information (page 582).

Panasonic ideas for life

DIMENSIONS (Unit: mm inch)

SP2-Terminal socket

Part No.: SP2-SF

SP4-Terminal socket

Note: Terminal number marking is on the socket body. Please refer together with the SP relay schematic.

Mounting hole diagram

Notes:
(1) Mounting screws and the fastening bracket are included in the package.
(2) Mount the relay with the proper mounting direction - i.e. with the direction of the (\triangle) mark on top of the relay case matching the direction of the (\triangle) mark on the terminal block. (The $\hat{\rightharpoonup}$ direction of the terminal block is the upward direction of the relay.)

Fastening bracket mounting and removal

1. Mounting

Insert the A part of the fastening bracket into the mounting groove of the terminal block, and then fit the B part into groove, while pressing with the tip of a minus screwdriver.

2. Removal

Slide the B part of the fastening bracket from the groove in the terminal block, while pressing with the tip of a minus screwdriver. While the bracket is in this position, keep pressing the C part of the bracket to the relay side with your finger, and lift up to the left side and remove from the groove, as in the diagram at right.

Panasonic ideas for life

ACCESSORIES

Mounting hole diagram

Direct chassis mounting possible, and applicable to DIN rail.

Use method

1. Both the SP relay 2 Form C and 4 Form C can be mounted to the mounting slats.
2. Use the mounting slats either by attaching them directly to the chassis, or by mounting with a DIN rail.
(A) When attaching directly to chassis Use two M3 screws.
For the mounting pitch, refer to the specification diagram.
(B) When mounting on a DIN rail Use a 35 mm 1.378inch wide DIN rail (DIN46277).
The mounting method should be as indicated in the diagram at right.

Method for mounting on DIN rail

(1) First fit the arc shaped claw of the mounting slat into the DIN rail.
(2) Press on the side as shown in the diagram below.
(3) Fit in the claw part on the opposite side.

Precautions for use

When mounting to a DIN rail, use a commercially available fastening bracket if there is a need to stop sliding of the mounting slat in the rail direction.

Panasonic ideas for life

FEATURES

1. Even with small form factor, sensitive enough for direct ICdriving
The dimensions of this high-density 4-gap balanced armature are $31 \mathrm{~mm} \times$ $14 \mathrm{~mm} \times 11 \mathrm{~mm} 1.220 \mathrm{inch} \times .551 \mathrm{inch}$ $\times .433$ inch. Despite this small size, high sensitivity is achieved by a mechanism that incorporates highefficiency polarized magnetic circuits along with our exclusive spring alignment method. With an minimum operating power of about 150 mW , nominal operating power of 240 mW , this relay can be directly driven by transistor or chip controllers.
2. High switching capability Strong against lamp inductive loads, maximum switching capacity has reached 3,040 VA ($8 \mathrm{~A} 380 \mathrm{~V} A C$).

IC DRIVABLE PC BOARD RELAY FOR INDUCTIVE LOAD SWITCHING

3. High breakdown voltage - Optimal for control in 250 V power circuits High breakdown voltage has been achieved. Between contacts and coil of $3,750 \mathrm{Vrms}$; Surge breakdown voltage between coil and contact of $6,000 \mathrm{~V}$, and between open contacts of $1,200 \mathrm{Vrms}$ mean that these relays are suitable even for 250 V power circuit control.
4. Improved stability Conforms to all types of safety standards.
Insulating distance of more than 3 mm secured. Complies with Japan Electrical Appliance and Material Safety Law requirements for operating 200 V power supply circuits, and conforms with UL, CSA and VDE standards.
5. Latching types available In addition to single side stable types, convenient 2 coil latching types with memory functions are also available. Moreover, we offer 2 Form A specifications which, with double pole switching for applications such as 250 V power circuit switching, can enable safer designs.
6. Automatic cleaning possible

The sealed design means that these relays can undergo immersion in automatic washing systems and are suitable for automatic soldering. Even in difficult environments, the contacts remain reliable.
7. Easy to design PC board patterns Features $4 / 10$ dual-in-line terminals. Because the lead spacing has a pitch greater than 7.54 mm .297 inch, designers can make easy adjustments with the width of the land size. This, along with the large insulation distance, simplifies the drawing of PC board patterns.
8. To improve soldering efficiency, preapplication of solder to the terminals is recommended.

About Cd-free contacts

We have introduced Cadmium free type products to reduce Environmental Hazardous Substances.
(The suffix "F" should be added to the part number)
Please replace parts containing Cadmium with Cadmium-free products and evaluate them with your actual application before use because the life of a relay depends on the contact material and load.

ORDERING INFORMATION

CT
Contact arrangement
1: 1 Form A 1 Form B
2: 2 Form A
Operating function
Nil: Single side stable
L2: 2 coil latching
Coil voltage
DC 3, $5,6,9,12,24,48 \mathrm{~V}$
Contact material
F: AgSnO2 type contact

[^20]
TYPES

Contact arrangement	Nominal coil voltage	Single side stable	2 coil latching
		Part No.	Part No.
1 Form A 1 Form B	3V DC	ST1-DC3V-F	ST1-L2-DC3V-F
	5 V DC	ST1-DC5V-F	ST1-L2-DC5V-F
	6V DC	ST1-DC6V-F	ST1-L2-DC6V-F
	9 V DC	ST1-DC9V-F	ST1-L2-DC9V-F
	12 V DC	ST1-DC12V-F	ST1-L2-DC12V-F
	24V DC	ST1-DC24V-F	ST1-L2-DC24V-F
	48 V DC	ST1-DC48V-F	ST1-L2-DC48V-F
2 Form A	3V DC	ST2-DC3V-F	ST2-L2-DC3V-F
	5 V DC	ST2-DC5V-F	ST2-L2-DC5V-F
	6V DC	ST2-DC6V-F	ST2-L2-DC6V-F
	9V DC	ST2-DC9V-F	ST2-L2-DC9V-F
	12 V DC	ST2-DC12V-F	ST2-L2-DC12V-F
	24V DC	ST2-DC24V-F	ST2-L2-DC24V-F
	48 V DC	ST2-DC48V-F	ST2-L2-DC48V-F
Standard packing: Tube: 50 pcs.; Case: 500 pcs.			
RATING			
1. Coil data			

1. Coil data
1) Single side stable

Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%] \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) }} \end{gathered}$	$\begin{gathered} \text { Coil resistance } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right. \text {) }} \end{gathered}$	Nominal operating power	Max. allowable voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
3V DC	$80 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$10 \% \mathrm{~V}$ or more of nominal voltage (Initial)	75 mA	38Ω	240 mW	$150 \% \mathrm{~V}$ of nominal voltage
5V DC			47 mA	105Ω		
6V DC			40 mA	150Ω		
9V DC			25 mA	360Ω		
12 V DC			20 mA	600Ω		
24 V DC			10 mA	2,400		
48 V DC			4.7 mA	9,000		

2) 2 coil latching

Nominal coil voltage	$\begin{aligned} & \text { Set voltage } \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operatingcurrent$[\pm 10 \%]$ (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Coil resistance$[\pm 10 \%] \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) }$		Nominal operating power		Max. allowable voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
			Set coil	Reset coil	Set coil	Reset coil	Set coil	Reset coil	
3V DC	$80 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$80 \% \mathrm{~V}$ or less of nominal voltage (Initial)	75 mA	75 mA	40Ω	40Ω	240 mW	240 mW	$150 \% \mathrm{~V}$ of nominal voltage
5V DC			45 mA	45 mA	110Ω	110Ω			
6 V DC			37.5 mA	37.5 mA	155Ω	155Ω			
9V DC			25 mA	25 mA	360Ω	360Ω			
12 V DC			18.8 mA	18.8 mA	640Ω	640Ω			
24 V DC			10 mA	10 mA	2,400	2,400			
48 V DC			4.7 mA	4.7 mA	10,200	10,200			

2. Specifications

Characteristics	Item		Specifications
Contact	Arrangement		1 Form A 1 Form B, 2 Form A
	Contact material		Au-flashed AgSnO_{2} type
	Initial contact resistance, max.		Max. $30 \mathrm{~m} \Omega$ (By voltage drop 6 V DC 1A)
Rating	Max. switching power (resistive load)		3,040 VA, 150 W
	Max. switching voltage		380 V AC, 250 V DC
	Max. switching current		8 A
	Minimum operating power		150 mW (Single side stable, 2 coil latching)
	Nominal operating power		240 mW (Single side stable, 2 coil latching)
	Min. switching capacity (Reference value)*		100 mA 5 V DC
Electrical characteristics	Insulation resistance (Initial) (at $25^{\circ} \mathrm{C}, 50 \%$ relative humidity)		Min. 1,000M Ω (at 500 V DC) Measurement at same location as "Initial breakdown voltage" section.
	Breakdown voltage (Initial)	Between open contacts	1,200 Vrms for 1 min . (Detection current: 10 mA)
		Between contact sets	2,000 Vrms for 1 min . (Detection current: 10 mA)
		Between contact and coil	3,750 Vrms for 1 min . (Detection current: 10 mA)
	Surge breakdown voltage (Initial) ${ }^{2}$		6,000 V (Between contact and coil)
	Operate time [Set time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 15 ms [Max. 15 ms] (Nominal voltage applied to the coil, excluding contact bounce time.)
	Release time [Reset time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 10 ms [Max. 15 ms] (Nominal voltage applied to the coil, excluding contact bounce time.) (without diode)
	Temperature rise (at $60^{\circ} \mathrm{C} 140^{\circ} \mathrm{F}$)		Max. $55^{\circ} \mathrm{C}$ (By resistive method, nominal voltage applied to the coil; contact carrying current: 8A.)
Mechanical characteristics	Shock resistance	Functional	Min. $196 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$.)
		Destructive	Min. $980 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 6 ms .)
	Vibration resistance	Functional	10 to 55 Hz at double amplitude of 2 mm (Detection time: $10 \mu \mathrm{~s}$.)
		Destructive	10 to 55 Hz at double amplitude of 3 mm
Expected life	Mechanical		Min. 10^{7} (at 180 cpm)
	Electrical		Min. 10^{5} (8 A 250 V AC resistive) (ON : OFF $=1 \mathrm{~s}: 5 \mathrm{~s}$)
Conditions	Conditions for operation, transport and storage*3		Ambient temperature: $-40^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+140^{\circ} \mathrm{F}$; Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature)
	Max. operating speed		$20 \mathrm{cpm}^{4}$
Unit weight			Approx. 10g . 353 oz

*1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.
*2 Wave is standard shock voltage of $\pm 1.2 \times 50 \mu$ s according to JEC-212-1981.
*3Refer to "6. Usage, Storage and Transport Conditions" in AMBIENT ENVIRONMENT (page 599).
*4 The max. operating speed amounts to 30 cps without load.

REFERENCE DATA

1. Max. switching power

2. Coil temperature rise

3. Influence of adjacent mounting

Interested in CAD data? You can obtain CAD data for all products with a

CAD Data

External dimensions

General tolerance: $\pm 0.5 \pm .020$

PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$

NOTES

1. PC board patterns for 2 coil latching types
When applying relays in power supply operation circuits for finished products regulated by the Electrical Appliance and Material Safety Law, use the pattern shown below.

2. Soldering should be done under the following conditions:
1)

$250^{\circ} \mathrm{C} 482^{\circ} \mathrm{F}$ within 10 s
$300^{\circ} \mathrm{C} 572^{\circ} \mathrm{F}$ within 5 s
$350^{\circ} \mathrm{C} 662^{\circ} \mathrm{F}$ within 3s
2) For automatic cleaning, the boiling method is recommended. Avoid ultrasonic cleaning which subjects the relays to high frequency vibrations, which may cause the contacts to stick. It is recommended that a fluorinated hydrocarbon or other alcoholic solvents be used.
3. When using, please be aware that the a contact and b contact sides of 1 Form A and 1 Form B types may go on simultaneously at operate time and release time.

For Cautions for Use, see Relay Technical Information (page 582).

Panasonic ideas for life

ST relay socket

ST-PS

PC board terminal socket

ST-SS
Solder terminal socket

FEATURES

1. Possible to fit or remove the chassis with one touch ($\mathrm{t}=\mathbf{0 . 6} \mathbf{~ m m}$ to 2.2 mm . 024 inch to .087 inch)
2. Easy design of PC board pattern
($2.54 \mathrm{~mm} \times 4$ pitch DIL terminal array)
3. Complies with Japan Electrical Appliance and Material Safety Law. (UL and VDE certification)

4. High breakdown voltage.

PRECAUTIONS FOR USE (SOCKET)

1. PC board mounting method

 PC board pattern

The terminal configuration is symmetrical on the left and right, so an arrow mark $\hat{\mathrm{s}}$ is stamped on the socket to prevent misinsertion. We recommend printing the same arrow mark $仑$ on the component mounting side (side opposite from pattern) of the PC board. In this case, the terminal configuration becomes the terminal nos. noted near the drilling holes. .

ACCESSORIES

SPECIFICATIONS

Item	Specifications
Breakdown voltage (Initial)	Between contact and coil: 4,000 Vrms for 1 min. (Detection current: 10 mA) Between contact and terminal: 2,000 Vrms for 1 min.
Insulation resistance (Initial)	Min. $1,000 \mathrm{M} \Omega$ between terminals (500V DC)
Heat resistance	$150^{\circ} \mathrm{C} 302^{\circ} \mathrm{F}$ for 1 hr
Max. continuous current	10 A
Relay insertion life	15 times

DIMENSIONS (Unit: mm inch)

ST-PS

ST-SS

2. Chassis cutout

Chassis cutting dimensions

If the chassis hole is punched with a press, set so the release R on the front side (A side).
The range for chassis thickness is 0.6 to 2.2 mm . 024 to .087 inch.

3. Relay mounting and removal

(1) Align the directions of the relay and socket.

(2) Insert the relay all the way in, so it is securely in place.

(3) Press the part indicated by A in the B direction, and fasten by placing the hook on the relay.

(4) When removing the relay, completely release the hooks on both sides and pull the relay out.

Panasonic ideas for life

Standard type

Keep (Latching) relay

Amber sealed type

With diode type

FROM SEQUENCE TO POWER CIRCUITS COMPATIBLE WORLDWIDE PRODUCT TYPES

FEATURES

1. Long track record means reliable quality.
2. Can provide switching across the range from low to high level power loads ($100 \mu \mathrm{~A}$ to 10 A).
3. Rich lineup includes relays with LED, with diode, and high-capacity types.
4. UL, CSA approval is standard Compliance also with Japanese Electrical Appliance and Material Control Law.

TYPICAL APPLICATIONS

Suitable for factory automation equipment and automotive devices 1. Control panels, power supply equipment, molding equipment, machine tools, welding equipment, agricultural equipment, etc.
2. Office equipment, automatic vending machines,
telecommunications equipment, disaster prevention equipment, copiers, measuring devices, medical equipment, amusement devices, etc. 3. All types of household appliance

TYPES

HC Relay

Type	Contact arrangement	Contact arrangement	Plug-in terminal type					Remarks
			Without LED	With LED	Without LED	With LED		
Standard type	Single side stable	1 Form C	A	A	A	A	A	
		2 Form C	A	A	A	A	A	
		3 Form C	A	A	A	A	A	
		4 Form C	A	A	A	A	A	
	Bifurcated (Twin)	4 Form C	A	A	A	A	A	
Amber sealed type HC relay	Single side stable	1 Form C	A	A	A	A	A	
		2 Form C	A	A	A	A	A	
		4 Form C	A	A	A	A	A	
	Bifurcated (Twin)	4 Form C	A	A	A	A	A	
HC keep (latching) relay	Single side stable	2 Form C	A (With operating indication)	-	A (With operating indication)	-	-	
DC type with surge absorbing diode	Single side stable	1 Form C	A	A	-	-	-	Amber sealed type also available
		2 Form C	A	A	-	-	-	
		3 Form C	A	A	-	-	-	
		4 Form C	A	A	-	-	-	
	Bifurcated (Twin)	4 Form C	A	A	-	-	-	
AC type with surge absorbing CR circuit	Single side stable	1 Form C	A	A	-	-	-	17 mm higher than standard type
		2 Form C	A	A	-	-	-	
		3 Form C	A	A	-	-	-	
		4 Form C	A	A	-	-	-	
	Bifurcated (Twin)	4 Form C	A	A	-	-	-	

A: Available

Notes: 1. HC relays with ground terminals also available.
2. HC relays with 0.9 mm wide PC board terminals also available.

HC RELAY CONTACT ARRANGEMENT

Type	Single side stable contact	4-pole bifurcated (twin) contact
Part number	HC \square	HC4D
Features	Suitable for high-capacity load switching Standard type HC relays have high single-contact capacity; 1 Form C: 10 A 2 Form C and 3 Form C: 7 A 4 Form C: 5 A	Bifurcated (twin) contact ensures high contact reliability Suitable for low level loads Minimum switching capability: $100 \mu \mathrm{~A} 100 \mathrm{~m}$ V DC (reference value)

LED INDICATION TYPE

HC RELAY SERIES PRODUCT TYPES

Type	Amber sealed type HC relay	HC keep (Latching) relay	HC relay with diode type (for DC)
Part number	HC■E	HC2K	HC■-■-】V-D
Features	Relay is completely sealed with resin. Provides high reliability in adverse surroundings. Suitable for use in dusty conditions or where organic gases are present	Magnetic latching relay Suitable for nominal operating power saving of operating circuits and for memory circuits Has operating indication (mechanical indicator).	Has built-in diode to absorb surge when the coil goes to the off state (for DC type). Suitable for protecting relay driver circuits and for noise suppression Diode characteristics: Reverse breakdown voltage $1,000 \mathrm{~V}$, Forward current 1 A
Type	HC relay with CR circuit (for AC)	-	-
Part number	HC■-■- V -R	-	-
Features	Has built-in CR circuit to absorb surge when the coil goes to the off state (for AC). Relay with CR circuit is 17 mm higher than standard type relay.	-	-

4-pole bifurcated (twin) type available
Relay with LED indication available

Panasonic ideas for life

FEATURES

1. Long track record means reliable quality.
2. Can provide switching across the range from low to high level power loads ($100 \mu \mathrm{~A}$ to 10 A).
3. Full range of types

Standard types include 1 Form C, 2 Form C, 3 Form C, 4 Form C, 4-pole bifurcated (twin), plug-in type, PC board type, and TM type.
4. HC relay with LED indication type also available
5. UL, CSA approval is standard Compliance also with Japanese Electrical Appliance and Material Control Law.

TYPICAL APPLICATIONS

Suitable for factory automation equipment and automotive devices 1. Control panels, power supply equipment, molding equipment, machine tools, welding equipment, agricultural equipment, etc.

2. Office equipment, automatic vending machines,

 telecommunications equipment, disaster prevention equipment, copiers, measuring devices, medical equipment, amusement devices, etc. 3. All types of household appliance
About Cd-free contacts

We have introduced Cadmium free type products to reduce Environmental Hazardous Substances. (The suffix "F" should be added to the part number. The Suffix " F " is required only for 1 Form C, 2 Form C, 3 Form C contact type. The 4 Form C and 4 Form C bifurcated (twin) contact type is originally cadmium-free, the suffix " F " is not required.) Please replace parts containing Cadmium with Cadmium-free products and evaluate them with your actual application before use because the life of a relay depends on the contact material and load.

ORDERING INFORMATION

HC			-
Contact arrangement			
1: 1 Form C			
2: 2 Form C			
3: 3 Form C			
4: 4 Form C			
4D: Bifurcated contact (twin)			
Terminal arrangement			
H: Plug-in type			
HL: Plug-in with LED indication			
HP: PC board type			
HPL: PC board with LED indication			
HTM: TM type			
Coil voltage			
AC 6, 12, 24, 48, 100 (100/110), 120 (110/120), 200 (200/220), 240 (220/240) V			
DC 6, 12, 24, 48, 100 (100/110) V			
Contact material			
Contact material	Ag alloy		
Contact arrangement	(cadmium-free)	AgNi type	
1 Form C	F	\square	
2 Form C	F		
3 Form C	F		
4 Form C	,	Nil	
Bifurcated contact (twin)	,	Nil	

[^21]Please inquire about VDE (1 Form C, 2 Form C, and 4 Form C only) and TV-3 (1 Form C and 2 Form C only) approved products.

TYPES

1) Plug-in type

Coil voltage	1 Form C	2 Form C	3 Form C	4 Form C	4 Form C (twin)
	Part No.				
6 V AC	HC1-H-AC6V-F	HC2-H-AC6V-F	HC3-H-AC6V-F	HC4-H-AC6V	HC4D-H-AC6V
12 V AC	HC1-H-AC12V-F	HC2-H-AC12V-F	HC3-H-AC12V-F	HC4-H-AC12V	HC4D-H-AC12V
24 V AC	HC1-H-AC24V-F	HC2-H-AC24V-F	HC3-H-AC24V-F	HC4-H-AC24V	HC4D-H-AC24V
48 V AC	HC1-H-AC48V-F	HC2-H-AC48V-F	HC3-H-AC48V-F	HC4-H-AC48V	HC4D-H-AC48V
100/110V AC	HC1-H-AC100V-F	HC2-H-AC100V-F	HC3-H-AC100V-F	HC4-H-AC100V	HC4D-H-AC100V
110/120V AC	HC1-H-AC120V-F	HC2-H-AC120V-F	HC3-H-AC120V-F	HC4-H-AC120V	HC4D-H-AC120V
200/220V AC	HC1-H-AC200V-F	HC2-H-AC200V-F	HC3-H-AC200V-F	HC4-H-AC200V	HC4D-H-AC200V
220/240V AC	HC1-H-AC240V-F	HC2-H-AC240V-F	HC3-H-AC240V-F	HC4-H-AC240V	HC4D-H-AC240V
6 V DC	HC1-H-DC6V-F	HC2-H-DC6V-F	HC3-H-DC6V-F	HC4-H-DC6V	HC4D-H-DC6V
12 V DC	HC1-H-DC12V-F	HC2-H-DC12V-F	HC3-H-DC12V-F	HC4-H-DC12V	HC4D-H-DC12V
24 V DC	HC1-H-DC24V-F	HC2-H-DC24V-F	HC3-H-DC24V-F	HC4-H-DC24V	HC4D-H-DC24V
48V DC	HC1-H-DC48V-F	HC2-H-DC48V-F	HC3-H-DC48V-F	HC4-H-DC48V	HC4D-H-DC48V
100/110V DC	HC1-H-DC100V-F	HC2-H-DC100V-F	HC3-H-DC100V-F	HC4-H-DC100V	HC4D-H-DC100V

Standard packing: Carton: 20 pcs.; Case: 200 pcs.

2) Plug-in type (with LED indication)

Coil voltage	1 Form C	2 Form C	3 Form C	4 Form C	4 Form C (twin)
	Part No.				
6 V AC	HC1-HL-AC6V-F	HC2-HL-AC6V-F	HC3-HL-AC6V-F	HC4-HL-AC6V	HC4D-HL-AC6V
12 V AC	HC1-HL-AC12V-F	HC2-HL-AC12V-F	HC3-HL-AC12V-F	HC4-HL-AC12V	HC4D-HL-AC12V
24 V AC	HC1-HL-AC24V-F	HC2-HL-AC24V-F	HC3-HL-AC24V-F	HC4-HL-AC24V	HC4D-HL-AC24V
100/110V AC	HC1-HL-AC100V-F	HC2-HL-AC100V-F	HC3-HL-AC100V-F	HC4-HL-AC100V	HC4D-HL-AC100V
110/120V AC	HC1-HL-AC120V-F	HC2-HL-AC120V-F	HC3-HL-AC120V-F	HC4-HL-AC120V	HC4D-HL-AC120V
200/220V AC	HC1-HL-AC200V-F	HC2-HL-AC200V-F	HC3-HL-AC200V-F	HC4-HL-AC200V	HC4D-HL-AC200V
220/240V AC	HC1-HL-AC240V-F	HC2-HL-AC240V-F	HC3-HL-AC240V-F	HC4-HL-AC240V	HC4D-HL-AC240V
6 V DC	HC1-HL-DC6V-F	HC2-HL-DC6V-F	HC3-HL-DC6V-F	HC4-HL-DC6V	HC4D-HL-DC6V
12 V DC	HC1-HL-DC12V-F	HC2-HL-DC12V-F	HC3-HL-DC12V-F	HC4-HL-DC12V	HC4D-HL-DC12V
24V DC	HC1-HL-DC24V-F	HC2-HL-DC24V-F	HC3-HL-DC24V-F	HC4-HL-DC24V	HC4D-HL-DC24V
48 V DC	HC1-HL-DC48V-F	HC2-HL-DC48V-F	HC3-HL-DC48V-F	HC4-HL-DC48V	HC4D-HL-DC48V
100/110V DC	HC1-HL-DC100V-F	HC2-HL-DC100V-F	HC3-HL-DC100V-F	HC4-HL-DC100V	HC4D-HL-DC100V

Standard packing: Carton: 20 pcs.; Case: 200 pcs.

3) PC board type

Coil voltage	1 Form C	2 Form C	3 Form C	4 Form C	4 Form C (twin)
	Part No.				
$6 V ~ A C ~$	HC1-HP-AC6V-F	HC2-HP-AC6V-F	HC3-HP-AC6V-F	HC4-HP-AC6V	HC4D-HP-AC6V
$12 V$ AC	HC1-HP-AC12V-F	HC2-HP-AC12V-F	HC3-HP-AC12V-F	HC4-HP-AC12V	HC4D-HP-AC12V
$24 V$ AC	HC1-HP-AC24V-F	HC2-HP-AC24V-F	HC3-HP-AC24V-F	HC4-HP-AC24V	HC4D-HP-AC24V
$48 V$ AC	HC1-HP-AC48V-F	HC2-HP-AC48V-F	HC3-HP-AC48V-F	HC4-HP-AC48V	HC4D-HP-AC48V
$100 / 110 V$ AC	HC1-HP-AC100V-F	HC2-HP-AC100V-F	HC3-HP-AC100V-F	HC4-HP-AC100V	HC4D-HP-AC100V
$110 / 120 V ~ A C ~$	HC1-HP-AC120V-F	HC2-HP-AC120V-F	HC3-HP-AC120V-F	HC4-HP-AC120V	HC4D-HP-AC120V
$200 / 220 V$ AC	HC1-HP-AC200V-F	HC2-HP-AC200V-F	HC3-HP-AC200V-F	HC4-HP-AC200V	HC4D-HP-AC200V
$220 / 240 V ~ A C ~$	HC1-HP-AC240V-F	HC2-HP-AC240V-F	HC3-HP-AC240V-F	HC4-HP-AC240V	HC4D-HP-AC240V
$6 V ~ D C ~$	HC1-HP-DC6V-F	HC2-HP-DC6V-F	HC3-HP-DC6V-F	HC4-HP-DC6V	HC4D-HP-DC6V
$12 V$ DC	HC1-HP-DC12V-F	HC2-HP-DC12V-F	HC3-HP-DC12V-F	HC4-HP-DC12V	HC4D-HP-DC12V
$24 V ~ D C ~$	HC1-HP-DC24V-F	HC2-HP-DC24V-F	HC3-HP-DC24V-F	HC4-HP-DC24V	HC4D-HP-DC24V
$48 V ~ D C ~$	HC1-HP-DC48V-F	HC2-HP-DC48V-F	HC3-HP-DC48V-F	HC4-HP-DC48V	HC4D-HP-DC48V
$100 / 110 V ~ D C ~$	HC1-HP-DC100V-F	HC2-HP-DC100V-F	HC3-HP-DC100V-F	HC4-HP-DC100V	HC4D-HP-DC100V

Standard packing: Carton: 20 pcs.; Case: 200 pcs.
Note: Please add "-31" before "-F" in the part number when ordering the PC board type 0.9 mm width terminal (ex) HC1-HP-AC6V-31-F.

4) PC board type (with LED indication)

Coil voltage	1 Form C	2 Form C	3 Form C	4 Form C	4 Form C (twin)
	Part No.				
6 V AC	HC1-HPL-AC6V-F	HC2-HPL-AC6V-F	HC3-HPL-AC6V-F	HC4-HPL-AC6V	HC4D-HPL-AC6V
12 V AC	HC1-HPL-AC12V-F	HC2-HPL-AC12V-F	HC3-HPL-AC12V-F	HC4-HPL-AC12V	HC4D-HPL-AC12V
24 V AC	HC1-HPL-AC24V-F	HC2-HPL-AC24V-F	HC3-HPL-AC24V-F	HC4-HPL-AC24V	HC4D-HPL-AC24V
100/110V AC	HC1-HPL-AC100V-F	HC2-HPL-AC100V-F	HC3-HPL-AC100V-F	HC4-HPL-AC100V	HC4D-HPL-AC100V
110/120V AC	HC1-HPL-AC120V-F	HC2-HPL-AC120V-F	HC3-HPL-AC120V-F	HC4-HPL-AC120V	HC4D-HPL-AC120V
200/220V AC	HC1-HPL-AC200V-F	HC2-HPL-AC200V-F	HC3-HPL-AC200V-F	HC4-HPL-AC200V	HC4D-HPL-AC200V
6 V DC	HC1-HPL-DC6V-F	HC2-HPL-DC6V-F	HC3-HPL-DC6V-F	HC4-HPL-DC6V	HC4D-HPL-DC6V
12 V DC	HC1-HPL-DC12V-F	HC2-HPL-DC12V-F	HC3-HPL-DC12V-F	HC4-HPL-DC12V	HC4D-HPL-DC12V
24V DC	HC1-HPL-DC24V-F	HC2-HPL-DC24V-F	HC3-HPL-DC24V-F	HC4-HPL-DC24V	HC4D-HPL-DC24V
48 V DC	HC1-HPL-DC48V-F	HC2-HPL-DC48V-F	HC3-HPL-DC48V-F	HC4-HPL-DC48V	HC4D-HPL-DC48V
100/110V DC	HC1-HPL-DC100V-F	HC2-HPL-DC100V-F	HC3-HPL-DC100V-F	HC4-HPL-DC100V	HC4D-HPL-DC100V

Standard packing: Carton: 20 pcs.; Case: 200 pcs.
Note: Please add "-31" before "-F" in the part number when ordering the PC board type 0.9 mm width terminal (ex) HC1-HPL-AC6V-31-F.

5) TM type					
Coil voltage	1 Form C	2 Form C	3 Form C	4 Form C	4 Form C (twin)
	Part No.				
6 V AC	HC1-HTM-AC6V-F	HC2-HTM-AC6V-F	HC3-HTM-AC6V-F	HC4-HTM-AC6V	HC4D-HTM-AC6V
12 V AC	HC1-HTM-AC12V-F	HC2-HTM-AC12V-F	HC3-HTM-AC12V-F	HC4-HTM-AC12V	HC4D-HTM-AC12V
24 V AC	HC1-HTM-AC24V-F	HC2-HTM-AC24V-F	HC3-HTM-AC24V-F	HC4-HTM-AC24V	HC4D-HTM-AC24V
48 V AC	HC1-HTM-AC48V-F	HC2-HTM-AC48V-F	HC3-HTM-AC48V-F	HC4-HTM-AC48V	HC4D-HTM-AC48V
100/110V AC	HC1-HTM-AC100V-F	HC2-HTM-AC100V-F	HC3-HTM-AC100V-F	HC4-HTM-AC100V	HC4D-HTM-AC100V
110/120V AC	HC1-HTM-AC120V-F	HC2-HTM-AC120V-F	HC3-HTM-AC120V-F	HC4-HTM-AC120V	HC4D-HTM-AC120V
200/220V AC	HC1-HTM-AC200V-F	HC2-HTM-AC200V-F	HC3-HTM-AC200V-F	HC4-HTM-AC200V	HC4D-HTM-AC200V
6 V DC	HC1-HTM-DC6V-F	HC2-HTM-DC6V-F	HC3-HTM-DC6V-F	HC4-HTM-DC6V	HC4D-HTM-DC6V
12 V DC	HC1-HTM-DC12V-F	HC2-HTM-DC12V-F	HC3-HTM-DC12V-F	HC4-HTM-DC12V	HC4D-HTM-DC12V
24 V DC	HC1-HTM-DC24V-F	HC2-HTM-DC24V-F	HC3-HTM-DC24V-F	HC4-HTM-DC24V	HC4D-HTM-DC24V
48V DC	HC1-HTM-DC48V-F	HC2-HTM-DC48V-F	HC3-HTM-DC48V-F	HC4-HTM-DC48V	HC4D-HTM-DC48V
100/110V DC	HC1-HTM-DC100V-F	HC2-HTM-DC100V-F	HC3-HTM-DC100V-F	HC4-HTM-DC100V	HC4D-HTM-DC100V

Standard packing: Carton: 20 pcs.; Case: 200 pcs.

RATING

1. Coil data

1) AC coils $(50 / 60 \mathrm{~Hz})$

Type	Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Drop-out } \\ \text { voltage } \\ \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{gathered}$	Nominal coil current [$\pm 20 \%$] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Coil inductance		Nominal operating power		Max. allowable voltage (at $70^{\circ} \mathrm{C} 158^{\circ} \mathrm{F}$)
				50 Hz	60 Hz	N.C. condition	N.O. condition	50 Hz	60 Hz	
Standard	6 V AC	$80 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$30 \% \mathrm{~V}$ or more of nominal voltage (Initial)	224 mA	200 mA	0.078 H	0.074 H	1.3VA	1.2 VA	$110 \% \mathrm{~V}$ of nominal voltage
	12 V AC			111 mA	100 mA	0.312 H	0.295 H	1.3VA	1.2 VA	
	24 V AC			56 mA	50 mA	1.243 H	1.181 H	1.3VA	1.2VA	
	48 V AC			28 mA	25 mA	4.974 H	4.145 H	1.3VA	1.2VA	
	100/110V AC			$13.4 / 14.7 \mathrm{~mA}$	12/13.2mA	23.75 H	20.63 H	1.3 VA	1.2 VA	
	110/120V AC			$12.2 / 13.5 \mathrm{~mA}$	10.9/11.9mA	27.19 H	25.57 H	1.3 VA	1.2VA	
	200/220V AC			$6.7 / 7.4 \mathrm{~mA}$	6/6.6mA	85.98H	81.76H	1.3VA	1.2 VA	

Notes: 1. The relay operates in a range of 80% to $110 \% \mathrm{~V}$ of the voltage rating, but ideally, in consideration of temporary voltage fluctuations, it should be operated at the rated voltage. In particular, for AC operation, if the applied voltage drops to $80 \% \mathrm{~V}$ or more below the rated voltage, humming will occur and a large current will flow leading possibly to coil burnout.
2. The maximum allowable voltage is the maximum voltage fluctuation value for the coil power supply. This value is not a permissible value for continuous operation. (This value differs depending on the ambient temperature. Please contact us for details.
2) $D C$ coils

Type	Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal coil current [$\pm 10 \%$] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{aligned} & \text { Coil resistance } \\ & \quad[\pm 10 \%] \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Nominal operating power	Max. allowable voltage (at $70^{\circ} \mathrm{C} 158^{\circ} \mathrm{F}$)
Standard	6V DC	$80 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$10 \% \mathrm{~V}$ or more of nominal voltage (Initial)	150 mA	40Ω	0.9W	$110 \% \mathrm{~V}$ of nominal voltage
	12 V DC			75 mA	160Ω	0.9W	
	24V DC			37 mA	650Ω	0.9W	
	48 V DC			18.5 mA	2,600	0.9W	
	100/110V DC			10/11mA	10,000	1.0W	

Notes: 1. The coil resistance for DC operation is the value measured when the coil temperature is $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$. Compensate $\pm 0.4 \%$ for every $\pm 1^{\circ} \mathrm{C}$ change in temperature.
2. The relay operates in a range of 80% to $110 \% \mathrm{~V}$ of the voltage rating, but ideally, in consideration of temporary voltage fluctuations, it should be operated at the rated voltage.
3. For use with $200 \mathrm{~V} D C$, connect a $10 \mathrm{~K} \Omega(5 \mathrm{~W})$ resistor, in series, to the $100 \mathrm{~V} D C$ relay,
4. The maximum allowable impress voltage is the maximum voltage fluctuation value for the coil power supply. This value is not a permissible value for continuous operation. (This value differs depending on the ambient temperature. Please contact us for details.)

2. Specifications

Characteristics	Item		Specifications				
Contact	Arrangement		1 Form C	2 Form C	3 Form C	4 Form C	4 Form C (twin)
	Contact pressure		Approx. $0.294 \mathrm{~N}\{30 \mathrm{gf}\}$	Approx. 0.147N\{15gf\}	$\begin{aligned} & \hline \text { Approx. } \\ & 0.147 \mathrm{~N}\{15 \mathrm{gf}\} \\ & \hline \end{aligned}$	Approx. $0.098 \mathrm{~N}\{10 \mathrm{gf}\}$	Approx. $0.127 \mathrm{~N}\{13 \mathrm{gf}\}$
	Initial contact resistance, max		Max. $30 \mathrm{~m} \Omega$ (By voltage drop 6 V DC 1A)				
	Contact material		Ag alloy (cd free) + Au flash			AgNi type + Au clad	
Rating	Nominal switching capacity (resistive load)		10A 250V AC	7A 250V AC	7A 250V AC	5A 250V AC	3A 250V AC
	Max. switching power (resistive load)		2,500VA	1,750VA	1,750VA	1,250VA	750VA
	Max. switching voltage		250VAC				
	Max. switching current		10A	7A	7A	5A	3A
	Nominal operating power		AC (50Hz): $1.3 \mathrm{VA}, \mathrm{AC}(60 \mathrm{~Hz}): 1.2 \mathrm{VA}, \mathrm{DC}: 0.9$ to 1.1 W				
	Min. switching capacity (Reference value) ${ }^{* 1}$		$1 \mathrm{~mA} \mathrm{1V} \mathrm{DC}$				100 $\mu \mathrm{A}$ 1V DC
Electrical characteristics	Insulation resistance (Initial)		Min. $1,000 \mathrm{M} \Omega$ (at 500 V DC) Measurement at same location as "Initial breakdown voltage" section.				
	Breakdown voltage (Initial)	Between open contacts	700 Vrms for 1 min . (Detection current: 10 mA .)				
		Between contact sets	700 Vrms for 1 min . (Detection current: 10 mA .)				
		Between contact and coil	2,000 Vrms for 1 min . (Detection current: 10 mA .)				
	Temperature rise (at $70^{\circ} \mathrm{C} 158^{\circ} \mathrm{F}$)		Max. $80^{\circ} \mathrm{C}$ (By resistive method, nominal voltage)				
	Operate time (at $\left.20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)^{* 2}$		Max. 20ms (Nominal voltage applied to the coil, excluding contact bounce time.)				
	Release time (at $\left.20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)^{*}{ }^{\text {a }}$		Max. 20ms (Nominal voltage applied to the coil, excluding contact bounce time.) (without diode)				
Mechanical characteristics	Shock resistance	Functional	Min. $196 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$.)				
		Destructive	Min. $980 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 6 ms .)				
	Vibration resistance	Functional	10 to 55 Hz at double amplitude of 1 mm (Detection time: $10 \mu \mathrm{~s}$.)				
		Destructive	10 to 55 Hz at double amplitude of 2 mm				
	Mechanical		Min. 5×10^{7} : AC coil type (at 180 cpm); Min. 108: DC coil type (at 180 cpm)				
Expected life	Electrical (resistive load)		Min. 2×10^{5} (at 20 cpm)	Min. 2×10^{5} (at 20 cpm)	$\begin{aligned} & \text { Min. } 10^{5} \\ & \text { (at } 20 \mathrm{cpm}) \end{aligned}$	$\begin{aligned} & \text { Min. } 2 \times 10^{5} \\ & \text { (at } 20 \mathrm{cpm} \text {) } \\ & \hline \end{aligned}$	Min. 2×10^{5} (at 20 cpm)
Conditions	Conditions for operation, transport and storage*3		Ambient temperature: $-50^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}-58^{\circ} \mathrm{F}$ to $+158^{\circ} \mathrm{F}$ (without LED); $-50^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}-58^{\circ} \mathrm{F}$ to $+140^{\circ} \mathrm{F}$ (with LED) Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature)				
	Max. Operating speed		20 cpm (at max. rating)				
Unit weight			Approx. 30g 1.06 oz				

Notes: In accordance with the Electrical Appliance and Material Safety Law, you cannot exceed a voltage of 150 V AC when using the 4 Form C type. For more information, please inquire.
*1 This value can change due to the switching frequency, environmental conditions and desired reliability level, therefore it is recommended to check this with the actual load.
*2 For the AC coil types, the operate/release time will differ depending on the phase
*3The upper operation ambient temperature limit is the maximum temperature that can satisfy the coil temperature rise value. Refer to "6. Usage, Storage and Transport Conditions" in AMBIENT ENVIRONMENT (page 599).
3. Switching capacity and expected life

1) Electrical (at 20 cpm)

Load	AC				DC		Expected life
	Resistive ($\cos \varphi=1$)		Inductive ($\cos \varphi \doteqdot 0.4$)		Resistive	Inductive	
Voltage	125 V AC	250 V AC	125 V AC	250 V AC	30V DC	30V DC	
1 Form C	10A	10A	5A	3A	-	-	Min. 2×10^{5}
	7A	7A	3A	2.5 A	3A	1A	Min. 5×10^{5}
	5A	5A	2A	1.5 A	-	-	Min. 10^{6}
2 Form C	7A	7A	3.5A	2A	-	-	Min. 2×10^{5}
	5A	5A	2.5 A	1.5A	3A	0.6A	Min. 5×10^{5}
	3A	3A	1.5A	1A	-	-	Min. 10^{6}
3 Form C	7A	7A	-	-	-	-	Min. 10^{5}
	-	-	3.5A	2A	-	-	Min. 2×10^{5}
	5A	5A	-	-	3A	0.4 A	Min. 5×10^{5}
4 Form C	5A	5A	2A	1A	-	-	Min. 2×10^{5}
	3A	3A	1A	0.8 A	3A	0.4 A	Min. 5×10^{5}
	2A	2A	0.5A	0.4 A	-	-	Min. 10^{6}
4 Form C (twin)	3A	3A	1A	0.8 A	3A	-	Min. 2×10^{5}

2) Mechanical (at 180 cpm)

Min. 5×10^{7} (AC coil type); Min. 10^{8} (DC coil type)

REFERENCE DATA

1. Life curve

Load: 250 V AC resistive load

3.-(1) Coil temperature rise (1 Form C, AC type)
Measured portion: Inside the coil
Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$
(See note.)

3.-(4) Coil temperature rise
(4 Form C, AC type)
Measured portion: Inside the coil
Ambient temperature: 15 to $21^{\circ} \mathrm{C} 59$ to $70^{\circ} \mathrm{F}$
(See note.)

3.-(7) Coil temperature rise
(3 Form C, DC type)
Measured portion: Inside the coil
Ambient temperature: $29^{\circ} \mathrm{C} 84^{\circ} \mathrm{F}$

2.-(1) Switching capacity range (single contact type)

3.-(2) Coil temperature rise (2 Form C, AC type)
Measured portion: Inside the coil
Ambient temperature: $30^{\circ} \mathrm{C} 86^{\circ} \mathrm{F}$ (See note.)

3.-(5) Coil temperature rise
(1 Form C, DC type)
Measured portion: Inside the coil
Ambient temperature: $29^{\circ} \mathrm{C} 84^{\circ} \mathrm{F}$

3.-(8) Coil temperature rise
(4 Form C, DC type)
Measured portion: Inside the coil
Ambient temperature: 17 to $18^{\circ} \mathrm{C} 62$ to $64^{\circ} \mathrm{F}$

DIMENSIONS (mm inch) Interested in CAD data? You can obtain CAD data for all products with a CAD Data mark from your local Panasonic Electric Works representative.

1. Plug-in type

CAD Data

1 Form C type External dimensions

Schematic (Bottom view)
Standard type

General tolerance: $\pm 0.3 \pm .012$

General tolerance: $\pm 0.3 \pm .012$

General tolerance: $\pm 0.3 \pm .012$

CAD Data

4 Form C and 4-pole bifurcated (twin) types External dimensions

General tolerance: $\pm 0.3 \pm .012$
Schematic (Bottom view)
2. PC board type

4 Form C type External dimensions

General tolerance: $\pm 0.3 \pm .012$

PC board pattern

The diagrams show the external dimensions of the 4 Form C and 4-pole bifurcated (twin) types. For 1 Form C, 2 Form C, and 3 Form C, see diagrams at plug-in types (only the terminals are different).
Types with 0.9 mm terminal width are also available.

Schematic
Same schematic as plug-in type HC relay

3. TM type
 CAD Data

4 Form C type External dimensions

General tolerance: $\pm 0.3 \pm .012$

The diagrams show the external dimensions of the 4 Form C and 4-pole bifurcated (twin) types For 1 Form C, 2 Form C, and 3 Form C, see diagrams at plug-in types (only the terminals are different).

Chassis (Panel) cutout

Tolerance: $\pm 0.1 \pm .004$
Schematic
Same schematic as plug-in type HC relay Be aware that there is no LED indicator with CR circuit and built-in diode types.

Chassis (Panel) cutout in tandem mounting

Notes: 1. In mounting, use M3 screws and M3 washers.
2. When mounting TM types, use washers to prevent damage or distortion to the polycarbonate cover.
3. When tightening fixing screws, the optimum torque range should be 0.294 to $0.49 \mathrm{~N} \cdot \mathrm{~m}$, (3 to $5 \mathrm{kgf} \cdot \mathrm{cm}$) Moreover, use washers to prevent loosening.

For Cautions for Use, see Relay Technical Information (page 584).

Panasonic ideas for life

SEALED CONSTRUCTION High reliability ensured in challenging environments.

FEATURES

1. Even when left for long periods in challenging environments, resistance values for the contacts remain stable. 2. Compact yet compatible all over the world.
2. Can be used in a wide variety of applications.
3. With LED indication type also available
4. External dimensions and mounting dimensions same as for HC relays
Connection accessories (terminal sockets and sockets) also shared. 6. UL, CSA approval is standard

Compliance also with Japanese Electrical Appliance and Material Control Law.

TYPICAL APPLICATIONS

1. Where surrounding atmosphere is bad
Cotton mills, flour mills, chemical works, traffic signals, etc.
2. In situations where high reliability is required
Safety equipment, alarms, copiers,
telecommunications devices, computers, etc.

About Cd-free contacts

We have introduced Cadmium free type products to reduce Environmental Hazardous Substances. (The suffix "F" should be added to the part number. The Suffix " F " is required only for 1 Form C, 2 Form C contact type. The 4 Form C and 4 Form C bifurcated (twin) contact type is originally cadmium-free, the suffix " F " is not required.)
Please replace parts containing Cadmium with Cadmium-free products and evaluate them with your actual application before use because the life of a relay depends on the contact material and load.

ORDERING INFORMATION

[^22]
TYPES

1) Plug-in type

Coil voltage	1 Form C	2 Form C	4 Form C	4 Form C (twin)
	Part No.	Part No.	Part No.	Part No.
6 V AC	HC1E-H-AC6V-F	HC2E-H-AC6V-F	HC4E-H-AC6V	HC4ED-H-AC6V
12 V AC	HC1E-H-AC12V-F	HC2E-H-AC12V-F	HC4E-H-AC12V	HC4ED-H-AC12V
24 V AC	HC1E-H-AC24V-F	HC2E-H-AC24V-F	HC4E-H-AC24V	HC4ED-H-AC24V
48 V AC	HC1E-H-AC48V-F	HC2E-H-AC48V-F	HC4E-H-AC48V	HC4ED-H-AC48V
100/110V AC	HC1E-H-AC100V-F	HC2E-H-AC100V-F	HC4E-H-AC100V	HC4ED-H-AC100V
110/120V AC	HC1E-H-AC120V-F	HC2E-H-AC120V-F	HC4E-H-AC120V	HC4ED-H-AC120V
200/220V AC	HC1E-H-AC200V-F	HC2E-H-AC200V-F	HC4E-H-AC200V	HC4ED-H-AC200V
220/240V AC	HC1E-H-AC240V-F	HC2E-H-AC240V-F	HC4E-H-AC240V	HC4ED-H-AC240V
6 V DC	HC1E-H-DC6V-F	HC2E-H-DC6V-F	HC4E-H-DC6V	HC4ED-H-DC6V
12 V DC	HC1E-H-DC12V-F	HC2E-H-DC12V-F	HC4E-H-DC12V	HC4ED-H-DC12V
24 V DC	HC1E-H-DC24V-F	HC2E-H-DC24V-F	HC4E-H-DC24V	HC4ED-H-DC24V
48 V DC	HC1E-H-DC48V-F	HC2E-H-DC48V-F	HC4E-H-DC48V	HC4ED-H-DC48V
100/110V DC	HC1E-H-DC100V-F	HC2E-H-DC100V-F	HC4E-H-DC100V	HC4ED-H-DC100V

Standard packing: Carton: 20 pcs.; Case: 200 pcs.

2) Plug-in type (With LED indication)

Coil voltage	1 Form C	2 Form C	4 Form C	4 Form C (twin)
	Part No.	Part No.	Part No.	Part No.
$6 V$ AC	HC1E-L-AC6V-F	HC2E-L-AC6V-F	HC4E-L-AC6V	HC4ED-L-AC6V
12 V AC	HC1E-L-AC12V-F	HC2E-L-AC12V-F	HC4E-L-AC12V	HC4ED-L-AC12V
$24 V$ AC	HC1E-L-AC24V-F	HC2E-L-AC24V-F	HC4E-L-AC24V	HC4ED-L-AC24V
$48 V$ AC	HC1E-L-AC48V-F	HC2E-L-AC48V-F	HC4E-L-AC48V	HC4ED-L-AC48V
$100 / 110 V$ AC	HC1E-L-AC100V-F	HC2E-L-AC100V-F	HC4E-L-AC100V	O
$110 / 120 V$ AC	HC1E-L-AC120V-F	HC2E-L-AC120V-F	HC4E-L-AC120V	HC4ED-L-AC100V
$200 / 220 V$ AC	HC1E-L-AC200V-F	HC2E-L-AC200V-F	HC4E-L-AC200V	HC4ED-L-AC120V
$220 / 240 V$ AC	HC1E-L-AC240V-F	HC2E-L-AC240V-F	HC4E-L-AC240V	HC4ED-L-AC200V
$6 V ~ D C ~$	HC1E-L-DC6V-F	HC2E-L-DC6V-F	HC4E-L-DC6V	HC4ED-L-DC6V
$12 V$ DC	HC1E-L-DC12V-F	HC2E-L-DC12V-F	HC4E-L-DC12V	HC4ED-L-DC12V
$24 V$ DC	HC1E-L-DC24V-F	HC2E-L-DC24V-F	HC4E-L-DC24V	HC4ED-L-DC24V
$48 V ~ D C ~$	HC1E-L-DC48V-F	HC2E-L-DC48V-F	HC4E-L-DC48V	HC4ED-L-DC48V
$100 / 110 V ~ D C ~$	HC1E-L-DC100V-F	HC2E-L-DC100V-F	HC4E-L-DC100V	HC4ED-L-DC100V

Standard packing: Carton: 20 pcs.; Case: 200 pcs.

3) PC board type

Coil voltage	1 Form C	2 Form C	4 Form C	P Form C (twin)
	Part No.	Part No.	Part No.	
$6 V$ AC	HC1E-HP-AC6V-F	HC2E-HP-AC6V-F	HC4E-HP-AC6V	HC4ED-HP-AC6V
$12 V ~ A C ~$	HC1E-HP-AC12V-F	HC2E-HP-AC12V-F	HC4E-HP-AC12V	HC4ED-HP-AC12V
$24 V$ AC	HC1E-HP-AC24V-F	HC2E-HP-AC24V-F	HC4E-HP-AC24V	HC4ED-HP-AC24V
$48 V ~ A C ~$	HC1E-HP-AC48V-F	HC2E-HP-AC48V-F	HC4E-HP-AC48V	HC4ED-HP-AC48V
$100 / 110 V ~ A C ~$	HC1E-HP-AC100V-F	HC2E-HP-AC100V-F	HC4E-HP-AC100V	HC4ED-HP-AC100V
$110 / 120 V ~ A C ~$	HC1E-HP-AC120V-F	HC2E-HP-AC120V-F	HC4E-HP-AC120V	HC4ED-HP-AC120V
$200 / 220 V ~ A C ~$	HC1E-HP-AC200V-F	HC2E-HP-AC200V-F	HC4E-HP-AC200V	HC4ED-HP-AC200V
$220 / 240 V ~ A C ~$	HC1E-HP-AC240V-F	HC2E-HP-AC240V-F	HC4E-HP-AC240V	HC4ED-HP-AC240V
$6 V ~ D C ~$	HC1E-HP-DC6V-F	HC2E-HP-DC6V-F	HC4E-HP-DC6V	HC4ED-HP-DC6V
$12 V ~ D C ~$	HC1E-HP-DC12V-F	HC2E-HP-DC12V-F	HC4E-HP-DC12V	HC4ED-HP-DC12V
$24 V ~ D C ~$	HC1E-HP-DC24V-F	HC2E-HP-DC24V-F	HC4E-HP-DC24V	HC4ED-HP-DC24V
$48 V ~ D C ~$	HC1E-HP-DC48V-F	HC2E-HP-DC48V-F	HC4E-HP-DC48V	HC4ED-HP-DC48V
$100 / 110 V ~ D C ~$	HC1E-HP-DC100V-F	HC2E-HP-DC100V-F	HC4E-HP-DC100V	HC4ED-HP-DC100V

Standard packing: Carton: 20 pcs.; Case: 200 pcs.
Note: The PC board 0.9 mm width terminal type is also available, please part number. suffix " 31 " is needed when ordering (4 Form C, 4 Form C (twin) only)
4) PC board type (With LED indication)

Coil voltage	1 Form C	2 Form C	4 Form C	P Form C (twin)
	Part No.	Part No.	Part No.	HC4ED-PL-AC6V
$6 V$ AC	HC1E-PL-AC6V-F	HC2E-PL-AC6V-F	HC4E-PL-AC6V	HC4ED-PL-AC12V
$12 V ~ A C ~$	HC1E-PL-AC12V-F	HC2E-PL-AC12V-F	HC4E-PL-AC12V	HC4ED-PL-AC24V
$24 V$ AC	HC1E-PL-AC24V-F	HC2E-PL-AC24V-F	HC4E-PL-AC24V	HC4ED-PL-AC48V
$48 V ~ A C ~$	HC1E-PL-AC48V-F	HC2E-PL-AC48V-F	HC4E-PL-AC48V	HC4ED-PL-AC100V
$100 / 110 V ~ A C ~$	HC1E-PL-AC100V-F	HC2E-PL-AC100V-F	HC4E-PL-AC100V	HC4ED-PL-AC120V
$110 / 120 V ~ A C ~$	HC1E-PL-AC120V-F	HC2E-PL-AC120V-F	HC4E-PL-AC120V	HC4ED-PL-AC200V
$200 / 220 V ~ A C ~$	HC1E-PL-AC200V-F	HC2E-PL-AC200V-F	HC4E-PL-AC200V	HC4ED-PL-AC240V
$220 / 240 V ~ A C ~$	HC1E-PL-AC240V-F	HC2E-PL-AC240V-F	HC4E-PL-AC240V	HC4ED-PL-DC6V
$6 V ~ D C ~$	HC1E-PL-DC6V-F	HC2E-PL-DC6V-F	HC4E-PL-DC6V	HC4ED-PL-DC12V
$12 V ~ D C ~$	HC1E-PL-DC12V-F	HC2E-PL-DC12V-F	HC4E-PL-DC12V	HC4ED-PL-DC24V
$24 V ~ D C ~$	HC1E-PL-DC24V-F	HC2E-PL-DC24V-F	HC4E-PL-DC24V	HC4ED-PL-DC48V
$48 V ~ D C ~$	HC1E-PL-DC48V-F	HC2E-PL-DC48V-F	HC4E-PL-DC48V	HC4ED-PL-DC100V
$100 / 110 V ~ D C ~$	HC1E-PL-DC100V-F	HC2E-PL-DC100V-F	HC4E-PL-DC100V	

Standard packing: Carton: 20 pcs.; Case: 200 pcs.
Note: The PC board 0.9 mm width terminal type is also available, please part number. suffix " 31 " is needed when ordering (4 Form C, 4 Form C (twin) only)

5) TM type

Coil voltage	1 Form C	2 Form C	4 Form C	4 Form C (twin)
	Part No.	Part No.	Part No.	Part No.
$6 V$ AC	HC1E-HTM-AC6V-F	HC2E-HTM-AC6V-F	HC4E-HTM-AC6V	HC4ED-HTM-AC6V
$12 V$ AC	HC1E-HTM-AC12V-F	HC2E-HTM-AC12V-F	HC4E-HTM-AC12V	HC4ED-HTM-AC24V
$24 V$ AC	HC1E-HTM-AC24V-F	HC2E-HTM-AC24V-F	HC4E-HTM-AC24V	HC4ED-HTM-AC48V
$48 V ~ A C ~$	HC1E-HTM-AC48V-F	HC2E-HTM-AC48V-F	HC4E-HTM-AC48V	HC4ED-HTM-AC100V
$100 / 110 V ~ A C ~$	HC1E-HTM-AC100V-F	HC2E-HTM-AC100V-F	HC4E-HTM-AC100V	HC4ED-HTM-AC120V
$110 / 120 V ~ A C ~$	HC1E-HTM-AC120V-F	HC2E-HTM-AC120V-F	HC4E-HTM-AC120V	HC4ED-HTM-AC200V
$200 / 220 V$ AC	HC1E-HTM-AC200V-F	HC2E-HTM-AC200V-F	HC4E-HTM-AC200V	HC4ED-HTM-AC240V
$220 / 240 V ~ A C ~$	HC1E-HTM-AC240V-F	HC2E-HTM-AC240V-F	HC4E-HTM-AC240V	HC4ED-HTM-DC6V
$6 V ~ D C ~$	HC1E-HTM-DC6V-F	HC2E-HTM-DC6V-F	HC4E-HTM-DC6V	HC4ED-HTM-DC12V
$12 V ~ D C ~$	HC1E-HTM-DC12V-F	HC2E-HTM-DC12V-F	HC4E-HTM-DC12V	HC4ED-HTM-DC24V
$24 V ~ D C ~$	HC1E-HTM-DC24V-F	HC2E-HTM-DC24V-F	HC4E-HTM-DC24V	HC4ED-HTM-DC48V
$48 V ~ D C ~$	HC1E-HTM-DC48V-F	HC2E-HTM-DC48V-F	HC4E-HTM-DC48V	HC4ED-HTM-DC100V
$100 / 110 V ~ D C ~$	HC1E-HTM-DC100V-F	HC2E-HTM-DC100V-F	HC4E-HTM-DC100V	

Standard packing: Carton: 20 pcs.; Case: 200 pcs.

RATING

1. Coil data (Common for standard types)

2. Specifications

Characteristics	Item	Specifications			
		1 Form C	2 Form C	4 Form C	4 Form C (twin)
Contact	Arrangement	1 Form C	2 Form C	4 Form C	4 Form C
Rating	Nominal switching capacity (resistive load)	5 A 250 V AC	3 A 250 V AC	2 A 250 V AC	1 A 250 V AC
	Max. switching power (resistive load)	1,250VA	700VA	500VA	250VA
	Max. switching voltage	250VAC	250VAC	250VAC	250VAC
	Max. switching current	5A	3A	2A	1A
	Min. switching capacity (Reference value)*1	1 mA 100 mV DC $100 \mu \mathrm{~A} 100 \mathrm{mV} \mathrm{DC}$ Max. $90^{\circ} \mathrm{C}$ (By resistive method, nominal voltage)			
Electrical characteristics	Temperature rise (at $60^{\circ} \mathrm{C} 140^{\circ} \mathrm{F}$)				
Expected life	Electrical	Min. 2×10^{5} resistive load (at 20 cpm)			
Conditions	Conditions for operation, transport and storage*2	Ambient temperature: $-40^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+140^{\circ} \mathrm{F}$; Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature)			
	Ambient air pressure	$760 \mathrm{mmHg} \pm 20 \%$ (1,013mb $\pm 20 \%)$			

Notes:Other specifications are same as standard types.
*1This value can change due to the switching frequency, environmental conditions and desired reliability level, therefore it is recommended to check this with the actual load.
*2The upper operation ambient temperature limit is the maximum temperature that can satisfy the coil temperature rise value.Refer to " 6 . Usage, Storage and Transport Conditions" in AMBIENT ENVIRONMENT (page 599).

3. Switching capacity and expected life

1) Electrical (at 20 cpm)

Load	AC				DC		Expected life
	Resistive ($\cos \varphi=1$)		Inductive ($\cos \varphi \fallingdotseq 0.4$)		Resistive	Inductive	
Voltage	125 V AC	250 V AC	125 V AC	250 V AC	30V DC	30V DC	
HC1E	5A	5A	-	-	3A	1A	Min. 2×10^{5}
HC2E	3A	3A	-	-	2A	1.7A	Min. 2×10^{5}
HC4E	2A	2A	-	-	2A	0.6A	Min. 2×10^{5}
HC4ED (4 Form C twin)	1A	1A	-	-	-	-	Min. 2×10^{5}

2) Mechanical (at 180 cpm)

Min. 5×10^{7} (AC coil type); Min. 10^{8} (DC coil type)

REFERENCE DATA

1.-(1) Switching capacity range (single contact type)

2.-(2) Coil temperature rise (2 Form C AC type) Measured portion: Inside the coil
Ambient temperature: $30^{\circ} \mathrm{C} 86^{\circ} \mathrm{F}$

2.-(5) Coil temperature rise (2 Form C DC type)

Measured portion: Inside the coil
Ambient temperature: $30^{\circ} \mathrm{C} 86^{\circ} \mathrm{F}$

1.-(2) Switching capacity range
(4-pole bifurcated (twin))

$—$ AC current
2.-(3) Coil temperature rise (4 Form C AC type) Measured portion: Inside the coil Ambient temperature: $30^{\circ} \mathrm{C} 86^{\circ} \mathrm{F}$

2.-(1) Coil temperature rise (1 Form C AC type) Measured portion: Inside the coil Ambient temperature: $30^{\circ} \mathrm{C} 86^{\circ} \mathrm{F}$

2.-(4) Coil temperature rise (1 Form C DC type) Measured portion: Inside the coil Ambient temperature: $30^{\circ} \mathrm{C} 86^{\circ} \mathrm{F}$

DIMENSIONS

HC relays are unified to standard sizes.
Please refer to standard type information.

Note: Coil temperature rise

When the nominal voltage is applied to AC 120 or 240 V coil types respectively, the figures of coil temperature rise increase by approx. 10 degrees to the ones shown on each graph.

NOTES

When mounting TM types, use washers to prevent damage or distortion to the polycarbonate cover. When tightening fixing screws, the optimum torque range should be 0.294 to $0.49 \mathrm{~N} \cdot \mathrm{~m}$, (3 to 5 $\mathrm{kgf} \cdot \mathrm{cm}$). If screws are over tightened, the cover may distort, resulting in poor sealing. Moreover, to prevent loosening, use washers.

For Cautions for Use, see Relay Technical Information (page 584).

Panasonic ideas for life

MAGNETIC MEMORY TYPE HC RELAY

HC LATCHING (KEEP)RELAYS

FEATURES

1. Energy-saving type
2. Wide range of applications in control circuits for industrial equipment and consumer devices.
3. Form factors same as for HC relays
4. With operation indicator
5. Can be used in a wide variety of applications.

About Cd-free contacts

We have introduced Cadmium free type products to reduce Environmental Hazardous Substances. (The suffix "F" should be added to the part number.) Please replace parts containing Cadmium with Cadmium-free products and evaluate them with your actual application before use because the life of a relay depends on the contact material and load.

TYPES

Plug-in type	PC board type
Part No.	Part No.
HC2K-AC6V-F	HC2K-P-AC6V-F
HC2K-AC12V-F	HC2K-P-AC12V-F
HC2K-AC24V-F	HC2K-P-AC24V-F
HC2K-AC48V-F	HC2K-P-AC48V-F
HC2K-AC100V-F	HC2K-P-AC100V-F
HC2K-DC6V-F	HC2K-P-DC6V-F
HC2K-DC12V-F	HC2K-P-DC12V-F
HC2K-DC24V-F	HC2K-P-DC24V-F
HC2K-DC100V-F	HC2K-P-DC48V-F

Standard packing: Carton: 20 pcs.; Case: 200 pcs.
Notes: 1. Some materials and price vary. Please inquire for details.
2. Please refer to the standards chart for information on compliance with international standards.

RATING

1. Coil data
1) AC coils $(50 / 60 \mathrm{~Hz})$

Contact arrangement	Nominal coil voltage	$\begin{aligned} & \text { Set voltage } \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating current $[\pm 10 \%$] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Coil inductance				Nominal operating power		Max. allowable voltage (at $50^{\circ} \mathrm{C} 122^{\circ} \mathrm{F}$)
						Set coil		Reset coil				
				Set coil	Reset coil	N.C. codition	N.O. condition	N.C. codition	$\begin{gathered} \text { N.O. } \\ \text { condition } \end{gathered}$	Set coil	Reset coil	
2 Form C	6 V AC	$80 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$80 \% \mathrm{~V}$ or less of nominal voltage (Initial)	206 mA	103 mA	-	-	-	-	1.23VA	0.62 VA	$110 \% \mathrm{~V}$ of nominal voltage
	12 V AC			100 mA	52 mA	-	-	-	-	1.20VA	0.62 VA	
	24 V AC			51 mA	21.4 mA	-	-	-	-	1.22VA	0.51VA	
	48 V AC			25.2 mA	18.5 mA	-	-	-	-	1.20VA	0.88 VA	
	100 V AC			13.3 mA	7.1 mA	-	-	-	-	1.33 VA	0.71VA	

2) $D C$ coils

Contact arrangement	Nominal coil voltage	$\begin{aligned} & \text { Set voltage } \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating current [$\pm 10 \%$] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Coil resistance [$\pm 10 \%$] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Nominal operating power		Max. allowable voltage (at $50^{\circ} \mathrm{C} 122^{\circ} \mathrm{F}$)
				Set coil	Reset coil	Set coil	Reset coil	Set coil	Reset coil	
2 Form C	6 V DC	$80 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$80 \% \mathrm{~V}$ or less of nominal voltage (Initial)	207 mA	107 mA	29Ω	56Ω	1.24 W	0.64 W	$110 \% \mathrm{~V}$ of nominal voltage
	12V DC			100 mA	52.2 mA	120Ω	230Ω	1.20 W	0.63 W	
	24V DC			51.1 mA	25.5 mA	470Ω	941Ω	1.23 W	0.61W	
	48 V DC			25.3 mA	13.7 mA	1,897 Ω	3,504 Ω	1.21 W	0.66W	
	100V DC			15.6 mA	5.8 mA	6,410 Ω	17,241 Ω	1.56W	0.58 W	

Notes: 1 . The allowable coil resistance range is $\pm 10 \%$ when within $1,000 \Omega$ and $\pm 15 \%$ when. $1,000 \Omega$ or higher.
2. The maximum allowable voltage is the maximum voltage fluctuation value for the coil power supply. This value is not a permissible value for continuous operation. (This value differs depending on the ambient temperature. Please contact us for details.)

2. Specifications

Characteristics	Item		Specifications
Contact	Contact pressure		Approx. 0.098N\{10gf\}
	Initial contact resistance, max		Max. $50 \mathrm{~m} \Omega$ (By voltage drop 6 V DC 1A)
Rating	Nominal switching capacity (resistive load)		3 A 250 V AC
	Max. switching power (resistive load)		750 VA
	Max. switching current		3A
	Nominal operating power		Set coil: 1.20VA to 1.33VA; Reset coil: 0.51 VA to 0.88 VA
	Min. switching capacity (Reference value)*1		$100 \mu \mathrm{~A} 100 \mathrm{mV}$ DC
Electrical characteristics	Breakdown voltage (Initial)	Between contact and coil	1,500 Vrms for 1min. (initial)
	Temperature rise		Set coil: Max. $80^{\circ} \mathrm{C}$; Reset coil: Max. $50^{\circ} \mathrm{C}$ (at nominal voltage)
	Set time/Reset time (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Approx. $20 \mathrm{~ms} / 30 \mathrm{~ms}$ (at nominal voltage)
Mechanical characteristics	Shock resistance	Functional	Min. $98 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$.)
Expected life	Mechanical		Min. 10^{7} (at 180 cpm)
	Electrical		Min. 2×10^{5} rated load (at 20 cpm)
Conditions	Ambient temperature		$-40^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+122^{\circ} \mathrm{F}$ (Not freezing and condensing at low temperature)

Notes:*1This value can change due to the switching frequency, environmental conditions and desired reliability level, therefore it is recommended to check this with the actual load.
2.Other specifications are same as standard types.

REFERENCE DATA

Coil temperature rise
Tested sample: HC2K-DC12V, 2 pcs
Measured portion: Inside the coil
Ambient temperature: $28^{\circ} \mathrm{C} 82.4^{\circ} \mathrm{F}$

Plug-in type (2 Form C)

CAD Data

External dimensions

Schematic (Bottom view)

AC type

General tolerance: $\pm 0.3 \pm .012$
PC board type (2 Form C)

External dimensions

General tolerance: $\pm 0.3 \pm .012$

Schematic (Bottom view)

PC board pattern (Bottom view)

MOUNTING METHOD

The mounting method and mounting holes can all be made the same as for the 4 Form C HC relay terminal socket.

NOTES

1. The schematic differs from that in the standard type 4 Form C HC relay. Follow the schematic on the cover sticker.
2. Conform with the schematic for the DC type, which has a polarized coil.
3. Because retention characteristics vary according to the waveform of the voltage applied to the coil, do your best to avoid capacitor driving. In capacitor driving, use a capacitor of $300 \mu \mathrm{~F}$ or more.
4. Ensure that the minimum pulse width of voltage applied to coil is greater than 150 ms .

For Cautions for Use, see Relay Technical Information (page 584).

Panasonic ideas for life

Has built-in diode to absorb surge For use in semiconductor circuits

FEATURES

1. The built-in diode absorbs surge voltage arising when the coil goes to the off state (for DC type).
Diode characteristics;
Reverse breakdown voltage: 1,000V, Forward current: 1A
2. With LED indicator type also available
3. UL, CSA approval is standard Compliance also with Japanese Electrical Appliance and Material Control Law.

TYPICAL APPLICATIONS

Suitable for factory automation equipment and automotive devices 1. Control panels, power supply equipment, molding equipment, machine tools, welding equipment, agricultural equipment, etc.
2. Office equipment, automatic vending machines, telecommunications equipment, disaster prevention equipment, copiers, measuring devices, medical equipment, amusement devices, etc. 3. All types of household appliance About Cd-free contacts

We have introduced Cadmium free type products to reduce Environmental Hazardous Substances. (The suffix "F" should be added to the part number. The Suffix " F " is required only for 1 Form C, 2 Form C, 3 Form C contact type. The 4 Form C and 4 Form C bifurcated (twin) contact type is originally cadmium-free, the suffix " F " is not required.) Please replace parts containing Cadmium with Cadmium-free products and evaluate them with your actual application before use because the life of a relay depends on the contact material and load.

TYPES

1) Plug-in type

Coil voltage	1 Form C	2 Form C	3 Form C	4 Form C
	Part No.	Part No.	Part No.	Part No.
6V DC	HC1-DC6V-D-F	HC2-DC6V-D-F	HC3-DC6V-D-F	HC4-DC6V-D
12V DC	HC1-DC12V-D-F	HC2-DC12V-D-F	HC3-DC12V-D-F	HC4-DC12V-D
$24 V$ DC	HC1-DC24V-D-F	HC2-DC24V-D-F	HC3-DC24V-D-F	HC4-DC24V-D
48V DC	HC1-DC48V-D-F	HC2-DC48V-D-F	HC3-DC48V-D-F	HC4-DC48V-D
100/110V DC	HC1-DC100V-D-F	HC2-DC100V-D-F	HC3-DC100V-D-F	HC4-DC100V-D

Standard packing: Carton: 20 pcs.; Case: 200 pcs.
2) Plug-in type (with LED indication)

Coil voltage	1 Form C	2 Form C	3 Form C	4 Form C	4 Form C (twin)
	Part No.				
$6 V$ DC	HC1-L-DC6V-D-F	HC2-L-DC6V-D-F	HC3-L-DC6V-D-F	HC4-L-DC6V-D	HC4D-L-DC6V-D
$12 V$ DC	HC1-L-DC12V-D-F	HC2-L-DC12V-D-F	HC3-L-DC12V-D-F	HC4-L-DC12V-D	HC4D-L-DC12V-D
$24 V$ DC	HC1-L-DC24V-D-F	HC2-L-DC24V-D-F	HC3-L-DC24V-D-F	HC4-L-DC24V-D	HC4D-L-DC24V-D
$48 V$ DC	HC1-L-DC48V-D-F	HC2-L-DC48V-D-F	HC3-L-DC48V-D-F	HC4-L-DC48V-D	HC4D-L-DC48V-D
$100 / 110 V ~ D C ~$	HC1-L-DC100V-D-F	HC2-L-DC100V-D-F	HC3-L-DC100V-D-F	HC4-L-DC100V-D	HC4D-L-DC100V-D

[^23]
RATING

1. Coil data (Common for standard DC coil types)
2. Specifications

Characteristics	Item	Specifications
Conditions	Conditions for operation, transport and storage*	Ambient temperature: $-50^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}-58^{\circ} \mathrm{F}$ to $+140^{\circ} \mathrm{F}$ Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature)

Notes: Other specifications are same as standard types.
*The upper operation ambient temperature limit is the maximum temperature that can satisfy the coil temperature rise value. Refer to " 6 . Usage, Storage and Transport Conditions" in AMBIENT ENVIRONMENT (page 599).

REFERENCE DATA

1.-(1) DC coil surge voltage waveform (without diode)
1.-(2) DC coil surge voltage waveform (with diode)
Diode characteristics;
Reverse breakdown voltage: $1,000 \mathrm{~V}$,
Forward current: 1A

DIMENSIONS

Same dimensions as HC relay standard/ plug-in type

Schematic
Without LED indicator

Protection (surge-absorbing) diode

With LED indicator

Protection (surge-absorbing) diode

NOTES

1. Pay attention to the polarity.
2. Diode characteristics

Reverse breakdown voltage: 1,000V
Forward current: 1A

For Cautions for Use, see Relay Technical Information (page 584).

Panasonic ideas for life

Able to absorb surge voltage in AC specification CR circuit is built-in

HC RELAYS

 WITH CR

FEATURES

1. With CR circuits built in, surge voltage arising in the AC type when the coil goes to the off state is absorbed.
2. HC relay with LED indication type also available
3. UL, CSA approval is standard Compliance also with Japanese Electrical Appliance and Material Control Law.

TYPICAL APPLICATIONS

Suitable for factory automation equipment and automotive devices 1. Control panels, power supply equipment, molding equipment, machine tools, welding equipment, agricultural equipment, etc.
2. Office equipment, automatic vending machines, telecommunications equipment, disaster prevention equipment, copiers, measuring devices, medical equipment, amusement devices, etc.

About Cd-free contacts

We have introduced Cadmium free type products to reduce Environmental Hazardous Substances. (The suffix "F" should be added to the part number. The Suffix " F " is required only for 1 Form C, 2 Form C, 3 Form C contact type. The 4 Form C and 4 Form C bifurcated (twin) contact type is originally cadmium-free, the suffix " F " is not required.) Please replace parts containing Cadmium with Cadmium-free products and evaluate them with your actual application before use because the life of a relay depends on the contact material and load.

TYPES

1) Plug-in type

Coil voltage	1 Form C	2 Form C	3 Form C	4 Form C	4 Form C (twin)
	Part No.				
$100 / 110 V$ AC	HC1-AC100V-R-F	HC2-AC100V-R-F	HC3-AC100V-R-F	HC4-AC100V-R	HC4D-AC100V-R
$110 / 120 V$ AC	HC1-AC120V-R-F	HC2-AC120V-R-F	HC3-AC120V-R-F	HC4-AC120V-R	HC4D-AC120V-R
$200 / 220 V$ AC	HC1-AC200V-R-F	HC2-AC200V-R-F	HC3-AC200V-R-F	HC4-AC200V-R	HC4D-AC200V-R
$220 / 240 V$ AC	HC1-AC240V-R-F	HC2-AC240V-R-F	HC3-AC240V-R-F	HC4-AC240V-R	HC4D-AC240V-R

Standard packing: Carton: 20 pcs.; Case: 200 pcs.

2) Plug-in type (with LED indication)

Coil voltage	1 Form C	2 Form C	3 Form C	4 Form C	4 Form C (twin)
	Part No.				
$100 / 110 V$ AC	HC1-L-AC100V-R-F	HC2-L-AC100V-R-F	HC3-L-AC100V-R-F	HC4-L-AC100V-R	HC4D-L-AC100V-R
$110 / 120 V$ AC	HC1-L-AC120V-R-F	HC2-L-AC120V-R-F	HC3-L-AC120V-R-F	HC4-L-AC120V-R	HC4D-L-AC120V-R
$200 / 220 V$ AC	HC1-L-AC200V-R-F	HC2-L-AC200V-R-F	HC3-L-AC200V-R-F	HC4-L-AC200V-R	HC4D-L-AC200V-R
$220 / 240 V$ AC	HC1-L-AC240V-R-F	HC2-L-AC240V-R-F	HC3-L-AC240V-R-F	HC4-L-AC240V-R	HC4D-L-AC240V-R

Standard packing: Carton: 20 pcs.; Case: 200 pcs.

RATING

1. Coil data (Common for standard AC coil types)

2. Specifications

Characteristics	Item	Specifications
Electrical characteristics	Temperature rise	Max. $90^{\circ} \mathrm{C}\left(\right.$ By resistive method, nominal voltage, rated current at $\left.60^{\circ} \mathrm{C}\right)$
Conditions	Conditions for operation, transport and storage*	Ambient temperature: $-50^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}-58^{\circ} \mathrm{F}$ to $+140^{\circ} \mathrm{F}$ Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature)

[^24]
REFERENCE DATA

1.-(1) AC coil surge voltage waveform
1.-(2) AC coil surge voltage waveform (with CR circuit)
Tested sample: HC4-AC200V-R

(without CR circuit)
Tested sample: HC4-AC200V

DIMENSIONS (Unit: mm inch)

Plug-in type

4 Form C External dimensions

General tolerance: $\pm 0.3 \pm .012$
Schematic
Without LED indicator With LED indicator

Diagrams show the external
dimensions and schematic of the 4 Form C and 4-pole bifurcated (twin) types. For the 1 Form C, 2 Form C, and 3 Form C types, only the terminals differ. The dimensions of the terminal are the same as for standard type HC relays.

Connection accessories

Connection accessories (terminal sockets and sockets) are the same as for standard type HC relays. To hold the relay in place, use the hold-down clip that is provided.

For Cautions for Use, see Relay Technical Information (page 584).

Panasonic ideas for life

ACCESSORIES (Sockets and Terminal sockets)

HC RELAY SOCKETS

1. Plug-in type sockets, PC board type sockets, and wrapping type sockets are available for HC relays.
2. In the table below, the socket suitable for each type of HC relay is indicated by a black dot.
3. UL/CSA approval is standard.
4. A hold-down clip is included in the package.

The fixing method is the same as for HC sockets, ordinary HC terminal sockets and HL sockets.

HC/HL-LEAF-SPRING-MK

SOCKET SELECTOR CHART

Type	No. of pole	Item	Part No.	Applicable HC relay (Plug-in type)									
				Standard/Bifurcated contact (DC)					Amber				($\begin{gathered}\text { Keep } \\ \text { relay }\end{gathered}$
				1 Form C	2 Form C	3 Form C	4 Form C	$\begin{array}{\|c} \hline \text { 4Form C } \\ \text { (twin) } \\ \hline \end{array}$	1 Form C	2 Form C	4 Form C	4 Form C (twin)	
Plug-in	2-pole	HC2-socket	HC2-SS-K		-					-			
	1/2/4-pole (common)	HC4-socket	HC4-SS-K	-	\bullet		-	\bullet	\bullet	-	-	-	-
PC board	1-pole	HC1-socket for PC board	HC1-PS-K	\bullet					\bullet				
	2-pole	HC2-socket for PC board	HC2-PS-K		-					\bullet			
	3 -pole	HC3-socket for PC board	HC3-PS-K		\bullet	\bullet				\bullet			
	1/2/4-pole (common)	HC4-socket for PC board	HC4-PS-K	-	\bullet		\bullet	\bullet	\bullet	-	-	\bullet	-
Wrapping	1/2/4-pole (common)	HC4-wrapping socket	HC4-WS-K	-	\bullet		\bullet	\bullet	\bullet	-	-	\bullet	\bullet

Notes: 1. Use the retainer that is shipped with the terminal socket.
2. UL/CSA approved type is standard (except for wrapping socket).

HC RELAY TERMINAL SOCKETS

1. Ordinary terminal sockets and terminal sockets for DIN rail assembly are available.
2. In the table below, the terminal socket suitable for each type of HC relay is indicated by a black dot. 3. UL/CSA approval is standard. 4. A hold-down clip is included in the package.

Ordinary terminal socket

The fixing method is the same as for the HC DIN rail terminal sockets and the HL DIN terminal sockets.

HC/HL-LEAF-SPRING-K
Terminal sockets for DIN rail assembly

TERMINAL SOCKET SELECTOR CHART

	No. of pole	Item	Part No.	Packing quantity		Applicable HC relay (Plug-in type)									
						Standard/Bifurcated contact (DC)					Amber				Keeprelay
				Carton	Case	1 Form C	2 Form C	3 Form C	4 Form C	$\begin{array}{\|l\|} \hline \text { 4 Form C } \\ \text { (twin) } \\ \hline \end{array}$	1 Form C	2 Form C	4 Form C	$\begin{array}{\|c} \hline \text { 4 Form C } \\ \text { (twin) } \end{array}$	
	2-pole	HC2-slim type DIN terminal socket	HC2-SFD-S	$\begin{gathered} 20 \\ \text { pcs. } \end{gathered}$	$\begin{aligned} & 100 \\ & \text { pcs. } \\ & \hline \end{aligned}$		\bullet					-			
	2-pole	HC2-DIN	HC2-SFD-K	$\begin{gathered} 10 \\ \text { ncs } \end{gathered}$	$\begin{aligned} & 100 \\ & \text { pcs } \end{aligned}$		\bullet					\bullet			
	3 -pole	HC3-DIN	HC3-SFD-K	$\begin{gathered} 5 \\ \text { pcs. } \end{gathered}$	$\begin{gathered} 50 \\ \text { pcs. } \end{gathered}$		\bullet	\bullet				\bullet			
	1/2/4-pole (common)	HC4-DIN high terminal socket	HC4-SFD-K	$\begin{gathered} 10 \\ \text { pcs. } \end{gathered}$	$\begin{aligned} & 100 \\ & \text { pcs. } \end{aligned}$	\bullet	\bullet		-	-	-	\bullet	\bullet	\bullet	\bullet
	2-pole	HC2-terminal socket	HC2-SF-K	$\begin{gathered} 10 \\ \text { pcs. } \end{gathered}$	$\begin{aligned} & 100 \\ & \text { pcs. } \end{aligned}$		\bullet					\bullet			
$\begin{aligned} & \stackrel{0}{\mathbb{O}} \\ & 00 \end{aligned}$	3 -pole	HC3-high terminal socket	HC3-HSF-K	$\begin{gathered} 5 \\ \mathrm{pcs} . \end{gathered}$	$\begin{gathered} 50 \\ \text { pcs. } \end{gathered}$		\bullet	\bullet				\bullet			
$\stackrel{\text { ¢ }}{ }$	1/2/4-pole (common)	HC-high terminal socket	HC4-HSF-K	$\begin{gathered} 5 \\ \mathrm{pcs} . \end{gathered}$	$\begin{gathered} 50 \\ \text { pcs. } \end{gathered}$	-	\bullet		\bullet						

Notes: 1. Use the retainer that is shipped with the terminal socket.
2. UL/CSA approved type is standard (except for HC4-TSF-K).
3. In order to prevent breakage and disfiguring, the screw tightening torque for the terminal socket should be within the range of 0.49 to $0.69 \mathrm{~N} \cdot \mathrm{~m}\{5 \mathrm{to} 7 \mathrm{kgf} \cdot \mathrm{cm}\}$.

DIMENSIONS (Unit: mm inch)

1. Plug-in type sockets

HC2-Socket (HC2-SS-K)

External dimensions

General tolerance: $\pm 0.3 \pm .012$

General tolerance: $\pm 0.3 \pm .012$

External dimensions
HC4-Socket (HC4-SS-K)

Mounting hole diagram

Side-by-side installation

General tolerance: $\pm 0.2 \pm .008$

Notes: 1. Applicable chassis board thickness is 1.0 to 2.0 mm .
2. Installation is easy by inserting the socket from the top into the holes and by depressing the two down arrows on the retention fitting from the front.

2. PC board type sockets

HC1- PC board type socket (HC1-PS-K)

External dimensions

HC2- PC board type socket (HC2-PS-K)

External dimensions

General tolerance: $\pm 0.3 \pm .012$

HC4- PC board type socket (HC4-PS-K)

General tolerance: $\pm 0.3 \pm .012$
General tolerance: $\pm 0.3 \pm .012$

PC board pattern (Bottom view)

With a relay mounted

Hold-down clip is packaged with the socket.

1 Form C

2 Form C

3 Form C

4 Form C

Side-by-side installation

General tolerance: $\pm 0.2 \pm .008$
3. Wrapping type sockets

Standard wrapping type sockets
(HC4-WS-K)

External dimensions

Hold-down clip (Hold-down clip is packaged with the socket)

Note: The external and mounting dimensions are the same for 1-pole (HC1-WS-K), 2-pole (HC2-WS-K), and 3-pole (HC3-WS-K) types. Only the number of terminals varies.

Mounting hole diagram
Side-by-side installation

General tolerance: $\pm 0.2 \pm .008$
Notes: 1. Applicable chassis board thickness is 1.0 to 2.0 mm
2. Installation is easy by inserting the socket
from the top into the holes and by
depressing the two down arrows on the retention fitting from the front.
4. Terminal sockets for DIN rail assembly

HC2-Slim type terminal sockets for DIN rail assembly (HC2-SFD-S)

General tolerance: $\pm 0.5 \pm .020$

HC2-high terminal socket for DIN rail assembly (HC2-SFD-K)
External dimensions

General tolerance: $\pm 0.5 \pm .020$
HC3-high terminal socket for DIN rail assembly (HC3-SFD-K)

HC4-high terminal socket for DIN rail assembly (HC4-SFD-K)

5. Ordinary terminal sockets

HC2-terminal socket (HC2-SF-K for HC2)

External dimensions

Schematic

$\begin{array}{lll}4 & 1 \\ 0 & 0 \\ 48 & 12\end{array}$

General tolerance: $\pm 0.5 \pm .020$

HC3-high terminal socket (HC3-HSF-K) suitable for both HC2 and HC3

HC4-high terminal socket (HC4-HSF-K) suitable for HC 1, 2 and 4

General tolerance: $\pm 0.5 \pm .020$

Mounting hole diagram

Panel hole dimensions for side-by-side mounting

HC3-HSF-K and HC4-HSF-K

Panel hole dimensions for side-by-side mounting

With a relay mounted (HC2-SF-K)

Hold-down clip is packaged with the terminal socket.
(VDE) TUV

Panasonic ideas for life

1 Form A Plug-in type

Form A type also available with 48A contact capacity
Refer to data sheet starting on page 233.

TV-15, 30 AMP (1 Form A)

 Power Relay
FEATURES

1. Excellent resistance to contact welding
Owing to the pre-tension and kick-off mechanism, the 1 Form A passes TV-15 and the 2 Form A passes TV-10.
2. High-capacity and long life

Contact arrangement	1Form A type	2 Form A type
Contact capacity	30 A	20 A
Electrical life (at 20 cpm$)$	2×10^{5}	
Mechanical life (at 180 cpm$)$	DC type: 10^{7}, AC type: 5×10^{6}	

3. Excellent surge resistance

Between contacts and coil, the surge
voltage is more than $10,000 \mathrm{~V}$
(when surge waveform accords with JEC-212-1981).
4. Compatible with all major safety standards
UL, CSA, VDE and TÜV certified

Type		Single side stable type	
		HE 1 Form A, 2 Form A	
Insulation gap		Min. 8 mm	
Distance between contacts*		1 Form A and 2 Form A : Min. 3 mm	PC board type: Min. 2.5 mm
Breakdown voltage	Between open contacts	2, 000 Vrms for 1 min .	
	Between contact and coil	$5,000 \mathrm{Vrms}$ for 1 min .	

CLASSIFICATION

Type	PC board	Plug-in		TM		Screw terminal	
Operating funciton	Single side stable						
Contact arrangement	1 Form A	1 Form A	2 Form A	1 Form A	2 Form A	1 Form A	

PRE-TENSION AND KICK-OFF MECHANISM

1. Pre-tension mechanism

Before operation, the moving spring is pre-tensioned by being held down by a moving plate. As a result, at the ON moment, with little follow, contact pressure is ensured with low bounce.

2. Kick-off mechanism

Even when contact welding
has occurred, at the moment of return, the moving plate taps the moving spring (kick-off) and, in effect, works to tear the weld apart, thus improving resistance to welding.

At return

	1 Form A	2 Form A
Electrical life	$\begin{aligned} & 30 \text { A } 277 \text { V AC, } 10^{5} \\ & 30 \text { A } 250 \vee \mathrm{AC}, 20^{5} \end{aligned}$	$\begin{aligned} & 25 \text { A } 277 \mathrm{~V} \mathrm{AC,} 10^{5} \\ & 20 \mathrm{~A} 250 \mathrm{~V} \mathrm{AC}, 20^{5} \end{aligned}$
TV rating	TV-15	TV-10

ORDERING INFORMATION

| | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| HE Relay | | |

TYPES

1. PC board type (1 Form A, DC coil) (Single side stable)

Coil voltage	1 Form A	Packing quantity	
	Part No.	Carton	Case
6 V DC	HE1aN-P-DC6V	25 pcs.	100 pcs .
12 V DC	HE1aN-P-DC12V		
24V DC	HE1aN-P-DC24V		
48V DC	HE1aN-P-DC48V		
100 V DC	HE1aN-P-DC100V		
110 V DC	HE1aN-P-DC110V		

2. Plug-in type (Single side stable)

Type	Coil voltage	1 Form A	2 Form A	Packing quantity	
		Part No.	Part No.	Carton	Case
DC type	6V DC	HE1aN-DC6V	HE2aN-DC6V	20 pcs.	100 pcs.
	12 V DC	HE1aN-DC12V	HE2aN-DC12V		
	24V DC	HE1aN-DC24V	HE2aN-DC24V		
	48 V DC	HE1aN-DC48V	HE2aN-DC48V		
	100 V DC	HE1aN-DC100V	HE2aN-DC100V		
	110 V DC	HE1aN-DC110V	HE2aN-DC110V		
AC type	12 V AC	HE1aN-AC12V	HE2aN-AC12V	20 pcs.	100 pcs.
	24 V AC	HE1aN-AC24V	HE2aN-AC24V		
	48 V AC	HE1aN-AC48V	HE2aN-AC48V		
	100/120V AC	HE1aN-AC100V	HE2aN-AC100V		
	200/240V AC	HE1aN-AC200V	HE2aN-AC200V		

3. TM type (Single side stable)

Type	Coil voltage	1 Form A	2 Form A	Packing quantity	
		Part No.	Part No.	Carton	Case
DC type	6 V DC	HE1aN-Q-DC6V	HE2aN-Q-DC6V	20 pcs .	100 pcs .
	12 V D	HE1aN-Q-DC12V	HE2aN-Q-DC12V		
	24V DC	HE1aN-Q-DC24V	HE2aN-Q-DC24V		
	48 V DC	HE1aN-Q-DC48V	HE2aN-Q-DC48V		
	100 V DC	HE1aN-Q-DC100V	HE2aN-Q-DC100V		
	110 V DC	HE1aN-Q-DC110V	HE2aN-Q-DC110V		
AC type	12 V AC	HE1aN-Q-AC12V	HE2aN-Q-AC12V	20 pcs.	100 pcs .
	24 V AC	HE1aN-Q-AC24V	HE2aN-Q-AC24V		
	48 V AC	HE1aN-Q-AC48V	HE2aN-Q-AC48V		
	100/120V AC	HE1aN-Q-AC100V	HE2aN-Q-AC100V		
	200/240V AC	HE1aN-Q-AC200V	HE2aN-Q-AC200V		

4. Screw terminal type (Single side stable)

Type	Coil voltage	1 Form A	2 Form A	Packing quantity	
		Part No.	Part No.	Carton	Case
DC type	6 V DC	HE1aN-S-DC6V	HE2aN-S-DC6V	10 pcs.	50 pcs.
	12V DC	HE1aN-S-DC12V	HE2aN-S-DC12V		
	24 V DC	HE1aN-S-DC24V	HE2aN-S-DC24V		
	48 V DC	HE1aN-S-DC48V	HE2aN-S-DC48V		
	100 V DC	HE1aN-S-DC100V	HE2aN-S-DC100V		
	110 V DC	HE1aN-S-DC110V	HE2aN-S-DC110V		
AC type	12 V AC	HE1aN-S-AC12V	HE2aN-S-AC12V	10 pcs.	50 pcs.
	24 V AC	HE1aN-S-AC24V	HE2aN-S-AC24V		
	48 V AC	HE1aN-S-AC48V	HE2aN-S-AC48V		
	100/120V AC	HE1aN-S-AC100V	HE2aN-S-AC100V		
	200/240V AC	HE1aN-S-AC200V	HE2aN-S-AC200V		

Note: The TM type of the screw terminals are also available.

RATING

1. Coil data

1) AC coils

Coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating current [$\pm 10 \%$] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating power	Max. allowable voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
12 V AC	$70 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$15 \% \mathrm{~V}$ or more of nominal voltage (Initial)	138 mA	1.7VA	$110 \% \mathrm{~V}$ of nominal voltage
24 V AC			74 mA	1.8VA	
48 V AC			39 mA	1.9 VA	
100/120V AC			18.7 to 2.1 mA	1.9 to 2.7 VA	
200/240V AC			9.1 to 10.8 mA	1.8 to 2.6 VA	

2) $D C$ coils

Coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%] \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) }} \end{gathered}$	$\begin{gathered} \text { Coil resistance } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$	Nominal operating power	Max. allowable voltage (at $55^{\circ} \mathrm{C} 131^{\circ} \mathrm{F}$)
6 V DC	$70 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$10 \% \mathrm{~V}$ or more of nominal voltage (Initial)	320 mA	18.8Ω	1.92W	$110 \% \mathrm{~V}$ of nominal voltage
12 V DC			160 mA	75Ω	1.92 W	
24V DC			80 mA	300Ω	1.92W	
48 V DC			40 mA	1,200	1.92 W	
100 V DC			19 mA	5,200	1.92W	
110 V DC			18 mA	6,300	1.92 W	

HE

2. Specifications

Characteristics	Item		Specifications	
Contact	Arrangement		1 Form A	2 Form A
	Initial contact resistance, max		Max. $100 \mathrm{~m} \Omega$ (By voltage drop 6 V DC 1A)	
	Contact material		AgSnO_{2} type	
Rating	Nominal switching capacity (resistive load)		30A 277V AC	25A 277V AC
	Max. switching power		8,310VA	6,925VA
	Max. switching voltage		277V AC, 30V DC	
	Max. switching current		30A	25A
	Nominal operating power		DC: $1.92 \mathrm{~W}, \mathrm{AC}: 1.7$ to 2.7 VA	
	Min. switching capacity (Reference value)*1		100mA 5V DC	
Electrical characteristics	Insulation resistance (Initial)		Min. 1,000M Ω (at 500 V DC) Measurement at same location as "Initial breakdown voltage" section.	
	Breakdown voltage (Initial)	Between open contacts	2,000 Vrms for 1 min (Detection current: 10mA.)	
		Between contact sets	-	4,000 Vrms for 1 min (Detection current: 10 mA .)
		Between contact and coil	$5,000 \mathrm{Vrms}$ for 1 min (Detection current: 10mA.)	
	Surge breakdown voltage ${ }^{* 2}$ (between contact and coil)		Min. 10,000V (initial)	
	Temperature rise		DC: Max. $60^{\circ} \mathrm{C}$ (at $55^{\circ} \mathrm{C}$) (By resistive method), AC: Max. $65^{\circ} \mathrm{C}$ (at $\left.55^{\circ} \mathrm{C}\right)$ (By resistive method)	
	Operate time (at nominal voltage)		Max. 30ms (excluding contact bounce time)	
	Release time (at nominal voltage)		DC: Max.10ms (excluding contact bounce time, without diode), AC: Max. 30ms (excluding contact bounce time)	
Mechanical characteristics	Shock resistance	Functional	Min. $98 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$.)	
		Destructive	Min. $980 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pu	ms.)
	Vibration resistance	Functional	10 to 55 Hz at double amplitude of 1 mm (Detection time: $10 \mu \mathrm{~s}$.)	
		Destructive	10 to 55 Hz at double amplitude of 1.5 mm	
Expected life	Mechanical		DC: Min. 10^{7} (at 180 cpm), AC: Min. 5×10^{6} (at 180 cpm)	
	Electrical (resistive load) (at 20 cpm)		Min. 10^{5} (30A 277 V AC) Min. 2×10^{5} (30A 250V AC)	Min. 10^{5} (25A 277V AC) Min. 2×10^{5} (20A 250V AC)
Conditions	Conditions for operation, transport and storage*3		Ambient temperature: $-50^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}-58^{\circ} \mathrm{F}$ to $+131^{\circ} \mathrm{F}$ Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature), Air pressure: 86 to 106 kPa	
	Conditions for operation, transport and storage*3		20 cpm (at max. rating)	
Unit weight			PC board type: approx. 80g Screw terminal type: approx	TM type: approx. 90g 3.17oz,

*1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the \quad actual load.
*2Wave is standard shock voltage of $\pm 1.2 \times 50 \mu$ s according to JEC-212-1981
*3Refer to " 6 . Usage, Storage and Transport Conditions" in AMBIENT ENVIRONMENT (page 599).

REFERENCE DATA

1 Form A Type

1. Maximum switching power

2. Life curve

3. Coil temperature rise (DC type)

Measured portion: Inside the coil Contact current: 30 A

4. Ambient temperature characteristics

Tested sample: HE1aN-AC120V, 6 pcs.

2 Form A Type

1. Maximum switching power

2. Life curve

3. Coil temperature rise (DC type)

Measured portion: Inside the coil
Contact current: 30 A

4. Ambient temperature characteristics

Tested sample: HE2aN-AC120V, 6 pcs.

DIMENSIONS ${ }_{(m m}$ inch) Interested in CAD data? You can obtain CAD data for all products with a CAD Data mark from your local Panasonic Electric Works representative.

1. PC board type

1 Form A

CAD Data External dimensions Single side stable type

Schematic (Bottom view)
Single side stable type

PC board pattern (Bottom view)

2. Plug-in type

1 Form A

Schematic (Bottom view)
Single side stable type

Panel cutout

Tolerance: $\pm 0.1 \pm .004$

General tolerance: $\pm 0.3 \pm .012$

Schematic (Bottom view)
Single side stable type

Panel cutout

Tolerance: $\pm 0.1 \pm .004$
3. TM type

CAD Data External dimensions Single side stable type

1 Form A

2 Form A

General tolerance: $\pm 0.3 \pm .012$

Schematic (Bottom view) Single side stable type

1 Form A

2 Form A

Panel cutout
$2-4.5 \pm 0.1$ dia

Tolerance: $\pm 0.1 \pm .004$
4. Screw terminal type

1 Form A

CAD Data External dimensions Single side stable type

General tolerance: $\pm 0.3 \pm .012$

Schematic (Bottom view) Single side stable type

Panel cutout

Tolerance: $\pm 0.1 \pm .004$

MOUNTING METHOD

1. Plug-in type

2. Screw terminal type

3. Allowable installation wiring size for screw terminal types and terminal sockets

Due to the UP terminals, it is possible to either directly connect the wires or use crimped terminal.

NOTES

1. The dust cover should not be removed since doing so may alter the characteristics.
2. Avoid use under severe environmental conditions, such as high humidity, organic gas or in dust, oily locations and locations subjected to extremely frequent shock or vibrations.
3. When mounting, use spring washers. Optimum fastening torque ranges from 49 to $68.6 \mathrm{~N} \cdot \mathrm{~m}$ (5 to $7 \mathrm{kgf} \cdot \mathrm{cm}$).
4. Firmly insert the receptacles so that there is no slack or looseness. To remove a receptacle, 19.6 to 39.2 N (2 to 4 kg) of pulling strength is required. Do not remove more than one receptacle at one time. Always remove one receptacle at a time and pull it straight outwards.
5. When using the AC type, the operate time due to the in-rush phase is 20 ms or more. Therefore, it is necessary for you to verify the characteristics for your actual circuit.
6. When using the push-on blocks for the screw terminal type, use crimped terminals and tighten the screw-down terminals to the torque below.
M4.5 screw:
147 to $166.6 \mathrm{~N} \cdot \mathrm{~cm}$ (15 to $17 \mathrm{kgf} \cdot \mathrm{cm}$) M4 screw:
117.6 to $137 \mathrm{~N} \cdot \mathrm{~cm}$ (12 to $14 \mathrm{kgf} \cdot \mathrm{cm}$)

M3.5 screw:
78.4 to $98 \mathrm{~N} \cdot \mathrm{~cm}$ (8 to $10 \mathrm{kgf} \cdot \mathrm{cm}$)

For Cautions for Use, see Relay Technical Information (page 582).

Panasonic ideas for life

Ideal for Solar inverter
Compact size, 1 Form A 48A Power Relay

FEATURES

- 48 A current at 250 V AC achieved in compact size (L: $33 \times \mathbf{W}: \mathbf{3 8} \times \mathrm{H}: 36.3$ mm L: $1.299 \times$ W: $1.496 \times \mathrm{H}: 1.429$ inch) Due to improved conduction efficiency, wide terminal blades are used.

- Contact gap: 2.5 mm (VDE0126 compliant)
Compliant with European photovoltaic standard VDE0126
Compliant with EN61810-1 2.5 kV surge voltage (between contacts)
- Contributes to energy saving in devices thanks to reduced coil hold voltage
Coil hold voltage can be reduced down to 40% of the nominal coil voltage (ambient temperature $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$). This equals to power consumption of approximately 310 mW .
*Coil hold voltage is the coil voltage after 100 ms following application of the nominal coil voltage.
- High insulation and $10,000 \mathrm{~V}$ surge breakdown voltage (between contacts and coil) achieved.
- Conforms to various safety standards
UL, C-UL and VDE
TYPICAL APPLICATIONS
- Photovoltaic power generation systems (Solar inverter)

ORDERING INFORMATION

Note: UL/C-UL and VDE approved type is standard.

TYPS	
Nominal coil voltage	Part No.
6 V DC	HE1aN-P-DC6V-Y5
9 V DC	HE1aN-P-DC9V-Y5
12 V DC	HE1aN-P-DC12V-Y5
24 V DC	HE1aN-P-DC24V-Y5

Standard packing: Carton: 20 pcs.; Case: 100 pcs.

RATING

Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$) (Initial)		Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$) (Initial)	$\begin{gathered} \begin{array}{c} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \\ \hline \end{array} \end{gathered}$	Coil resistance [$\pm 10 \%$] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating power	Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	
6V DC	$70 \% \mathrm{~V}$ or less of nominal voltage		$10 \% \mathrm{~V}$ or more of nominal voltage	320 mA	18.8Ω	1,920mW	$110 \% \mathrm{~V}$ of nominal voltage	
9V DC			213 mA	42.2Ω				
12 V DC			160 mA	75.0Ω				
24V DC			80 mA	300.0Ω				
2. Specifications								
Characteristics	Item			Specifications				
Contact	Arrangement			1 Form A				
	Contact resistance (Initial)			Max. $100 \mathrm{~m} \Omega$ (By voltage drop 6 V DC 1A)				
	Contact material			AgNi type				
Rating	Nominal switching capacity			48 A 250 V AC (resistive load)				
	Contact carring power			12,000 VA (resistive load)				
	Max. switching voltage			250 V AC				
	Max. switching current			48 A (AC)				
	Nominal operating power			$1,920 \mathrm{~mW}$				
	Min. switching capacity (Reference value)*1			100 mA 5 V DC				
Electrical characteristics	Insulation resistance (Initial)			Min. 1,000M (at 500 V DC) Measurement at same location as "Breakdown voltage" section.				
	Breakdown voltage (Initial)	Between open contacts		2,000 Vrms for 1 min . (Detection current: 10 mA)				
		Betw		contact and coil	$5,000 \mathrm{Vrms}$ for 1 min . (Detection current: 10 mA)			
	Surge breakdown voltage*2 (Between contact and coil)			10,000 V (initial)				
	Temperature rise			Max. $60^{\circ} \mathrm{C} 140^{\circ} \mathrm{F}$ (By resistive method, contact carrying current: 48A, $100 \% \mathrm{~V}$ of nominal coil voltage at $55^{\circ} \mathrm{C} 131^{\circ} \mathrm{F}$.)				
				Max. $30^{\circ} \mathrm{C} 86^{\circ} \mathrm{F}$ (By resistive method, contact carrying current: $48 \mathrm{~A}, 60 \% \mathrm{~V}$ of nominal coil voltage at $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$.)				
	Coil hold voltage ${ }^{* 3}$			40 to 100% V (Contact carrying current: 48 A , at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$), 50 to $100 \% \mathrm{~V}$ (Contact carrying current: 48 A , at $55^{\circ} \mathrm{C} 131^{\circ} \mathrm{F}$), 50 to $60 \% \mathrm{~V}$ (Contact carrying current: 48 A , at $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$)				
	Operate time (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)			Max. 30 ms (nominal coil voltage, excluding contact bounce time)				
	Release time (at $\left.20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)^{* 5}$			Max. 10 ms (nominal coil voltage, excluding contact bounce time) (without diode)				
Mechanical characteristics	Shock resistance	Functional		Min. $98 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$.)				
		Destructive		Min. $980 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 6 ms .)				
	Vibration resistance	Functional		10 to 55 Hz at double amplitude of 1.0 mm (Detection time: $10 \mu \mathrm{~s}$.)				
		Destructive		10 to 55 Hz at double amplitude of 1.5 mm				
Expected life	Mechanical			Min. 10^{6} (at 180 cpm)				
	Electrical	Resistive load		Min. 3×10^{4} (48 A 250 V AC) ($\mathrm{ON}: \mathrm{OFF}=1 \mathrm{~s}: 9 \mathrm{~s}$)				
		Inductive load		Endurance: 48 A 250 V AC $(\cos \phi=0.8)$, Min. 3×10^{4} (ON : OFF $\left.=0.1 \mathrm{~s}: 10 \mathrm{~s}\right)$ Overload: 72 A 250 V AC ($\cos \phi=0.8$), Min. 50 (ON : OFF $=0.1 \mathrm{~s}: 10 \mathrm{~s})$				
Conditions	Conditions for operation, transport and storage*4			Ambient temperature: -50 to $+55^{\circ} \mathrm{C}-58$ to $+131^{\circ} \mathrm{F}$ (When nominal coil voltage applied) -50 to $+85^{\circ} \mathrm{C}-58$ to $+185^{\circ} \mathrm{F}$ (When applied coil hold voltage is 50% to 60% of nominal coil voltage) Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature); Atmospheric pressure: 86 to 106 kPa				
	Max. operating speed			6 cpm (at nominal switching capacity ON : OFF = 1s : 9s)				
Unit weight				Approx. 80 g 2.82 oz				

Notes:
*1.This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.
*2. Wave is standard shock voltage of $\pm 1.2 \times 50 \mu$ s according to JEC-212-1981
*3. Coil hold voltage is the coil voltage after 100 ms following application of the nominal coil voltage
*4. The upper operation ambient temperature limit is the maximum temperature that can satisfy the coil temperature rise value. Refer to usage, transport and storage conditions in NOTES.
*5.Release time will lengthen if a diode, etc., is connected in parallel to the coil. Be sure to verify operation under actual conditions.

REFERENCE DATA

1. Coil temperature rise

Sample: HE1aN-P-DC9V-Y5, 6 pcs.
Point measured: coil inside
Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}, 60^{\circ} \mathrm{C} 140^{\circ} \mathrm{F}, 85^{\circ} \mathrm{C}$
$185^{\circ} \mathrm{F}$
Contact carrying current: 48A

2. Electrical life test (Resistive load 250V AC,

48 A at $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$)
Sample: HE1aN-P-DC9V-Y5, 6 pcs.
Operation frequency: 6 times $/ \mathrm{min}$.
(ON/OFF $=1.0 \mathrm{~s}: 9.0 \mathrm{~s}$)
Circuit:

Change of pick-up and drop-out voltage

Change of contact resistance

DIMENSIONS (Unit: mm inch)

External dimensions

General tolerance: $\pm 0.3 \pm .012$

PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$

SAFETY STANDARDS

Certification authority	
C-UL	$48 \mathrm{~A} 277 \mathrm{~V} \mathrm{AC}\left(\right.$ at $\left.85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}\right)$
VDE (VDE0435)	$48 \mathrm{~A} 250 \mathrm{~V} \mathrm{AC} \cos \phi=0.8\left(\right.$ at $\left.85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}\right)$

NOTES

- Usage, transport and storage conditions

1) Temperature:
-50 to $+55^{\circ} \mathrm{C}-58$ to $+131^{\circ} \mathrm{F}$
-50 to $+85^{\circ} \mathrm{C}-58$ to $+185^{\circ} \mathrm{F}$ (When
applied coil hold voltage is 50% to 60% of nominal coil voltage)
2) Humidity: 5 to 85% RH
(Avoid freezing and condensation.)
The humidity range varies with the temperature. Use within the range indicated in the graph below.
3) Atmospheric pressure: 86 to 106 kPa Temperature and humidity range for usage, transport, and storage

* -50 to $+85^{\circ} \mathrm{C}-58$ to $+185^{\circ} \mathrm{F}$ (When applied coil hold voltage is 50% to 60% of nominal coil voltage)

4) Condensation

Condensation forms when there is a sudden change in temperature under high temperature and high humidity conditions. Condensation will cause deterioration of the relay insulation.
5) Freezing

Condensation or other moisture may freeze on the relay when the temperatures is lower than $0^{\circ} \mathrm{C} 32^{\circ} \mathrm{F}$. This causes problems such as sticking of movable parts or operational time lags. 6) Low temperature, low humidity environments
The plastic becomes brittle if the relay is exposed to a low temperature, low humidity environment for long periods of time.

■ Certification

This relay is C-UL certified. 48 A 277 V AC
This relay is certified by VDE as an electromagnetic relay that complies with VDE0435.
$48 \mathrm{~A} 250 \mathrm{VAC} \cos \phi=0.8$
■ Others

1) For precautions regarding use and explanations of technical terminology, please refer to our web site. (panasonic-electric-works.net/ac)
2) To ensure good operation, please keep the voltage on the coil ends to $\pm 5 \%$ (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$) of the rated coil operation voltage. Also, please be aware that the pick-up voltage and drop-out voltage may change depending on the temperature and conditions of use.
3) Keep the ripple rate of the nominal coil voltage below 5%.
4) The cycle lifetime is defined under the standard test condition specified in the JIS C 5442 standard (temperature 15 to $35^{\circ} \mathrm{C} 59$ to $95^{\circ} \mathrm{F}$, humidity 25 to 85%). Check this with the real device as it is affected by coil driving circuit, load type, activation frequency, activation phase, ambient conditions and other factors. Also, be especially careful of loads such as those listed below.
(1) When used for AC load-operating and the operating phase is synchronous. Rocking and fusing can easily occur due to contact shifting.
(2) Highly frequent load-operating When highly frequent opening and closing of the relay is performed with a load that causes arcs at the contacts, nitrogen and oxygen in the air is fused by the arc energy and HNO_{3} is formed. This can corrode metal materials.
Three countermeasures for these are listed here.

- Incorporate an arc-extinguishing circuit.
- Lower the operating frequency
- Lower the ambient humidity

5) This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.
6) Heat, smoke, and even a fire may occur if the relay is used in conditions outside of the allowable ranges for the coil ratings, contact ratings, operating cycle lifetime, and other specifications. Therefore, do not use the relay if these ratings are exceeded.
7) If the relay has been dropped, the appearance and characteristics should always be checked before use.
8) Incorrect wiring may cause unexpected events or the generation of heat or flames.

Panasonic ideas for life

ACCESSORIES (Terminal sockets)

HE RELAY ACCESSORIES

FEATURES

1. Snap-in mounting to DIN rails is possible.
Can be inserted into 35 mm wide DIN rails. Removal is easy, too.
2. Sure and easy wiring

The use of UP terminals makes wiring exceptionally easy and sure.

3. Hold-down clips can be stored in main unit

Because the hold-down clips can be stored in the main unit, there is no need to remove them when, for example, wiring is changed.

TYPES

No. of poles	Types	Part No.	Packing quantity	
			Carton	Case
For 1 Form A	Single side stable type	JH1-SF	10 pcs.	50 pcs.
For 2 Form A	Single side stable type	JH2-SF	10 pcs.	50 pcs.

SPECIFICATIONS

Item	Specifications	
Arrangement	1 Form A	2 Form A
Max. continuous current	30 A 250 V AC	20 A 250 V AC
Breakdown voltage (initial)	$2,000 \mathrm{Vrms}$ for 1min (between terminals) (Detection current: 10mA.)	
Insulation resistance	Min. $100 \mathrm{M} \Omega$ (between poles)	
Heat resistance	$150^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{C}$ for 1 hour	

DIMENSIONS (Unit: mm inch)
1 Form A and 2 Form A types

Relay mounting diagram

Note: The JH1-SF (1 Form A single side stable type) does not have receptacles (tooth rests) for numbers 2, 3, 7, and 8 . The JH2-SF (2 Form A single side stable type) does not have receptacles (tooth rests) for numbers 7 and 8.

MOUNTING METHOD

1. Relay mounting

2. Installing to a DIN rail

3. Removing from a DIN rail

NOTES

1. Be careful not to drop the relay. It is made of heat-hardened resin and may break.
2. Be sure to tighten the screw-down terminals firmly. Loose terminals may lead to the generation of heat. 3. When the 1 Form \mathbf{A} is used in situations covered by the Japanese Electrical Appliance and Material Control Law, the use of $5.5 \mathrm{~mm}^{2}$ cabling and 30 A current is not allowed. Consequently, the circuit should be less than 20 A .
3. When fixing the terminal socket with screws, to avoid torque damage and distortion, apply torque within the ranges shown below.
M3.5 screws:
0.784 to $0.98 \mathrm{~N} \cdot \mathrm{~m}$ (8 to $10 \mathrm{kgf} \cdot \mathrm{cm}$)

M4 screws:
1.176 to $1.37 \mathrm{~N} \cdot \mathrm{~m}(12$ to $14 \mathrm{kgf} \cdot \mathrm{cm})$

FEATURES

1. High-capacity and long life The electrical life of this high capacity is 20A 100,000 operations (250 V AC). It can be used for 1.5 kW (3-phase 200 V) motor control.

2. High breakdown voltage

Both between contacts, and between contacts and coil, high breakdown voltage is $2,000 \mathrm{~V}$ for 1 minute.

3. Easy mounting and wiring

The terminal arrangement is apparent at a glance and wiring is easy. Moreover, \#250 series tab terminals can be used.

4. Socket and terminal sockets

 availableLineup includes DIN terminal sockets that enable the use of DIN rails. The pole numbers of the terminal sockets are interchangeable and different terminal sockets can be used in combination.

TYPICAL APPLICATIONS

HP relays enjoy wide use in various applications, particularly in automation controls and remote controls.
Applications include:

1. Industrial machinery

For controlling positioning, pressure, and temperature in molding equipment, boilers, pumps, charging pressure equipment, measuring and evaluation equipment, textile machines, etc.

2. Machine tools

Control of positioning and directional change in turning machines, lathes, borers, etc.
3. Food processing packing machines Automatic control of packing equipment for milk and seafood, bottling, canning, and packaging

4. Office equipment

Control of copiers, time recorders, etc.
5. Coin operate machines

Control of food, cigarette, and other vending machines
6. Measuring devices and equipment For repeating installation of control signals and in power amplifiers
7. Generators, transformers and power receiving equipment
Functional parts in protective equipment, functional assistance in automatic adjustment equipment, telemeters and other remote monitoring equipment 8. Control of conveyance equipment Control panels for elevators, escalators, and other conveyance equipment, control of all kinds industrial transport equipment such as conveyors.

9. Amusement equipment

Control of equipment in amusement parks, etc., control of bowling alley equipment, control of fountains in public parks

About Cd-free contacts

We have introduced Cadmium free type products to reduce Environmental Hazardous Substances. (The suffix "F" should be added to the part number.) Please replace parts containing Cadmium with Cadmium-free products and evaluate them with your actual application before use because the life of a relay depends on the contact material and load.

ORDERING INFORMATION

The voltage values in parentheses are for order-made products for export. Note: UL/CSA approved type is standard.

TYPES

Coil voltage	2 Form C	3 Form C	4 Form C
	Part No.	Part No.	Part No.
24 V AC	HG2-AC24V-F	HG3-AC24V-F	HG4-AC24V-F
48 V AC	HG2-AC48V-F	HG3-AC48V-F	HG4-AC48V-F
100 V AC	HG2-AC100V-F	HG3-AC100V-F	HG4-AC100V-F
115 V AC	HG2-AC115V-F	HG3-AC115V-F	HG4-AC115V-F
200 V AC	HG2-AC200V-F	HG3-AC200V-F	HG4-AC200V-F
220 V AC	HG2-AC220V-F	HG3-AC220V-F	HG4-AC220V-F
240 V AC	HG2-AC240V-F	HG3-AC240V-F	HG4-AC240V-F
12 V DC	HG2-DC12V-F	HG3-DC12V-F	HG4-DC12V-F
24 V DC	HG2-DC24V-F	HG3-DC24V-F	HG4-DC24V-F
48 V DC	HG2-DC48V-F	HG3-DC48V-F	HG4-DC48V-F
100 V DC	HG2-DC100V-F	HG3-DC100V-F	HG4-DC100V-F
110 V DC	HG2-DC110V-F	HG3-DC110V-F	HG4-DC110V-F
200V DC	HG2-DC200V-F	HG3-DC200V-F	HG4-DC200V-F

Standard packing (2 Form C): Carton: 20 pcs.; Case: 100 pcs.
Standard packing (3 Form C, 4 Form C): Carton: 10 pcs.; Case: 50 pcs.
Note: Terminal sockets and sockets are not included. Please order these separately.

RATING

1. Coil data

1) AC coils

Contact arrangement	Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		$\begin{aligned} & \text { perating } \\ & \text { nt } \\ & 0^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Coil inductance		Nominal operating power		Max. allowable voltage (at $40^{\circ} \mathrm{C} 104^{\circ} \mathrm{F}$)
				50 Hz	60 Hz	50 Hz	60 Hz	50 Hz	60 Hz	
2 Form C	24 V AC	$80 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$30 \% \mathrm{~V}$ or more of nominal voltage (Initial)	167 mA	150 mA	0.441H	0.416H	4.2 VA	3.6 VA	$110 \% \mathrm{~V}$ of nominal voltage
	48 V AC			86 mA	75 mA	1.717H	1.660 H			
	100 V AC			42 mA	36 mA	7.457H	7.216 H			
	115 V AC			36 mA	31.3 mA	9.868 H	9.531 H			
	200 V AC			21 mA	18 mA	30.39 H	29.00 H			
	220 V AC			19 mA	16.4 mA	35.99 H	34.82 H			
	240 V AC			18 mA	15 mA	42.06H	41.68 H			
3 Form C	24 V AC	$80 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$30 \% \mathrm{~V}$ or more of nominal voltage (Initial)	250 mA	216 mA	0.299H	0.290 H	6.0VA	5.2VA	$110 \% \mathrm{~V}$ of nominal voltage
	48 V AC			125 mA	108 mA	1.195 H	1.163 H			
	100 V AC			61 mA	52 mA	5.174H	5.039 H			
	115 V AC			52.4 mA	45.2 mA	6.844 H	6.648 H			
	200 V AC			30 mA	26 mA	20.71H	20.14 H			
	220 V AC			27.3 mA	23.6 mA	25.00 H	24.27 H			
	240 V AC			25 mA	21.6 mA	29.97H	29.06 H			
4 Form C	24 V AC	$80 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$30 \% \mathrm{~V}$ or more of nominal voltage (Initial)	367 mA	316 mA	0.204H	0.199H	8.8VA	7.6VA	$110 \% \mathrm{~V}$ of nominal voltage
	48 V AC			184 mA	158 mA	0.817 H	0.795H			
	100 V AC			88 mA	76 mA	3.540 H	3.444 H			
	115 V AC			76.8 mA	66.1 mA	4.685 H	4.557 H			
	200 V AC			44 mA	38 mA	14.16 H	13.79 H			
	220 V AC			39 mA	34 mA	17.48H	16.89 H			
	240 V AC			36.6 mA	31.6 mA	20.48 H	19.87H			

2) $D C$ coils

Contact arrangement	Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$	Coil resistance [$\pm 10 \%$] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating power	Max. allowable voltage (at $40^{\circ} \mathrm{C} 104^{\circ} \mathrm{F}$)
2 Form C	12V DC	$80 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$10 \% \mathrm{~V}$ or more of nominal voltage (Initial)	119.6 mA	100Ω	1.4W	$110 \% \mathrm{~V}$ of nominal voltage
	24 V DC			57.6 mA	416Ω	1.4W	
	48 V DC			30.3 mA	1,585	1.5W	
	100 V DC			14.4 mA	6,950	1.4 W	
	110 V DC			14.4 mA	7,650	1.6W	
	200V DC			7.2 mA	27,800	1.4 W	
3 Form C	12 V DC	$80 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$10 \% \mathrm{~V}$ or more of nominal voltage (Initial)	134 mA	89.5Ω	1.6 W	$110 \% \mathrm{~V}$ of nominal voltage
	24V DC			66 mA	364Ω	1.6 W	
	48V DC			33.1 mA	1,450	1.6W	
	100 V DC			16.5 mA	6,060	1.7 W	
	110 V DC			16.5 mA	6,670	1.8W	
	200V DC			8.4 mA	23,800	1.7 W	
4 Form C	12 V DC	$80 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$10 \% \mathrm{~V}$ or more of nominal voltage (Initial)	168 mA	71.4Ω	2.0W	$110 \% \mathrm{~V}$ of nominal voltage
	24V DC			81.2 mA	296Ω	1.9 W	
	48 V DC			45.7 mA	1,050	2.2W	
	100 V DC			20.3 mA	4,930	2.0W	
	110 V DC			20.3 mA	5,420	2.2W	
	200V DC			12.9 mA	15,500	2.6W	

Notes: 1. The rated current area is $\pm 15 \%(60 \mathrm{~Hz})$ [AC coils].. $\pm 10 \%\left(20^{\circ} \mathrm{C}\right)$ [DC coils]
2. The coil resistance for DC operation is the value measured when the coil temperature is $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$. Compensate $\pm 0.4 \%$ for every $\pm 1^{\circ} \mathrm{C}$ change in temperature.
3. The relay operates in a range of 80% to $110 \% \mathrm{~V}$ of the voltage rating, but ideally, in consideration of temporary voltage fluctuations, it should be operated at the rated voltage. In particular, for AC operation, if the impressed voltage drops to $80 \% \mathrm{~V}$ or more below the rated voltage, humming will occur and a large current will flow leading possibly to coil burnout.
4. As a general rule, only a pure DC voltage should be used for the coil drive.

However, a DC power supply that contains ripples has characteristics that differ from pure DC.
Therefore, please verify characteristics (operate voltage, release voltage, humming) using the actual circuit that will be used.

2. Specifications

Characteristics	Item		Specifications
Contact	Initial contact resistance, max		Max. $15 \mathrm{~m} \Omega$ (By voltage drop 6 V DC 1A)
	Contact material		AgSnO_{2} type
Rating	Nominal switching capacity		20A 250V AC (resistive load)
	Min. switching capacity (Reference value)*1		$100 \mathrm{~mA} \mathrm{5V} \mathrm{DC}$
Electrical characteristics	Insulation resistance (Initial)		Min. $100 \mathrm{M} \Omega$ (at 500 V DC) Measurement at same location as "Initial breakdown voltage" section.
	Breakdown voltage (Initial)	Between open contacts	2,000 Vrms for 1 min (Detection current: 10mA.)
		Between contact sets	2,000 Vrms for 1min (Detection current: 10mA.)
		Between contact and coil	2,000 Vrms for 1min (Detection current: 10mA.)
	Operate time*2		Max. 30ms (2 Form C), Max.40ms (3 Form C, 4 Form C) (Nominal voltage applied to the coil, excluding contact bounce time.)
	Release time ${ }^{\text {* }}$		Max. 30ms (2 Form C), Max. 40 ms (3 Form C, 4 Form C) (Nominal voltage applied to the coil, excluding contact bounce time.) (without diode)
Mechanical characteristics	Shock resistance	Functional	Min. $98 \mathrm{~m} / \mathrm{s}^{2}$ (Except for contact operating direction) (Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$.)
		Destructive	Min. $980 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 6 ms .)
	Vibration resistance	Functional	10 to 55 Hz at double amplitude of 1 mm (Detection time: $10 \mu \mathrm{~s}$.)
		Destructive	10 to 55 Hz at double amplitude of 2 mm
Expected life	Mechanical	AC coil	Min. 10^{7} (at 180 cpm)
		DC coil	Min. 10^{6} (at 180 cpm)
	Electrical		20A 250V AC resistive load ($\cos \varphi=1$), Min. 10^{5}
Conditions	Conditions for operation, transport and storage ${ }^{* 3}$		Ambient temperature: $-50^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}-58^{\circ} \mathrm{F}$ to $+104^{\circ} \mathrm{F}$ Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature)
	Max. Operating speed		20 cpm (at max. rating)
Unit weight			2 Form C: approx. 130g 4.59oz, 3 Form C: approx. 185g 6.53oz, 4 Form C: approx. 240 g 8.47 oz

Notes:

*1 This value can change due to the switching frequency, environmental conditions and desired reliability level, therefore it is recommended to check this with the actual load. *2 For the AC coil types, the operate/release time will differ depending on the phase
*3 The upper operation ambient temperature limit is the maximum temperature that can satisfy the coil temperature rise value. Refer to " 6 . Usage, Storage and Transport Conditions" in AMBIENT ENVIRONMENT (page 599).

REFERENCE DATA

1. Switching capacity range

DIMENSIONS (mm inch) Interested in CAD data? You can obtain CAD data for all products with a CAD Data mark from your local Panasonic Electric Works representative.

General tolerance: $\pm 0.5 \pm .020$

For Cautions for Use, see Relay Technical Information (page 582).

Panasonic ideas for life

ACCESSORIES
 (Sockets and Terminal sockets)

Socket

Terminal socket for DIN rail assembly

TYPES

1. For DIN rail terminal sockets, sockets and general terminal sockets hold-down clip included.
2. The terminal socket installation rail can be used also for the square plug-in terminal socket of the timer and the terminal socket of the HP relay.

Type	No. of poles	Item	Part No.	Packing quantity	
				Carton	Case
Socket	2-pole	HG2-socket	HG2-SS	10 pcs .	50 pcs .
	3 -pole	HG3-socket	HG3-SS	5 pcs .	25 pcs.
	4-pole	HG4-socket	HG4-SS	5 pcs .	25 pcs.
DIN rail terminal socket	2-pole	HG2-DIN terminal socket	HG2-SFD	10 pcs .	50 pcs .
	3 -pole	HG3-DIN terminal socket	HG3-SFD	5 pcs .	25 pcs.

[^25]Socket and terminal socket conform to UL, CSA as standard.

DIMENSIONS (Unit: mm inch)

1. Socket (with hold-down clip)

HG2-Socket (HG2-SS)

With a relay mounted

Note: Hold-down clip is packaged with the socket.

HG3-Socket (HG3-SS)

External dimensions

Mounting hole diagram

General tolerance: $\pm 0.6 \pm .024$

HG4-Socket (HG4-SS)

Mounting hole diagram

With a relay mounted

Note: Hold-down clip is packaged with the socket.

General tolerance: $\pm 0.6 \pm .024$
2. Terminal socket for DIN rail assembly (with hold-down clip and installation screw)

HG2-Terminal socket for DIN rail assembly (HG2-SFD)

With a relay mounted

Note: Hold-down clip is packaged with the terminal socket.

Schematic

Mounting hole diagram

*For direct mounting, use the included installation screw block.

HG3-Terminal socket for DIN rail assembly (HG3-SFD)

External dimensions

* Installation screw block

With a relay mounted

Note: Hold-down clip is packaged with the terminal socket.

Mounting hole diagram

Tolerance: $\pm 0.1 \pm .004$
*For direct mounting, use the included installation screw block.

With 4-pole HG relays, use two HG2-Terminal sockets for DIN rail assembly side by side.

Schematic for terminal socket and relay

(TOP VIEW)

With a relay mounted

Note: Hold-down clip is packaged with the terminal socket
not

OTHER WAYS TO MOUNT RELAYS

With direct mounting by cover tapping
(Tab terminal connection)
Compatible with \#250 series
. The plain numbers denote the termina socket terminal number. The white numbers in black circles denote the relay terminal
number.

TERMINAL SOCKET (SOCKET) COMBINATION

Because the pole numbers of the terminal sockets (sockets) are interchangeable, different terminal sockets (sockets) can be used in combination.

HG2 main unit + HG2 main unit + HG2 main unit \rightarrow HG3 terminal socket + HG3 terminal socket
HG4 main unit \rightarrow HG2 terminal socket + HG2 terminal socke

HG3 main unit + HG3 main unit \rightarrow HG2 terminal socket + HG2 terminal socket + HG2 terminal socket

NOTES

1. Hold-down clip

Please use the hold-down clip whenever HG relays will be used in applications where strong vibrating or shock force occurs.
2. Mounting direction

There is no restriction on the mounting direction. However, if the mounted relay will be susceptible to strong vibrations or shocks, to avoid influence on switching operations, mount so that the direction of vibration and shock are not in line with
the direction of contact switching. (In direction of contact switching operation, resistance to external shock is more than $98 \mathrm{~m} / \mathrm{s}^{2}$). Moreover, if the mounted relay is likely to be susceptible to strong vibrations or shocks, be sure to fit the hold-down clip.
3. Environment

Avoid use in adverse conditions, such as where there is exposure to harmful gas, or where ambient temperatures are high (more than $40^{\circ} \mathrm{C}$).
4. Do not insert or remove relays into or out of live circuits.
5. To prevent damage or distortion, when tightening fixing screws, the optimum torque range should be 1.176 to $1.37 \mathrm{~N} \cdot \mathrm{~m}$ (12 to $14 \mathrm{kgf} \cdot \mathrm{cm}$).

For Cautions for Use, see Relay Technical Information (page 584).

MINIATURE RELAY FOR WIDER APPLICATIONS

FEATURES

1. Economical prices achieved
2. Useful for wide range of applications
Gold-plated contact types are capable of switching under low level (1mA: reference value) to powerful high level (7A: 2-pole) loads.
3. Wide range of types available

The lineup includes 2-pole and 4-pole products, relays with operating indicator lights, and push-button types. You will also find relays that absorb surge when the coil goes to the off state with diodes (for DC type) or CR circuits (for AC type). Moreover, the availability of a broad range of coil voltages meets a wide range of needs.

4. Cadmium-free contacts

To minimize environmental impact,
cadmium-free contacts are used.

5. Coil cutoff detection

The LED that is fitted to AC coils goes off when the coil is inoperative and so provides a cutoff detection function.

6. Finger protection

Terminal sockets with finger protection, designed to prevent fingers from touching the terminals, are also available.

TYPICAL APPLICATIONS

Control panels
Power supply units
Molding machines
Machine tools
Welding equipment
Agricultural equipment
Office equipment
Vending machines
Communications equipment
Amusement machines

ORDERING INFORMATION

[^26]
TYPES

[Au plating type]

1. Plug-in type

Coil voltage	2 Form C	4 Form C
	Part No.	Part No.
12V DC	HJ2-DC 12V-6	HJ4-DC 12V-6
24 V DC	HJ2-DC 24V-6	HJ4-DC 24V-6
48 V DC	HJ2-DC 48V-6	HJ4-DC 48V-6
$100 / 110 \mathrm{~V}$ DC	HJ2-DC110V-6	HJ4-DC110V-6
12 V AC	HJ2-AC 12V-6	HJ4-AC 12V-6
24 V AC	HJ2-AC 24V-6	HJ4-AC 24V-6
48 V AC	HJ2-AC 48V-6	HJ4-AC 48V-6
$100 / 110 \mathrm{~V}$ AC	HJ2-AC100V-6	HJ4-AC100V-6
$110 / 120 \mathrm{~V}$ AC	HJ2-AC120V-6	HJ4-AC120V-6
$200 / 220 \mathrm{~V}$ AC	HJ2-AC200V-6	HJ4-AC200V-6
$220 / 240 \mathrm{~V}$ AC	HJ2-AC220/240V-6	HJ4-AC220/240V-6

Note: Packing quantity: 20pcs. (Carton), 200pcs. (Case)

2. Plug-in type (with LED indication)

Coil voltage	2 Form C	4 Form C
	Part No.	Part No.
12V DC	HJ2-L-DC 12V-6	HJ4-L-DC 12V-6
24V DC	HJ2-L-DC 24V-6	HJ4-L-DC 24V-6
48V DC	HJ2-L-DC 48V-6	HJ4-L-DC 48V-6
$100 / 110 V ~ D C ~$	HJ2-L-DC110V-6	HJ4-L-DC110V-6
12V AC	HJ2-L-AC 12V-6	HJ4-L-AC 12V-6
$24 V$ AC	HJ2-L-AC 24V-6	HJ4-L-AC 24V-6
48V AC	HJ2-L-AC 48V-6	HJ4-L-AC 48V-6
$100 / 110 V$ AC	HJ2-L-AC100V-6	HJ4-L-AC100V-6
$110 / 120 V ~ A C ~$	HJ2-L-AC120V-6	HJ4-L-AC120V-6
$200 / 220 V$ AC	HJ2-L-AC200V-6	HJ4-L-AC200V-6
$220 / 240 V$ AC	HJ2-L-AC220/240V-6	HJ4-L-AC220/240V-6
Note: Packing quantity: 20pcs. (Carton), 200pcs. (Case)		

3. Plug-in type (with diode)

Coil voltage	2 Form C	4 Form C
	Part No.	Part No.
12V DC	HJ2-DC 12V-D-6	HJ4-DC 12V-D-6
24 V DC	HJ2-DC 24V-D-6	HJ4-DC 24V-D-6
48V DC	HJ2-DC 48V-D-6	HJ4-DC 48V-D-6
100/110V DC	HJ2-DC110V-D-6	HJ4-DC110V-D-6

Note: Packing quantity: 20pcs. (Carton), 200pcs. (Case)

5. Plug-in type (with CR)

Coil voltage	2 Form C	4 Form C
	Part No.	Part No.
$100 / 110$ V AC	HJ2-AC100V-R-6	HJ4-AC100V-R-6
$110 / 120 \mathrm{VAC}$	HJ2-AC120V-R-6	HJ4-AC120V-R-6
$200 / 220$ V AC	HJ2-AC200V-R-6	HJ4-AC200V-R-6
$220 / 240$ AC	HJ2-AC220/240V-R-6	HJ4-AC220/240V-R-6

Note: Packing quantity: 20pcs. (Carton), 200pcs. (Case)

[Without Au plating type]

1. Plug-in type

Coil voltage	2 Form C	4 Form C
	Part No.	Part No.
12V DC	HJ2-DC 12V	HJ4-DC 12V
24 V DC	HJ2-DC 24V	HJ4-DC 24V
48 V DC	HJ2-DC 48V	HJ4-DC 48V
$100 / 110 \mathrm{~V} \mathrm{DC}$	HJ2-DC110V	HJ4-DC110V
12 V AC	HJ2-AC 12V	HJ4-AC 12V
24 V AC	HJ2-AC 24V	HJ4-AC 24V
48 V AC	HJ2-AC 48V	HJ4-AC 48V
$100 / 110 \mathrm{~V} \mathrm{AC}$	HJ2-AC100V	HJ4-AC100V
$110 / 120 \mathrm{~V} \mathrm{AC}$	HJ2-AC120V	HJ4-AC120V
$200 / 220 \mathrm{~V} \mathrm{AC}$	HJ2-AC200V	HJ4-AC200V
$220 / 240 \mathrm{~V} \mathrm{AC}$	HJ2-AC220/240V	HJ4-AC220/240V

Note: Packing quantity: 20pcs. (Carton), 200pcs. (Case)
3. Plug-in type (with a test button)

Coil voltage	2 Form C	4 Form C
	Part No.	Part No.
12V DC	HJ2-T-DC 12V	HJ4-T-DC 12V
24 V DC	HJ2-T-DC 24V	HJ4-T-DC 24V
48 V DC	HJ2-T-DC 48V	HJ4-T-DC 48V
$100 / 110 \mathrm{~V} \mathrm{DC}$	HJ2-T-DC110V	HJ4-T-DC110V
12 V AC	HJ2-T-AC 12V	HJ4-T-AC 12V
24 V AC	HJ2-T-AC 24V	HJ4-T-AC 24V
48 V AC	HJ2-T-AC 48V	HJ4-T-AC 48V
$100 / 110 \mathrm{~V} \mathrm{AC}$	HJ2-T-AC100V	HJ4-T-AC100V
$110 / 120 \mathrm{~V} \mathrm{AC}$	HJ2-T-AC120V	HJ4-T-AC120V
$200 / 220 \mathrm{~V} \mathrm{AC}$	HJ2-T-AC200V	HJ4-T-AC200V
$220 / 240 \mathrm{~V} \mathrm{AC}$	HJ2-T-AC220/240V	HJ4-T-AC220/240V

Note: Packing quantity: 20pcs. (Carton), 200pcs. (Case)
4. Plug-in type (with diode and LED indication)

Coil voltage	2 Form C	4 Form C
	Part No.	Part No.
12V DC	HJ2-L-DC 12V-D-6	HJ4-L-DC 12V-D-6
24V DC	HJ2-L-DC 24V-D-6	HJ4-L-DC 24V-D-6
48V DC	HJ2-L-DC 48V-D-6	HJ4-L-DC 48V-D-6
100/110V DC	HJ2-L-DC110V-D-6	HJ4-L-DC110V-D-6
Note: Packing quantity: 20 pcs. (Carton), 200pcs. (Case)		

6. Plug-in type (with CR and LED indication)

Coil voltage	2 Form C	4 Form C
	Part No.	Part No.
$100 / 110 V$ AC	HJ2-L-AC100V-R-6	HJ4-L-AC100V-R-6
$110 / 120 V$ AC	HJ2-L-AC120V-R-6	HJ4-L-AC120V-R-6
$200 / 220$ V AC	HJ2-L-AC200V-R-6	HJ4-L-AC200V-R-6
$220 / 240 V$ AC	HJ2-L-AC220/240V-R-6	HJ4-L-AC220/240V-R-6

Note: Packing quantity: 20pcs. (Carton), 200pcs. (Case)

2. Plug-in type (with LED indication)

Coil voltage	2 Form C	4 Form C
	Part No.	Part No.
12V DC	HJ2-L-DC 12V	HJ4-L-DC 12V
24 V DC	HJ2-L-DC 24V	HJ4-L-DC 24V
48V DC	HJ2-L-DC 48V	HJ4-L-DC 48V
$100 / 110 \mathrm{~V}$ DC	HJ2-L-DC110V	HJ4-L-DC110V
12 V AC	HJ2-L-AC 12V	HJ4-L-AC 12V
24 V AC	HJ2-L-AC 24V	HJ4-L-AC 24V
48 V AC	HJ2-L-AC 48V	HJ4-L-AC 48V
$100 / 110 \mathrm{~V} \mathrm{AC}$	HJ2-L-AC100V	HJ4-L-AC100V
$110 / 120 \mathrm{~V}$ AC	HJ2-L-AC120V	HJ4-L-AC120V
$200 / 220 \mathrm{~V}$ AC	HJ2-L-AC200V	HJ4-L-AC200V
$220 / 240 \mathrm{~V}$ AC	HJ2-L-AC220/240V	HJ4-L-AC220/240V

Note: Packing quantity: 20pcs. (Carton), 200pcs. (Case)

5. Plug-in type (with diode)

Coil voltage	2 Form C	4 Form C
	Part No.	Part No.
12 V DC	HJ2-DC 12V-D	HJ4-DC 12V-D
24 V DC	HJ2-DC 24V-D	HJ4-DC 24V-D
48 V DC	HJ2-DC 48V-D	HJ4-DC 48V-D
$100 / 110 \mathrm{~V}$ DC	HJ2-DC110V-D	HJ4-DC110V-D

Note: Packing quantity: 20pcs. (Carton), 200pcs. (Case)

7. Plug-in type (with CR)

Coil voltage	2 Form C	4 Form C
	Part No.	Part No.
$100 / 110 \mathrm{~V}$ AC	HJ2-AC100V-R	HJ4-AC100V-R
$110 / 120 \mathrm{~V}$ AC	HJ2-AC120V-R	HJ4-AC120V-R
$200 / 220 \mathrm{~V}$ AC	HJ2-AC200V-R	HJ4-AC200V-R
$220 / 240 \mathrm{~V}$ AC	HJ2-AC220/240V-R	HJ4-AC220/240V-R

Note: Packing quantity: 20pcs. (Carton), 200pcs. (Case)

6. Plug-in type (with diode and LED indication)

Coil voltage	2 Form C	4 Form C
	Part No.	Part No.
12 V DC	HJ2-L-DC 12V-D	HJ4-L-DC 12V-D
24 V DC	HJ2-L-DC 24V-D	HJ4-L-DC 24V-D
48 V DC	HJ2-L-DC 48V-D	HJ4-L-DC 48V-D
$100 / 110 \mathrm{~V}$ DC	HJ2-L-DC110V-D	HJ4-L-DC110V-D

Note: Packing quantity: 20pcs. (Carton), 200pcs. (Case)

8. Plug-in type (with CR and LED indication)

Coil voltage	2 Form C	4 Form C
	Part No.	Part No.
$100 / 110 V$ AC	HJ2-L-AC100V-R	HJ4-L-AC100V-R
$110 / 120 V$ AC	HJ2-L-AC120V-R	HJ4-L-AC120V-R
$200 / 220 V$ AC	HJ2-L-AC200V-R	HJ4-L-AC200V-R
$220 / 240 V$ AC	HJ2-L-AC220/240V-R	HJ4-L-AC220/240V-R

Note: Packing quantity: 20pcs. (Carton), 200pcs. (Case)

9. Accessories

Type	No. of poles	Product name	Part No.
Terminal socket	2-pole	HJ2 terminal socket	HJ2-SFD
		HJ2 terminal socket (Finger protect type)	HJ2-SFD-S
	2/4-pole (common)	HJ4 terminal socket	HJ4-SFD
		HJ4 terminal socket (Finger protect type)	HJ4-SFD-S
Socket for plug-in	2-pole	HC2-socket (for HJ relay)	HC2-SS-K
	2/4-pole (common)	HC4-socket (for HJ relay)	HC4-SS-K
Socket for PC board	2-pole	HC2-PC board socket (for HJ relay)	HC2-PS-K
	2/4-pole (common)	HC4-PC board socket (for HJ relay)	HC4-PS-K

Notes: 1. Packing quantity: 10pcs. (Carton), 100pcs. (Case)
2. Use the hold-down clip that is shipped with the terminal socket or socket
3. Terminal sockets conform to UL, CSA and TÜV, as standard. Sockets conform to UL and CSA, as standard.
4. In order to prevent breakage and disfiguring, the screw tightening torque for the terminal socket should be within the range of 0.49 to $0.69 \mathrm{~N} \cdot \mathrm{~m}$ ($5 \mathrm{to} 7 \mathrm{kgf} \cdot \mathrm{cm}$)

5 . When attaching directly to a chassis, please use an M4×10 metric coarse screw thread, a spring washer, and a hexagonal nut.
6. For S1DX/S1DXM timer, use the leaf holding clip (Part No. ADX18012).
7. HC relay sockets/terminal sockets are not adaptive for HJ relays. Use dedicated sockets/terminal sockets.

RATING

1. Coil data
1) AC coils $(50 / 60 \mathrm{~Hz})$

Coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal coil current [$\pm 20 \%$]		Nominal operating power		Max. allowable voltage (at $70^{\circ} \mathrm{C} 158^{\circ} \mathrm{F}$)
			50 Hz	60 Hz	50 Hz	60 Hz	
12 V AC	$80 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$30 \% \mathrm{~V}$ or more of nominal voltage (Initial)	102.9 mA	85.4 mA	Approx. 1.2 to 1.5 V A	$\begin{gathered} \text { Approx. } 1.0 \text { to } \\ 1.3 \vee \mathrm{~A} \end{gathered}$	$110 \% \mathrm{~V}$ of nominal voltage
24 V AC			54.5 mA	45.6 mA			
48 V AC			30.7 mA	25.9 mA			
100/110V AC			$11.8 \mathrm{~mA} / 13.9 \mathrm{~mA}$	$10.0 \mathrm{~mA} / 11.6 \mathrm{~mA}$			
110/120V AC			$10.9 \mathrm{~mA} / 12.5 \mathrm{~mA}$	$9.1 \mathrm{~mA} / 10.3 \mathrm{~mA}$			
200/220V AC			$6.8 \mathrm{~mA} / 8.1 \mathrm{~mA}$	$5.7 \mathrm{~mA} / 6.7 \mathrm{~mA}$			
220/240V AC			$6.8 \mathrm{~mA} / 7.8 \mathrm{~mA}$	$5.6 \mathrm{~mA} / 6.4 \mathrm{~mA}$			

2) DC coils

Coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal coil current	Coil resistance (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating power	Max. allowable voltage (at $70^{\circ} \mathrm{C} 158^{\circ} \mathrm{F}$)
12V DC	$80 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$10 \% \mathrm{~V}$ or more of nominal voltage (Initial)	75 mA [$\pm 10 \%$]	160Ω	0.9W	$110 \% \mathrm{~V}$ of nominal voltage
24 V DC			37 mA [$\pm 10 \%$]	650Ω	0.9W	
48 V DC			18 mA [$\pm 15 \%$]	2,600	0.9W	
100/110V DC			$9.1 \mathrm{~mA} / 10 \mathrm{~mA}$ [$\pm 15 \%$]	11,000	1.1W	

2. Specifications

Characteristics	Item		Specifications	
Contact	Arrangement		2 Form C	4 Form C
	Initial contact resistance, max		Max. $50 \mathrm{~m} \Omega$ (By voltage drop 6 V DC 1A)	
	Contact material		Au plating type: Au plating Ag Without Au plating type: Ag	
Rating	Nominal switching capacity (resistive load)		7 A 250V AC	5 A 250V AC
	Max. switching power (resistive load)		1,750 VA	1,250 VA
	Max. switching voltage		250 V AC, 125 V DC	
	Max. switching current		7 A	5 A
	Nominal operating power		0.9W 1.2 VA	
	Min. switching capacity (Reference value) ${ }^{\star_{1}}$	Au plating type	$1 \mathrm{~mA} \mathrm{1V} \mathrm{DC}$	
		Without Au plating type	1 mA 5 V DC	
Electrical characteristics	Insulation resistance (Initial)		Min. $100 \mathrm{M} \Omega$ (at 500 V DC) Measurement at same location as "Initial breakdown voltage" section.	
	Breakdown voltage (Initial)	Between open contacts	$1,000 \mathrm{Vrms}$ for 1 min . (Detection current: 10 mA .)	
		Between contact sets	2,000 Vrms for 1 min . (Detection current: 10 mA .)	
		Between contact and coil	2,000 Vrms for 1 min . (Detection current: 10 mA .)	
	Temperature rise (at $70^{\circ} \mathrm{C} 158^{\circ} \mathrm{F}$)		Max. $60^{\circ} \mathrm{C}$ (By resistive method, nominal voltage)	
	Operate time ${ }^{* 2}$		Max. 20ms (Nominal voltage applied to the coil, excluding contact bounce time.)	
	Release time ${ }^{*}$		Max. 20ms (Nominal voltage applied to the coil, excluding contact bounce time.) (without diode)	
Mechanical characteristics	Shock resistance	Functional	Min. $100 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$.)	
		Destructive	Min. $1,000 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 6 ms .)	
	Vibration resistance	Functional	10 to 55 Hz at double amplitude of 1.0 mm (Detection time: $10 \mu \mathrm{~s}$.)	
		Destructive	10 to 55 Hz at double amplitude of 1.0 mm	
Expected life	Mechanical		Min. 2×10^{7} (at 180 cpm)	
	Electrical (resistive load) (at 20 cpm)		Min. 10^{5} (7A 250V AC) Min. 5×10^{5} (5A 250V AC)	Min. 10^{5} (5A 250V AC) Min. 2×10^{5} (3A 250 V AC)
Conditions	Conditions for operation, transport and storage*3 (Not freezing and condensing at low temperature)		Ambient temperature: $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+158^{\circ} \mathrm{F}$ Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature)	
	Max. Operating speed		20 cpm (at rated load)	
Unit weight			Approx. 34g 1.20 oz	Approx. 34g 1.20 oz

Notes:
In accordance with the Electrical Appliance and Material Safety Law, you cannot exceed a voltage of 150 V AC when using the 4 Form C type.
For more information, please inquire.
When using low level loads, contact instability may result depending on conditions of use (switching frequency and ambient conditions, etc.); therefore, please use the Au plating type.
*1 This value can change due to the switching frequency, environmental conditions and desired reliability level, therefore it is recommended to check this with the actual load.
*2 For the AC coil types, the operate/release time will differ depending on the phase.
*3The upper operation ambient temperature limit is the maximum temperature that can satisfy the coil temperature rise value. Refer to " 6 . Usage, Storage and Transport Conditions" in AMBIENT ENVIRONMENT (page 599).

REFERENCE DATA

1-(1). Max. switching capacity (2 Form C type

2-(2). Life curve (4 Form C)

3-(1). Coil temperature rise (2 Form C/AC type) Measured portion: Inside the coil Ambient temperature: $70^{\circ} \mathrm{C} 158^{\circ} \mathrm{F}$

3-(2). Coil temperature rise (2 Form C/DC type)
Measured portion: Inside the coil
Ambient temperature: $70^{\circ} \mathrm{C} 158^{\circ} \mathrm{F}$

3-(3). Coil temperature rise (4 Form C/AC type)
Measured portion: Inside the coil
Ambient temperature: $70^{\circ} \mathrm{C} 158^{\circ} \mathrm{F}$

3-(4). Coil temperature rise (4 Form C/DC type) Measured portion: Inside the coil Ambient temperature: $70^{\circ} \mathrm{C} 158^{\circ} \mathrm{F}$

4-(1). AC coil surge voltage waveform (With CR circuit)
Tested sample: HJ4-AC200V-R

4-(2). AC coil surge voltage waveform
(Without CR circuit)
Tested sample: HJ4-AC200V

5-(1). DC coil surge voltage waveform (Without diode)

5-(2). DC coil surge voltage waveform (With diode)
Diode characteristics:
Reverse breakdown voltage: 1,000 V
Forward current: 1 A

		ON			OFF			

DIMENSIONS (mm inch) Interested in CAD data? You can obtain CAD data for all products with a CAD Data mark from your local Panasonic Electric Works representative.

1. Plug-in type (2 Form C) (including diode/CR)

Max. 1 mm .039 inch: $\quad \pm 0.1 \pm .004$
1 to 3 mm .039 to .118 inch: $\pm 0.2 \pm .008$
Min. 3mm . 118 inch: $\quad \pm 0.3 \pm .012$

Dimension:

Schematic (Bottom view)
 IəMOd

3. Plug-in type with a test button (2 Form C)

Schematic (Bottom view)
Standard type

1	$\frac{4}{8}$
$\underline{5}$	
9	$\underline{8}$
$\underline{9}$	
13	$\underline{12}$

LED AC type
$1 \quad 4$
5
9 12
$\frac{13}{L_{m}} \frac{14}{4}$

4. Plug-in type with a test button (4 Form C)

5. Terminal socket

HJ2 terminal socket

Schematic (Bottom view)

Mounting hole dimensions

HJ4 terminal socket

General tolerance: $\pm 0.5 \pm .020$

HJ4 terminal socket (Finger protect type)

6. Plug-in socket

HC2 - Socket for HJ relay (HC2-SS-K-H105)

External dimensions

HC4 - Socket for HJ relay (HC4-SS-K-H105)

External dimensions

Tolerance: $\pm 0.3 \pm .012$

Mounting hole diagram

Chassis cutout (Side-by-side installation)

With a relay mounted (HC2-SS-K-H105)

Hold-down clip is packaged with the socket. (Same product as plug-in socket (Part No.: HC2-SS-K) for HC relay except that hold-down clip shape is different.)

7. PC board socket

HC2 - PC board socket for HJ relay (HC2-PS-K-H105)

External dimensions

Tolerance: $\pm 0.3 \pm .012$

HC4 - PC board socket for HJ relay (HC4-PS-K-H105)

External dimensions

Tolerance: $\pm 0.3 \pm .012$

PC board pattern (BOTTOM VIEW)

2 Form C

4 Form C

Chassis cutout (Side-by-side installation)

With a relay mounted (HC2-PS-K-H105)

Hold-down clip is packaged with the socket. (Same product as PC board socket (Part No.: HC2-PS-K) for HC relay except that hold-down clip shape is different.)

NOTES

1. Coil voltage

Please refer to "RATING" about coil input power supply.
2. LED display

Operation is displayed by the light emitted from the LED. The LED may remain briefly lit if voltage remains after the relay opens.

3. Switching lifetime

The switching lifetime is defined under the standard test condition specified in the JIS* C 5442 standard (temperature 15 to $35^{\circ} \mathrm{C} 59$ to $95^{\circ} \mathrm{F}$, humidity 25 to $75 \%)$. Check this with the real device as it is affected by coil driving circuit, load type, activation frequency, activation phase,ambient conditions and other factors.
Also, be especially careful of loads such as those listed below.

1) When used for AC load-operating and the operating phase is synchronous.
Rocking and fusing can easily occur due to contact shifting.
2) High-frequency load-operating When high-frequency opening and closing of the relay is performed with a load that causes arcs at the contacts, nitrogen and oxygen in the air is fused by the arc energy and HNO_{3} is formed. This can corrode metal materials.
Three countermeasures for these are listed here.
(1) Incorporate an arc-extinguishing circuit.
(2) Lower the operating frequency
(3) Lower the ambient humidity

4. Usage, transport and storage conditions

1) Temperature, humidity and pressure during usage, storage and transport
(1) Temperature:
-40 to $+70^{\circ} \mathrm{C}-40$ to $+158^{\circ} \mathrm{F}$
(2) Humidity: 5 to 85% RH
(Avoid freezing and condensation.)
The humidity range varies with the temperature. Use within the range indicated in the graph below. Temperature and humidity range for usage, transport, and storage

(3) Atmospheric pressure: 86 to 106 kPa
2) Condensation

Condensation forms when there is a sudden change in temperature under high temperature and high humidity conditions. Condensation will cause deterioration of the relay insulation.
3) Freezing

Condensation or other moisture may freeze on the relay when the temperatures is lower than $0^{\circ} \mathrm{C} 32^{\circ} \mathrm{F}$. This causes problems such as sticking of movable parts or operational time lags.
4) Low temperature, low humidity environments
The plastic becomes brittle if the relay is exposed to a low temperature, low humidity environment for long periods of time.
5. Operation method for test button

1) Push and release 1 gently to confirm relay switching.

2) To lock to one side turn 90° counterclockwise while pushing lock and turn 90° clockwise to release.

3) Do not use the test button for anything other than testing, such as when checking the circuit.

6. Diode characteristics

1) Reverse breakdown voltage: $1,000 \mathrm{~V}$
2) Forward current: 1 A

7. Diode and CR built-in type

Since the diode and CR inside the relay coil are designed to absorb the counter emf, the element may be damaged if a large surge, etc., is applied to the diode and CR. If there is the possibility of a large surge voltage from the outside, please implement measures to absorb it.

For Cautions for Use, see Relay Technical Information (page 582).

Panasonic ideas for life

FEATURES

1. Compact high-capacity control relay In the same external dimensions as an HC relay, this compact power relay enables high-capacity control: 15 A for 1 Form C, 10 A for 2 Form C.
2. Designed for high reliability High operational reliability is achieved by solder-less construction, in which all connections between lead wires and the contact springs and terminal plate are welded.
3. Various types provided in rich lineup. LED indicator type also available.
4. The terminals are compatible with \#187 series tab terminals.
5. UL, CSA approval is standard

TYPICAL APPLICATIONS

Suitable for factory automation equipment and automotive devices 1. Control panels, power supply equipment, molding equipment, machine tools, welding equipment, agricultural equipment, etc.
2. Office equipment, automatic vending machines, telecommunications equipment, disaster prevention equipment, copiers, measuring devices, medical equipment, amusement devices, etc. 3. All types of household appliance

About Cd-free contacts

We have introduced Cadmium free type products to reduce Environmental Hazardous Substances. (The suffix "F" should be added to the part number.) Please replace parts containing Cadmium with Cadmium-free products and evaluate them with your actual application before use because the life of a relay depends on the contact material and load.

ORDERING INFORMATION

Contact arrangement
1: 1 Form C
2: 2 Form C
Terminal arrangement
H: Plug-in type
L: Plug-in with LED indication
HP: PC board type
PL: PC board with LED indication
HTM: TM type
Coil voltage
AC 6, 12, 24, 48, 100 (100/110), 120 (110/120), 200 (200/220), $240(220 / 240) \mathrm{V}$
DC 6, 12, 24, 48, 100 (100/110) V
Contact material
F: AgSnO_{2} type
Notes: UL/CSA approved type is standard.
Please inquire about TV approved products.

TYPES

Coil voltage	1 Form C	2 Form C
	Part No.	Part No.
6 V AC	HL1-H-AC6V-F	HL2-H-AC6V-F
12 V AC	HL1-H-AC12V-F	HL2-H-AC12V-F
24 V AC	HL1-H-AC24V-F	HL2-H-AC24V-F
48 V AC	HL1-H-AC48V-F	HL2-H-AC48V-F
100/110V AC	HL1-H-AC100V-F	HL2-H-AC100V-F
110/120V AC	HL1-H-AC120V-F	HL2-H-AC120V-F
200/220V AC	HL1-H-AC200V-F	HL2-H-AC200V-F
220/240V AC	HL1-H-AC240V-F	HL2-H-AC240V-F
6 V DC	HL1-H-DC6V-F	HL2-H-DC6V-F
12 V DC	HL1-H-DC12V-F	HL2-H-DC12V-F
24 V DC	HL1-H-DC24V-F	HL2-H-DC24V-F
48 V DC	HL1-H-DC48V-F	HL2-H-DC48V-F
100/110V DC	HL1-H-DC100V-F	HL2-H-DC100V-F

Standard packing: Carton: 20 pcs.; Case: 200 pcs.

2. Plug-in type (with LED indication)

Coil voltage	1 Form C	2 Form C
	Part No.	Part No.
$6 V$ AC	HL1-L-AC6V-F	HL2-L-AC6V-F
12 V AC	HL1-L-AC12V-F	HL2-L-AC12V-F
$24 V$ AC	HL1-L-AC24V-F	HL2-L-AC24V-F
48 V AC	HL1-L-AC48V-F	HL2-L-AC48V-F
$100 / 110 \mathrm{~V}$ AC	HL1-L-AC100V-F	HL2-L-AC100V-F
$110 / 120 V$ AC	HL1-L-AC120V-F	HL2-L-AC120V-F
$200 / 220 V$ AC	HL1-L-AC200V-F	HL2-L-AC200V-F
$220 / 240 \mathrm{~V}$ AC	HL1-L-AC240V-F	HL2-L-AC240V-F
$6 V$ DC	HL1-L-DC6V-F	HL2-L-DC6V-F
$12 V$ DC	HL1-L-DC12V-F	HL2-L-DC12V-F
$24 V$ DC	HL1-L-DC24V-F	HL2-L-DC24V-F
$48 V$ DC	HL1-L-DC48V-F	HL2-L-DC48V-F
$100 / 110 V ~ D C ~$	HL1-L-DC100V-F	HL2-L-DC100V-F

Standard packing: Carton: 20 pcs.; Case: 200 pcs.

3. PC board type

Coil voltage	1 Form C	2 Form C
	Part No.	Part No.
6V AC	HL1-HP-AC6V-F	HL2-HP-AC6V-F
12V AC	HL1-HP-AC12V-F	HL2-HP-AC12V-F
$24 V$ AC	HL1-HP-AC24V-F	HL2-HP-AC24V-F
$48 V$ AC	HL1-HP-AC48V-F	HL2-HP-AC48V-F
$100 / 110 V$ AC	HL1-HP-AC100V-F	HL2-HP-AC100V-F
$110 / 120 V$ AC	HL1-HP-AC120V-F	HL2-HP-AC120V-F
$200 / 220 V$ AC	HL1-HP-AC200V-F	HL2-HP-AC200V-F
$220 / 240 V ~ A C ~$	HL1-HP-AC240V-F	HL2-HP-AC240V-F
$6 V ~ D C ~$	HL1-HP-DC6V-F	HL2-HP-DC6V-F
$12 V$ DC	HL1-HP-DC12V-F	HL2-HP-DC12V-F
$24 V$ DC	HL1-HP-DC24V-F	HL2-HP-DC24V-F
$48 V ~ D C ~$	HL1-HP-DC48V-F	HL2-HP-DC48V-F
$100 / 110 V ~ D C ~$	HL1-HP-DC100V-F	HL2-HP-DC100V-F

Standard packing: Carton: 20 pcs.; Case: 200 pcs.

4. PC board type (with LED indication)

Coil voltage	1 Form C	2 Form C
	Part No.	Part No.
6V AC	HL1-PL-AC6V-F	HL2-PL-AC6V-F
12 V AC	HL1-PL-AC12V-F	HL2-PL-AC12V-F
24 V AC	HL1-PL-AC24V-F	HL2-PL-AC24V-F
48 V AC	HL1-PL-AC48V-F	HL2-PL-AC48V-F
100/110V AC	HL1-PL-AC100V-F	HL2-PL-AC100V-F
110/120V AC	HL1-PL-AC120V-F	HL2-PL-AC120V-F
200/220V AC	HL1-PL-AC200V-F	HL2-PL-AC200V-F
220/240V AC	HL1-PL-AC240V-F	HL2-PL-AC240V-F
6 V DC	HL1-PL-DC6V-F	HL2-PL-DC6V-F
12 V DC	HL1-PL-DC12V-F	HL2-PL-DC12V-F
24V DC	HL1-PL-DC24V-F	HL2-PL-DC24V-F
48 V DC	HL1-PL-DC48V-F	HL2-PL-DC48V-F
100/110V DC	HL1-PL-DC100V-F	HL2-PL-DC100V-F

Standard packing: Carton: 20 pcs.; Case: 200 pcs.

5. TM type

Coil voltage	1 Form C	2 Form C
	Part No.	Part No.
6 V AC	HL1-HTM-AC6V-F	HL2-HTM-AC6V-F
12 V AC	HL1-HTM-AC12V-F	HL2-HTM-AC12V-F
24 V AC	HL1-HTM-AC24V-F	HL2-HTM-AC24V-F
48 V AC	HL1-HTM-AC48V-F	HL2-HTM-AC48V-F
100/110V AC	HL1-HTM-AC100V-F	HL2-HTM-AC100V-F
110/120V AC	HL1-HTM-AC120V-F	HL2-HTM-AC120V-F
200/220V AC	HL1-HTM-AC200V-F	HL2-HTM-AC200V-F
220/240V AC	HL1-HTM-AC240V-F	HL2-HTM-AC240V-F
6 V DC	HL1-HTM-DC6V-F	HL2-HTM-DC6V-F
12 V DC	HL1-HTM-DC12V-F	HL2-HTM-DC12V-F
24 V DC	HL1-HTM-DC24V-F	HL2-HTM-DC24V-F
48V DC	HL1-HTM-DC48V-F	HL2-HTM-DC48V-F
100/110V DC	HL1-HTM-DC100V-F	HL2-HTM-DC100V-F

Standard packing: Carton: 20 pcs.; Case: 200 pcs.

RATING

1. Coil data
1) AC coils

Nominal coil voltage	Nominal coil current (mA)		Nominal operating power (VA)		Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Inductance (H)		Max. allowable voltage
	50 Hz	60 Hz	50 Hz	60 Hz			When drop-out	When operating	
6 V AC	224	200	1.3	1.2	$80 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$30 \% \mathrm{~V}$ or more of nominal voltage (Initial)	0.078	0.074	$110 \% \mathrm{~V}$ of nominal voltage
12 V AC	111	100	1.3	1.2			0.312	0.295	
24 V AC	56	50	1.3	1.2			1.243	1.181	
48 V AC	28	25	1.3	1.2			4.974	4.145	
100/110V AC	13.4/14.7	12/13.2	1.3	1.2			23.75	20.63	
110/120V AC	12.2/13.5	10.9/11.9	1.3	1.2			27.19	25.57	
200/220V AC	6.717.4	6/6.6	1.3	1.2			85.98	81.76	

Notes: 1 . The relay operates in a range of 80% to $110 \% \mathrm{~V}$ of the voltage rating, but ideally, in consideration of temporary voltage fluctuations, it should be operated at the rated voltage.
In particular, for AC operation, if the applied voltage drops to $80 \% \mathrm{~V}$ or more below the rated voltage, humming will occur and a large current will flow leading possibly to coil burnout.
2. The maximum allowable voltage is the maximum voltage fluctuation value for the coil power supply. This value is not a permissible value for continuous operation. (This value differs depending on the ambient temperature. Please contact us for details.
2) DC coils (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)

Nominal coil voltage	Nominal coil current (mA)	Nominal operating power (W)	Coil resistance (Ω)	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Max. allowable voltage (at $70^{\circ} \mathrm{C} 158^{\circ} \mathrm{F}$)
6V DC	150	0.9	40	$80 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$10 \% \mathrm{~V}$ or more of nominal voltage (Initial)	$\begin{gathered} 110 \% \mathrm{~V} \text { of } \\ \text { nominal voltage } \end{gathered}$
12 V DC	75	0.9	160			
24 V DC	37	0.9	650			
48V DC	18.5	0.9	2,600			
100/110V DC	10	1.0	10,000			

Notes: 1 . The rated excitation current is $\pm 10 \%\left(20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)$.
2. The coil resistance for DC operation is the value measured when the coil temperature is $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$. Compensate $\pm 0.4 \%$ for every $\pm 1^{\circ} \mathrm{C}$ change in temperature.
3. The relay operates in a range of 80% to $110 \% \mathrm{~V}$ of the voltage rating, but ideally, in consideration of temporary voltage fluctuations, it should be operated at the rated voltage.
4. For use with 200 V DC, connect a $10 \mathrm{~K} \Omega(5 \mathrm{~W})$ resistor, in series, to the $100 \mathrm{~V} D C$ relay.
5. The maximum allowable voltage is the maximum voltage fluctuation value for the coil power supply. This value is not a permissible value for continuous operation. (This value differs depending on the ambient temperature. Please contact us for details.)

2. Specifications

Characteristics	Item		Specifications
Contact	Initial contact resistance, max		Max. $50 \mathrm{~m} \Omega$ (By voltage drop 6 V DC 1A)
	Contact material		AgSnO_{2} type
Rating	Nominal switching capacity		1 Form C: 15 A 125 V AC, 10A 250 V AC (resistive load) 2 Form C: 10A 125V AC (resistive load)
	Min. switching capacity (Reference value)*		$100 \mathrm{~mA} \mathrm{5V} \mathrm{DC}$
Electrical characteristics	Insulation resistance (Initial)		Min. 100M Ω (at 500 V DC) Measurement at same location as "Initial breakdown voltage" section.
	Breakdown voltage (Initial)	Between open contacts	$1,000 \mathrm{Vrms}$ for 1 min . (Detection current: 10 mA .)
		Between contact sets	$1,500 \mathrm{Vrms}$ for 1 min . (Detection current: 10 mA .)
		Between contact and coil	$2,000 \mathrm{Vrms}$ for 1 min . (Detection current: 10 mA .)
	Temperature rise		Max. $80^{\circ} \mathrm{C}$ (By resistive method, nominal voltage)
	Operate time (at $\left.20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)^{2}$		DC type/AC type: Max. 25ms (Nominal voltage applied to the coil, excluding contact bounce time.)
	Release time (at $\left.20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)^{2}$		DC type/AC type: Max. 25ms (Nominal voltage applied to the coil, excluding contact bounce time.) (without diode)
Mechanical characteristics	Shock resistance	Functional	Min. $196 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$.)
		Destructive	Min. $980 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 6 ms .)
	Vibration resistance	Functional	10 to 55 Hz at double amplitude of 1 mm (Detection time: $10 \mu \mathrm{~s}$.)
		Destructive	10 to 55 Hz at double amplitude of 2 mm
Expected life	Mechanical		AC type: 5×10^{7} (at 180 cpm), DC type: 10^{8} (at 180 cpm)
	Electrical	AC load	1 Form C: 15A 125V AC, 10A 250V AC resistive load ($\cos \varphi=1$) Life switching cycle: Min. 5×10^{5} 2 Form C: 10A 250V AC resistive load ($\cos \varphi=1$) Life switching cycle: Min. 3×10^{5}
		DC load	1 Form C: 3A 30V DC resistive load ($\cos \varphi=1$) Life switching cycle: Min. 5×10^{5} 2 Form C: 3A 30V DC resistive load ($\cos \varphi=1$) Life switching cycle: Min. 5×10^{5}
Conditions	Conditions for operation, transport and storage*3		Ambient temperature: $-50^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}-58^{\circ} \mathrm{F}$ to $+158^{\circ} \mathrm{F}$ (Without LED indication); $-50^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}-58^{\circ} \mathrm{F}$ to $+140^{\circ} \mathrm{F}$ (With LED indication) Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature)
	Max. Operating speed		20 cpm (at max. rating)
Unit weight			Approx. 35g 1.23 oz

Notes:

If integrating into electrical appliances that will be subject to compliance to the Electrical Appliance and Material Safety Law, please use in an ambient temperature between $-50^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}-58^{\circ} \mathrm{F}$ to $+104^{\circ} \mathrm{F}$ (AC type).
*1 This value can change due to the switching frequency, environmental conditions and desired reliability level, therefore it is recommended to check this with the actual load.
*2For the AC coil types, the operate/release time will differ depending on the phase.
*3The upper operation ambient temperature limit is the maximum temperature that can satisfy the coil temperature rise value. Refer to "6. Usage, Storage and Transport Conditions" in AMBIENT ENVIRONMENT (page 599).

REFERENCE DATA

Switching capacity range (1 Form C)

Switching capacity range (2 Form C)

DIMENSIONS $(m m$ inch) Interested in CAD data? You can obtain CAD data for all products with a CAD Data mark from your local Panasonic Electric Works representative.

1. Plug-in type

2 Form C

Schematic (Bottom view) Standard type

LED AC type

2. PC board type

1 Form C

External dimensions

General tolerance: $\pm 0.3 \pm .012$

Schematic (Bottom view)
Standard type

7!-m-8

PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$

2 Form C

External dimensions

General tolerance: $\pm 0.3 \pm .012$

Schematic (Bottom view)
Standard type

LED AC type
LED DC type

PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$

1 Form C
CAD Data

External dimensions

General tolerance: $\pm 0.3 \pm .012$

Schematic (Bottom view)
Standard type

Chassis (Panel) cutout
Chassis (Panel) cutout in tandem mounting

Tolerance: $\pm 0.1 \pm .004$

Notes: 1. If connecting to \#187 series tab terminals, use AMP Faston \#187 series or \#187 tab terminals conforming to UL or CSA inch-standard dimensions.
2. In mounting, use M3 screws and M3 washers.
3. When mounting TM types, use washers to prevent damage or distortion to the polycarbonate cover.
4. When tightening fixing screws, the optimum torque range should be 0.294 to $0.49 \mathrm{~N} \cdot \mathrm{~m}$, (3 to $5 \mathrm{kgf} \cdot \mathrm{cm}$). Moreover, use washers to prevent loosening.

Schematic (Bottom view) Standard type

Chassis (Panel) cutout
Chassis (Panel) cutout

Tolerance: $\pm 0.1 \pm .004$

Notes: 1. If connecting to \#187 series tab terminals, use AMP Faston \#187 series or \#187 tab terminals conforming to UL or CSA inch-standard dimensions.
2. In mounting, use M3 screws and M3 washers.
3. When mounting TM types, use washers to prevent damage or distortion to the polycarbonate cover.
4. When tightening fixing screws, the optimum torque range should be 0.294 to $0.49 \mathrm{~N} \cdot \mathrm{~m}$, (3 to $5 \mathrm{kgf} \cdot \mathrm{cm}$). Moreover, use washers to prevent loosening.

For Cautions for Use, see Relay Technical Information (page 582).

ACCESSORIES (Sockets and
 Terminal sockets)

HL RELAY ACCESSORIES

TYPES

1. HL relay connection accessories include plug-in sockets, PC board sockets, and terminal socket for DIN rails.
2. UL/CSA approval is standard.
3. A hold-down clip is included in the package.

HC/HL-LEAF-SPRING-K
HC/HL-LEAF-SPRING-MK

The fixing method is the same as for the HL DIN rail terminal sockets and the HC DIN terminal sockets.

Type	No. of poles	Item	Part No.	Packing quantity	
				Carton	Case
Plug-in socket	1-pole	HL1 socket	HL1-SS-K	20 pcs .	200 pcs.
	2-pole	HL2 socket	HL2-SS-K		
PC board socket	1-pole	HL1 PC board socket	HL1-PS-K		
	2-pole	HL2 PC board socket	HL2-PS-K		
DIN rail terminal socket	1/2-pole (common)	HL2-DIN terminal socket	HL2-SFD-K	10 pcs.	100 pcs.

DIMENSIONS (Unit: mm inch)

1. Plug-in type sockets

HL1 Socket (HL1-SS-K)

HL1 socket External dimensions

General tolerance: $\pm 0.3 \pm .012$

Hold-down clip

Hold-down clip is packaged with the socket.
(Applied to HC sockets and ordinary HC terminal sockets)

HL2 Socket (HL2-SS-K)
Mounting hole diagram

Side-by-side installation

Notes: 1. Applicable chassis board thickness is 1.0 to 2.0 mm .
2. Installation is easy by inserting the socket from the top into the holes and by depressing the two down arrows on the retention fitting from the front.
2. PC board type sockets

HL1 PC board type socket (HL1-PS-K)

HL2 PC board type socket External dimensions

Note: The external and mounting
dimensions of HL2 PC board type socket are the same for HL1 PC board type socket. Only the number of terminals varies.

General tolerance: $\pm 0.3 \pm .012$

HL2 PC board type socket (HL2-PS-K)

PC board pattern (Bottom view)

Side-by-side installation (For 2 Form C)

Tolerance: $\pm 0.1 \pm .004$
3. Terminal sockets for DIN rail assembly (HL2-SFD-K)

Schematic

Mounting hole diagram

Hold-down clip is packaged with the terminal socket. (Applied to HC DIN rail terminal sockets)

Chassis (Panel) cutout in tandem (side-by-side) mounting
*To prevent damage or distortion, when tightening fixing screws, the optimum torque range should be 0.784 to $0.98 \mathrm{~N} \cdot \mathrm{~m}$, ($8 \mathrm{to} 10 \mathrm{kgf} \cdot \mathrm{cm}$).
For Cautions for Use, see Relay Technical Information (page 584).

Panasonic ideas for life

FLAT/VERTICAL TYPE HIGH POWER BIFURCATED CONTACT

FEATURES

1. Slim and compact size
20% smaller (width and height) than existing model* (with the condition of screw terminal socket for DIN rail) *Compared with our HC/HJ relay.
2. High-capacity and high reliability Max. switching current:
16 A (for 1 Form C type at AC load)
Uses gold-flashed contacts for highly reliable contact (for 2 Form C type).
3. Environmentally friendly

Cadmium-free contacts and lead-free solder are used.
4. Slim screw terminal socket and PC board terminal socket
Utilizes relay-securing hook for easy relay removal.
One-touch relay removal possible.
Terminal sockets with finger protect function available.

5. Full lineup

We added a TM type that can be built into devices.

TYPICAL APPLICATIONS
Control panels
Power supply units
Molding machines Machine tools
Welding equipment
Agricultural equipment
Office equipment
Vending machines
Communications equipment
Amusement machines, etc.

ORDERING INFORMATION

Note: Products conform to UL/C-UL and VDE, as standard.
(VDE under application for TM type.)

TYPES

1. Plug-in type

Coil voltage	1 Form C	2 Form C
	Part No.	Part No.
5V DC	AHN12005	AHN22005
6 V DC	AHN12006	AHN22006
12 V DC	AHN12012	AHN22012
24 V DC	AHN12024	AHN22024
48 V DC	AHN12048	AHN22048
100V DC	AHN120X0	AHN220X0
110 V DC	AHN120X1	AHN220X1
12 V AC	AHN11012	AHN21012
24 V AC	AHN11024	AHN21024
100/110V AC	AHN110X0	AHN210X0
110/120V AC	AHN110X1	AHN210X1
200/220V AC	AHN110Y0	AHN210Y0
220/240V AC	AHN110Y2	AHN210Y2

Note: Packing quantity; Carton: 50 pcs, Case: 500 pcs.

3. Plug-in type (with diode)

Coil voltage	1 Form C	2 Form C
	Part No.	Part No.
5V DC	AHN12205	AHN22205
6 V DC	AHN12206	AHN22206
12 V DC	AHN12212	AHN22212
24 V DC	AHN12224	AHN22224
48 V DC	AHN12248	AHN22248
100 V DC	AHN122X0	AHN222X0
110V DC	AHN122X1	AHN222X1

Note: Packing quantity; Carton: 50 pcs, Case: 500 pcs.

2. Plug-in type (with LED indication)

Coil voltage	1 Form C	2 Form C
	Part No.	Part No.
5V DC	AHN12105	AHN22105
6V DC	AHN12106	AHN22106
12 V DC	AHN12112	AHN22112
24 V DC	AHN12124	AHN22124
48 V DC	AHN12148	AHN22148
100 V DC	AHN121X0	AHN221X0
110 V DC	AHN121X1	AHN221X1
12 V AC	AHN11112	AHN21112
24 V AC	AHN11124	AHN21124
$100 / 110 \mathrm{~V}$ AC	AHN111X0	AHN211X0
$110 / 120 \mathrm{~V}$ AC	AHN111X1	AHN211X1
$200 / 220 \mathrm{~V}$ AC	AHN111Y0	AHN211Y0
$220 / 240 \mathrm{~V}$ AC	AHN111Y2	AHN211Y2

Note: Packing quantity; Carton: 50 pcs, Case: 500 pcs.

4. Plug-in type (with diode and LED indication)

Coil voltage	1 Form C	2 Form C
	Part No.	Part No.
5V DC	AHN12305	AHN22305
6V DC	AHN12306	AHN22306
12V DC	AHN12312	AHN22312
24 V DC	AHN12324	AHN22324
48 V DC	AHN12348	AHN22348
100V DC	AHN123X0	AHN223X0
110V DC	AHN123X1	AHN223X1

Note: Packing quantity; Carton: 50 pcs, Case: 500 pcs.

5. TM type

Coil voltage	1 Form A
	Part No.
5V DC	AHN36005
6 V DC	AHN36006
12 V DC	AHN36012
24 V DC	AHN36024
48 V DC	AHN36048
100 V DC	AHN360X0
110 V DC	AHN360X1
12 V AC	AHN35012
24 V AC	AHN35024
$100 / 110 \mathrm{~V}$ AC	AHN350X0
$110 / 120 \mathrm{~V}$ AC	AHN350X1
$200 / 220 \mathrm{~V}$ AC	AHN350Y0
$220 / 240 \mathrm{~V}$ AC	AHN350Y2

Note: Packing quantity; Carton: 50 pcs, Case: 500 pcs.

6. Accessories

Type	No. of poles		Item
Screw terminal socket	1-pole	HN1 screw terminal socket	Part No.
		HN1 screw terminal socket (Finger protect type)	AHNA11
	2-pole	HN2 screw terminal socket	AHNA11P
		HN2 screw terminal socket (Finger protect type)	AHNA21
PC board terminal socket	1-pole	HN1 PC board terminal socket	AHNA21P
	2-pole	HN2 PC board terminal socket	AHNA13

Notes: 1. Packing quantity: 10pcs. (Carton), 100pcs. (Case)
2. Products conform to UL/C-UL, as standard.

- Specifications

Item		Performance					
Type		HN1 screw terminal socket	HN1 screw terminal socket (Finger protect type)	HN1 PC board terminal socket	HN2 screw terminal socket	HN2 screw terminal socket (Finger protect type)	HN2 PC board terminal socket
Contact arrangement		1 Form C			2 Form C		
Max. continuous current (Ambient temperature:$\left.-40 \text { to }+70^{\circ} \mathrm{C}-40 \text { to }+158^{\circ} \mathrm{F}\right)$		16A*	10A	10A	5A	5A	5 A
Initial breakdown voltage	Between open contacts	1, 000 Vrms for 1 min . (Detection current: 10 mA)					
	Between contact sets	-			3, 000 Vrms for 1 min . (Detection current: 10 mA)		
	Between contact and coil	$5,000 \mathrm{Vrms}$ for 1 min . (Detection current: 10 mA)					
Initial insulation resistance		$1,000 \mathrm{M} \Omega$ between each terminal (500V DC)					

*When using with current of 16 A (for HN1 screw terminal socket), the maximum ambient temperature is $50^{\circ} \mathrm{C}$.
When using between $50^{\circ} \mathrm{C}$ and $70^{\circ} \mathrm{C}$, please reduce by $0.1 \mathrm{~A} /{ }^{\circ} \mathrm{C}$
Notes: 1. In order to prevent breakage and disfiguring, the screw tightening torque for the terminal socket should be within the range of 0.5 to $0.8 \mathrm{~N} \cdot \mathrm{~m}$.

> 2. When attaching the terminal socket directly to a chassis, please use the metric coarse thread screw.

- AHNA11 and AHNA21: M3 \times 16, - AHNA11P and AHNA21P: M3 $\times 30$

RATING

1. Coil data

1) DC coils

Coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal coil current $[\pm 20 \%]$	Coil resistance (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating power	Max. allowable voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
5V DC	$70 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$15 \% \mathrm{~V}$ or more of nominal voltage (Initial)	106.4 mA	47Ω [$\pm 10 \%$]	0.53W	$170 \% \mathrm{~V}$ of nominal voltage
6 V DC			88.2 mA	$68 \Omega[\pm 10 \%]$		
12 V DC			44.4 mA	$270 \Omega[\pm 10 \%]$		
24V DC			22.0 mA	1,090 $[\pm 10 \%]$		
48 V DC			11.0 mA	4,350 $\Omega[\pm 10 \%]$		
100V DC			5.3 mA	18,870 $[\pm 10 \%]$		
110V DC			4.8 mA	22,830 $[\pm 10 \%]$		

2) AC coils $(50 / 60 \mathrm{~Hz})$

Coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal coil current [$\pm 20 \%$]		Nominal operating power		Max. Allowable voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
			50 Hz	60 Hz	50 Hz	60 Hz	
12 V AC	$80 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$30 \% \mathrm{~V}$ or more of nominal voltage (Initial)	93 mA	75 mA	Approx. 1.1 to 1.4 V A	Approx. 0.9 to 1.2 V A	$140 \% \mathrm{~V}$ of nominal voltage
24 V AC			46.5 mA	37.5 mA			
100/110V AC			11.0/13.0mA	$9.0 / 10.6 \mathrm{~mA}$			
110/120V AC			10.0/11.8mA	$8.2 / 9.7 \mathrm{~mA}$			
200/220V AC			$5.5 / 6.5 \mathrm{~mA}$	$4.5 / 5.3 \mathrm{~mA}$			
220/240V AC			$5.0 / 5.9 \mathrm{~mA}$	4.1/4.8mA			

2. Specifications (Plug-in Standard type and TM type)

Characteristics	Item		Specifications		
Contact	Arrangement		1 Form C	2 Form C	1 Form A (TM type)
	Initial contact resistance, max		Max. $100 \mathrm{~m} \Omega$ (By voltage drop 6 V DC 1A)	Max. $50 \mathrm{~m} \Omega$ (By voltage drop 6 V DC 1A)	Max. $100 \mathrm{~m} \Omega$ (By voltage drop 6 V DC 1A)
	Contact material		AgSnO_{2} type	Au-flashed AgNi type	AgSnO_{2} type
Rating	Nominal switching capacity (resistive load)		10A 250V AC, 10A 30V DC	5A 250V AC, 5A 30V DC	16A 250V AC, 16A 30V DC
	Max. switching power (resistive load)		4,000VA, 300W	1,250VA, 150W	4,000VA, 480W
	Max. switching voltage		250 V AC, 30V DC		
	Max. switching current		16A (at AC load), 10A (at DC load)	5A	16A
	Nominal operating power		0.53W, 0.9VA		
	Min. switching capacity (Reference value)*1		$100 \mathrm{~mA} \mathrm{5V} \mathrm{DC}$	1mA 1V DC	100mA 5V DC
Electrical characteristics	Insulation resistance (Initial)		Min. $1,000 \mathrm{M} \Omega$ (at 500 V DC) Measurement at same location as "Initial breakdown voltage" section.		
	Breakdown voltage (Initial)	Between open contacts	$1,000 \mathrm{Vrms}$ for 1 min . (Detection current: 10 mA .)		
		Between contact sets	-	3,000 Vrms for 1 min . (Detection current: 10mA.)	-
		Between contact and coil	$5,000 \mathrm{Vrms}$ for 1 min . (Detection current: 10 mA .)		
	Temperature rise (at $70^{\circ} \mathrm{C} 158^{\circ} \mathrm{F}$)		Max. $60^{\circ} \mathrm{C}$ (By resistive method, nominal voltage)		
	Operate time (at $\left.20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)^{* 2}$		Max. 15ms (Nominal voltage applied to the coil, excluding contact bounce time.)		
	Release time (at $\left.20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)^{*}{ }^{2}$		Max. 5 ms (Nominal voltage applied to the coil, excluding contact bounce time.) (without diode)/ Max. 20ms (with diode)		
Mechanical characteristics	Shock resistance	Functional	Min. $100 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$.)		
		Destructive	Min. $1,000 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave p	e of sine wave: 6 ms .)	
	Vibration resistance	Functional	10 to 55 Hz at double amplitude of 1.5 mm (Detection time: $10 \mu \mathrm{~s}$.)		
		Destructive	10 to 55 Hz at double amplitude of 1.5 mm		
Expected life	Mechanical		AC: Min. 107; DC: Min. 2×10^{7} (at 300 cpm)		
	Electrical (resistive load)		Min. 10^{5} (at 20 cpm)		Min. 10^{5} (at 10 cpm)
Conditions	Conditions for operation, transport and storage*3 (Not freezing and condensing at low temperature)		Ambient temperature: $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+158^{\circ} \mathrm{F}$ Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature)		
	Max. Operating speed		20 cpm (at rated load)		10 cpm (at rated load)
Unit weight			Approx. $19 \mathrm{~g} \mathrm{}$.	Approx. $17 \mathrm{~g} \mathrm{}$.60 oz	Approx. $19 \mathrm{~g} \mathrm{}$.

*1This value can change due to the switching frequency, environmental conditions and desired reliability level, therefore it is recommended to check this with the actual load
*2For the AC coil types, the operate/release time will differ depending on the phase.
*3Refer to "6. Usage, Storage and Transport Conditions" in AMBIENT ENVIRONMENT (page 599).

REFERENCE DATA

1-(1). Max. switching capacity (1 Form C and 1 Form A)

1-(2). Max. switching capacity (2 Form C)

2-(1). Coil temperature rise (1 Form C/AC and 1 Form A/AC types)
Measured portion: Inside the coil
Ambient temperature: $70^{\circ} \mathrm{C} 158^{\circ} \mathrm{F}$

2-(2). Coil temperature rise (1 Form C/DC and 1 Form A/DC types)
Measured portion: Inside the coil
Ambient temperature: $70^{\circ} \mathrm{C} 158^{\circ} \mathrm{F}$

2-(3). Coil temperature rise (2 Form C/AC type) Measured portion: Inside the coil Ambient temperature: $70^{\circ} \mathrm{C} 158^{\circ} \mathrm{F}$

2-(4). Coil temperature rise (2 Form C/DC type) Measured portion: Inside the coil Ambient temperature: $70^{\circ} \mathrm{C} 158^{\circ} \mathrm{F}$

DIMENSIONS(mm inch)

Interested in CAD data? You can obtain CAD data for all products with a \qquad CAD Data
mark from your local Panasonic Electric Works representative.

1. Plug-in type 1 Form C

CAD Data

External dimensions

Tolerance
Dimension :
Max. 1mm .039 inch:
1 to 3 mm .039 to .118 inch: $\pm 0.2 \pm .008$
Min. 3mm . 118 inch: $\quad \pm 0.3 \pm .012$

Schematic (Bottom view)

2. Plug-in type 2 Form C

CAD Data

Dimension :
Max. 1mm . 039 inch:
Tolerance
Max. 1 mm .039 inch: $.0 .1 \pm .004$
Min. 3mm . 118 inch:

External dimensions

Schematic (Bottom view)
Standard type

With Diode and LED type

3. TM type 1 Form A

Notes: 1. When mounting the TM type, since the cover is made from polycarbonate, please use a washer in order to prevent damage, deformation, and loosening.
2. Suitable tightening torque is 0.3 to $0.5 \mathrm{~N} \cdot \mathrm{~m}$.

Dimension :
Max. $1 \mathrm{~mm} \quad$ Tolerance
1 to 3 mm
Min. 3 mm .118 inch: $\quad \pm 0.3 \pm .012$

Mounting hole dimensions

Tolerance: $\pm 0.5 \pm .020$

* Reference in case of using DIN rail (ATA48011)

5. HN1 Screw terminal socket (Finger protect type)

Tolerance: $\pm 0.5 \pm .020$

* Reference in case of using DIN rail (ATA48011)

Note: Use rod or plate terminals, etc. (You cannot use Y-shape or round terminals.)
6. HN2 Screw terminal socket

7. HN2 Screw terminal socket (Finger protect type)

Note: Use rod or plate terminals, etc. (You cannot use Y-shape or round terminals.)

8. HN1 PC board terminal socket

PC board pattern (Bottom view)

Dimension :
Max. 1 mm .039 inch: $\quad \pm 0.1 \pm .004$
1 to 3 mm .039 to .118 inch: $\pm 0.2 \pm .008$
Min. 3 mm .118 inch: $\quad \pm 0.3 \pm .012$

9. HN2 PC board terminal socket

PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$

Dimension :	$\underline{\text { Tolerance }}$
Max. 1 mm .039 inch:	$\pm 0.1 \pm .004$
1 to 3 mm .039 to .118 inch: $\pm 0.2 \pm .008$	
Min. 3 mm .118 inch:	$\pm 0.3 \pm .012$

NOTES

1. Coil operating power

To ensure proper operation, the voltage applied to both terminals of the coil should be $\pm 5 \%$ (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$) the rated operating voltage of the coil. Also, be aware that the pick-up and dropout voltages will fluctuate depending on the ambient temperature and operating conditions.

2. LED indications

The light of the light emitting diode is what displays operation. If voltage remains after relay dropout, the LED might illuminate briefly.

3. Switching lifetime

The switching lifetime is defined under the standard test condition specified in the JIS C 5442 (*2) standard (temperature 15 to $35^{\circ} \mathrm{C} 59$ to $95^{\circ} \mathrm{F}$, humidity 25 to 75% R.H.). Check this with the real device as it is affected by coil driving circuit, load type, activation frequency, activation phase,ambient conditions and other factors.
Also, be especially careful of loads such as those listed below.

1) When used for AC load-operating and the operating phase is synchronous. Rocking and fusing can easily occur due to contact shifting.
2) High-frequency load-operating When high-frequency opening and closing of the relay is performed with a load that causes arcs at the contacts, nitrogen and oxygen in the air is fused by the arc energy and HNO_{3} is formed. This can corrode metal materials.
Three countermeasures for these are listed here.
(1) Incorporate an arc-extinguishing circuit.
(2) Lower the operating frequency
(3) Lower the ambient humidity
4. Direct mount type (TM type)

If the current to the connection terminal will exceed 10 A , we recommend connecting with solder. If you are going to use a tab terminal when the current will exceed 10 A , make sure to verify the temperature rise on the receptacle side under actual conditions before using.

5. Conditions for operation, transport and storage

1) Ambient temperature, humidity, and atmospheric pressure during usage, transport, and storage of the relay:
(1) Temperature:
-40 to $+70^{\circ} \mathrm{C}-40$ to $+158^{\circ} \mathrm{F}$
(2) Humidity: 5 to 85% RH
(Avoid freezing and condensation.)
The humidity range varies with the temperature. Use within the range indicated in the graph below. Temperature and humidity range for usage, transport, and storage

(3) Atmospheric pressure: 86 to 106 kPa

2) Condensation

Condensation forms when there is a sudden change in temperature under high temperature and high humidity conditions. Condensation will cause deterioration of the relay insulation.
3) Freezing

Condensation or other moisture may freeze on the relay when the temperatures is lower than $0^{\circ} \mathrm{C} 32^{\circ} \mathrm{F}$. This causes problems such as sticking of movable parts or operational time lags.
4) Low temperature, low humidity environments
The plastic becomes brittle if the relay is exposed to a low temperature, low humidity environment for long periods of time.
6. About the relay-securing hook

- Screw terminal socket

1) Installation of the securing hook is easily performed by pressing upward in the direction of the arrows.

2) Removal of the securing hook is easily performed by releasing the hook and pressing down, as shown in the figure.

- Screw terminal socket
(Finger protect type)

1) Install the securing hook by pressing the parts with arrows after inserting the relay.

2) Removal of the relay is easily performed by pressing the parts with arrows.

- PC board terminal socket

1) Installation of the securing hook is easily performed by pressing upward in the direction of the arrows.

2) Removal of the securing hook is easily performed by releasing the hook and pressing down, as shown in the figure.

*To prevent damage and deformity, please use the relay-securing hook at 10 N or less.

7. Diode characteristics

1) Reverse breakdown voltage:

Min. 1,000V (with diode type)
Min. 400V (with diode and LED indication type)

8. Diode type

Since the diode inside the relay coil are designed to absorb the counter emf, the element may be damaged if a large surge, etc., is applied to the diode. If there is the possibility of a large surge voltage from the outside, please implement measures to absorb it.

9. Installation

If you will be installing adjacent to other relays, please keep a distance of at least 5 mm from the relay.

For Cautions for Use, see Relay Technical Information (page 582).

Panasonic ideas for life

FEATURES

1. High-capacity and long life Mechanical life is more than 10 million operations and, with electrical life of more than 200,000 operations (resistive load 10 A ; inductive load 7.5 A), the relay has excellent inductive load durability.
2. Easy mounting and wiring

The terminal arrangement is apparent at a glance and wiring is easy. Moreover, quick tab terminal is also possible.
3. Operation indicator option

Optional operation indicators are available for easy visual confirmation that relays are operating. They simplify maintenance.
4. UL/CSA approved
5. Wide range of sockets and terminal sockets
To enable use with DIN rails, DIN terminal sockets are also available.

TYPICAL APPLICATIONS

HP relays enjoy wide use in various applications, particularly in automation controls and remote controls.
Applications include:

1. Industrial machinery

For controlling positioning, pressure, and
temperature in molding equipment, boilers, pumps, charging pressure equipment, measuring and evaluation equipment, textile machines, etc.

2. Machine tools

Control of positioning and directional change in turning machines, lathes, borers, etc.
3. Food processing packing machines Automatic control of packing equipment for milk and seafood, bottling, canning, and packaging
4. Office equipment

Control of copiers, time recorders, etc.
5. Coin operate machines

Control of food, cigarette, and other vending machines
6. Measuring devices and equipment For repeating installation of control signals and in power amplifiers
7. Generators, transformers and power receiving equipment.
Functional parts in protective equipment, functional assistance in automatic adjustment equipment, telemeters and other remote monitoring equipment

8. Control of conveyance equipment

Control panels for elevators, escalators, and other conveyance equipment, control of all kinds industrial transport equipment such as conveyors.

9. Amusement equipment

Control of equipment in amusement parks, etc., control of bowling alley equipment, control of fountains in public parks

About Cd-free contacts

We have introduced Cadmium free type products to reduce Environmental Hazardous Substances. (The suffix "F" should be added to the part number. The Suffix " F " is required only for 4 Form C contact type. The 2 Form C and 3 Form C contact type is originally cadmium-free, the suffix " F " is not required.) Please replace parts containing Cadmium with Cadmium-free products and evaluate them with your actual application before use because the life of a relay depends on the contact material and load.

ORDERING INFORMATION

[^27]
TYPES

1. Plug-in type

Coil voltage	2 Form C	3 Form C	P Form C
	Part No.	Part No.	Part No.
$24 V$ AC	HP2-AC24V	HP3-AC24V	HP4-AC24V-F
48 V AC	HP2-AC48V	HP3-AC48V	HP4-AC48V-F
100 V AC	HP2-AC100V	HP3-AC100V	HP4-AC100V-F
115 VAC	HP2-AC115V	HP3-AC115V	HP4-AC200V-F
200 V AC	HP2-AC200V	HP3-AC200V	HP4-AC220V-F
220 V AC	HP2-AC220V	HP3-AC220V	HP4-AC240V-F
240 V AC	HP2-AC240V	HP3-DC12V	HP4-DC24V-F
12 V DC	HP2-DC12V	HP3-DC24V	HP4-DC48V-F
$24 V$ DC	HP2-DC24V	HP3-DC48V	HP4-DC100V-F
48V DC	HP2-DC48V	HP3-DC100V	HP4-DC110V-F

Standard packing (2 Form C): Carton: 20 pcs.; Case: 100 pcs.
Standard packing (3 Form C, 4 Form C): Carton: 10 pcs.; Case: 50 pcs.

2. Plug-in type (with LED indication)

	Coil voltage	2 Form C	3 Form C	4 Form C
		Part No.	Part No.	Part No.
With LED indication	24 V AC	HP2-L-AC24V	HP3-L-AC24V	HP4-L-AC24V-F
With neon lamp	100 V AC	HP2-L-AC100V	HP3-L-AC100V	HP4-L-AC100V-F
	115 V AC	HP2-L-AC115V	HP3-L-AC115V	HP4-L-AC115V-F
	200 V AC	HP2-L-AC200V	HP3-L-AC200V	HP4-L-AC200V-F
	220 V AC	HP2-L-AC220V	HP3-L-AC220V	HP4-L-AC220V-F
	240 V AC	HP2-L-AC240V	HP3-L-AC240V	HP4-L-AC240V-F
With LED indication	12 V DC	HP2-L-DC12V	HP3-L-DC12V	HP4-L-DC12V-F
	24V DC	HP2-L-DC24V	HP3-L-DC24V	HP4-L-DC24V-F
	48 V DC	HP2-L-DC48V	HP3-L-DC48V	HP4-L-DC48V-F
With neon lamp	100 V DC	HP2-L-DC100V	HP3-L-DC100V	HP4-L-DC100V-F
	110 V DC	HP2-L-DC110V	HP3-L-DC110V	HP4-L-DC110V-F

Standard packing (2 Form C): Carton: 20 pcs.; Case: 100 pcs.
Standard packing (3 Form C, 4 Form C): Carton: 10 pcs.; Case: 50 pcs.

3. TM type and Direct mount type

Coil voltage	2 Form C (TM type)	3 Form C (direct mount type)
	Part No.	Part No.
24 V AC	HP2-TM-AC24V	HP3-M-AC24V
48 V AC	HP2-TM-AC48V	HP3-M-AC48V
100 V AC	HP2-TM-AC100V	HP3-M-AC100V
115 V AC	HP2-TM-AC115V	HP3-M-AC115V
200 V AC	HP2-TM-AC200V	HP3-M-AC200V
220 V AC	HP2-TM-AC220V	HP3-M-AC220V
240 V AC	HP2-TM-AC240V	HP3-M-AC240V
12 V DC	HP2-TM-DC12V	HP3-M-DC12V
24 V DC	HP2-TM-DC24V	HP3-M-DC24V
48 V DC	HP2-TM-DC48V	HP3-M-DC48V
100 V DC	HP2-TM-DC100V	HP3-M-DC100V
110V DC	HP2-TM-DC110V	HP3-M-DC110V

Standard packing: Carton: 10 pcs.; Case: 50 pcs.

4. Direct mount type (with LED indication)

	Coil voltage	3 Form C
		Part No.
With neon lamp	100 V AC	HP3-ML-AC100V
	115 V AC	HP3-ML-AC115V
	200V AC	HP3-ML-AC200V
	220 V AC	HP3-ML-AC220V
	240 V AC	HP3-ML-AC240V
	100 V DC	HP3-ML-DC100V
	110 V DC	HP3-ML-DC110V

Standard packing: Carton: 10 pcs.; Case: 50 pcs.

Notes: 1. Standard packaging is handled in units of inner cartons. Please specify if you require inner cartons to be boxed
2. Sockets, terminal sockets and installation brackets are not included. Please order these separately.
3. For products compliant with international standards, please refer to the standards chart.

RATING

1. Coil data

1) AC coils

Contact arrangement	Nominal coil voltage	Nominal coil current\qquad		Nominal operating power (VA)		Inductance (H)		Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Max. allowable voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
		50 Hz	60Hz	50 Hz	60 Hz	50 Hz	60 Hz			
	24 V AC	94 mA	78 mA	2.25 VA	1.9VA	0.753	0.776			
	48 V AC	46.5 mA	39 mA	2.23 VA	1.9VA	3.055	3.106			
	100 V AC	25.3 mA	21 mA	2.36 VA	2.1VA	12.60	12.03	$80 \% \mathrm{~V}$ or less of	$30 \% \mathrm{~V}$ or more of	
2 Form C	115 V AC	23.1 mA	18 mA	2.31 VA	2.1VA	16.70	15.83	nominal voltage	nominal voltage	nominal voltage
	200 V AC	12.4 mA	11 mA	2.48 VA	2.2 VA	48.03	45.81	(Initial)	(Initial)	
	220 V AC	10.6 mA	9.5 mA	2.34 VA	2.1VA	61.28	57.90			
	240 V AC	10.0 mA	9.0 mA	2.40 VA	2.2 VA	69.00	66.26			
	24 V AC	148.7 mA	130 mA	3.56VA	3.1VA	0.0494	0.475			
	48 V AC	74.2 mA	65 mA	3.56VA	3.1VA	1.976	1.899			
	100 V AC	36.4 mA	32 mA	3.64 VA	3.2 VA	8.500	8.038	$80 \% \mathrm{~V}$ or less of	$30 \% \mathrm{~V}$ or more of	
3 Form C	115 V AC	32.5 mA	28.5 mA	3.74 VA	3.3 VA	10.79	10.36	nominal voltage	nominal voltage	
	200 V AC	18.2 mA	16 mA	3.65VA	3.2 VA	33.53	32.10	(Initial)	(Initial)	
	220 V AC	16.0 mA	14.2 mA	3.54VA	3.1VA	41.35	39.32			
	240 V AC	15.8 mA	13.9 mA	3.79 VA	3.3 VA	45.94	44.05			
	12 V AC	456 mA	400 mA	5.47VA	4.8 VA	0.080	0.077			
	24 V AC	229 mA	200 mA	5.49VA	4.8 VA	0.320	0.309			
	48 V AC	108mA	95 mA	5.18VA	4.6 VA	1.348	1.292			
	100 V AC	57.3 mA	50 mA	5.73VA	5.0 VA	5.348	5.156	$80 \% \mathrm{~V}$ or less of	$30 \% \mathrm{~V}$ or more of	$110 \% \mathrm{~V}$ of
4 Form C	115 V AC	47.6 mA	42 mA	5.47VA	4.8 VA	7.264	6.953	(Initial)	(Initial)	nominal voltage
	200 V AC	28.5 mA	25 mA	5.69 VA	5.0VA	21.27	20.45			
	220 V AC	23.8 mA	21 mA	5.24 VA	4.6 VA	27.75	26.57			
	240 V AC	23.3 mA	20.5 mA	5.58 VA	4.9 VA	30.98	29.75			

2) DC coils $\left(20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)$

Contact arrangement	Nominal coil voltage	Nominal coil current (mA)	Nominal operating power (W)	Coil resistance (Ω)	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Max. allowable voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
2 Form C	12 V DC	109 mA	1.3W	110Ω	$80 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$15 \% \mathrm{~V}$ or more of nominal voltage (Initial)	$110 \% \mathrm{~V}$ of nominal voltage
	24V DC	54.5 mA	1.3 W	440Ω			
	48 V DC	26.7 mA	1.3 W	1,800			
	100 V DC	14.9 mA	1.5 W	6,700			
	110 V DC	15.0 mA	1.7W	7,300 ${ }^{\text {, }}$			
3 Form C	12 V DC	120 mA	1.4W	100Ω	$80 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$15 \% \mathrm{~V}$ or more of nominal voltage (Initial)	$110 \% \mathrm{~V}$ of nominal voltage
	24V DC	60 mA	1.4 W	400Ω			
	48 V DC	31 mA	1.5 W	1,560			
	100 V DC	15.6 mA	1.6W	6,400 ${ }^{\text {a }}$			
	110 V DC	14.9 mA	1.6W	7,450 Ω			
4 Form C	12 V DC	127 mA	1.5 W	95Ω	$80 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$15 \% \mathrm{~V}$ or more of nominal voltage (Initial)	$110 \% \mathrm{~V}$ of nominal voltage
	24V DC	63 mA	1.5 W	380Ω			
	48 V DC	32.0 mA	1.5 W	1,500			
	100V DC	16.3 mA	1.6W	5,950			
	110 V DC	15.7 mA	1.7W	7,000			

Notes: 1. The rated current area is $\pm 15 \%$ (60 Hz) [AC coils],. $\pm 10 \%\left(20^{\circ} \mathrm{C}\right)$ [DC coils]
2. The coil resistance for DC operation is the value measured when the coil temperature is $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$. Compensate $\pm 0.4 \%$ for every $\pm 1^{\circ} \mathrm{C}$ change in temperature.
3. The relay operates in a range of 80% to $110 \% \mathrm{~V}$ of the voltage rating, but ideally, in consideration of temporary voltage fluctuations, it should be operated at the rated voltage. In particular, for AC operation, if the impressed voltage drops to $80 \% \mathrm{~V}$ or more below the rated voltage, humming will occur and a large current will flow leading possibly to coil burnout.
4. For use with 200 V DC, connect a $6.7 \mathrm{k} \Omega(10 \mathrm{~W})$ resistor, in series, to the 100 V DC relay [3 Form C type is $.6 .4 \mathrm{k} \Omega(5 \mathrm{~W}) ; 4$ Form C type is $.6 .2 \mathrm{k} \Omega(10 \mathrm{~W})$].
5. As a general rule, only a pure DC voltage should be used for the coil drive.

However, a DC power supply that contains ripples has characteristics that differ from pure DC.
Therefore, please verify characteristics (operate voltage, release voltage, humming) using the actual circuit that will be used.

2. Specifications

Characteristics		Item	Specifications
Contact	Arrangement		2 Form C, 3 Form C, 4 Form C
	Initial contact resistance, max		Max. $15 \mathrm{~m} \Omega$ (By voltage drop 6 V DC 1A)
	Contact material	2 Form C, 3 Form C	Ag
		4 Form C	Ag alloy (cd free)
Rating	Nominal switching capacity		10A 250V AC (resistive load)
	Min. switching capacity (Reference value)*		$100 \mathrm{~mA} \mathrm{5V} \mathrm{DC}$
Electrical characteristics	Insulation resistance (Initial)		Min. $100 \mathrm{M} \Omega$ (at 500 V DC) Measurement at same location as "Initial breakdown voltage" section.
	Breakdown voltage (Initial)	Between open contacts	1,000 Vrms for 1 min (2 Form C, 4 Form C). $2,000 \mathrm{Vrms}$ for 1 min (3 Form C) (Detection current: 10mA.)
		Between contact sets	1,500 Vrms for 1 min (2 Form C, 4 Form C). 2,000 Vrms for 1 min (3 Form C) (Detection current: 10mA.)
		Between contact and coil	1,500 Vrms for 1 min (2 Form C, 4 Form C). 2,000 Vrms for 1 min (3 Form C) (Detection current: 10 mA .)
	Temperature rise		Max. $65^{\circ} \mathrm{C}$ (By temperature method, at $40^{\circ} \mathrm{C}$, nominal current)
	Operate time ${ }^{2}$		Max. 25 ms (2 Form C), Max.30ms (3 Form C, 4 Form C) (Nominal voltage applied to the coil, excluding contact bounce time.)
	Release time*2		Max. 25ms (2 Form C), Max.30ms (3 Form C, 4 Form C) (Nominal voltage applied to the coil, excluding contact bounce time.) (without diode)
Mechanical characteristics	Shock resistance	Functional	Min. $98 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$.)
		Destructive	Min. $980 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 6 ms .)
	Vibration resistance	Functional	10 to 55 Hz at double amplitude of 1 mm (Detection time: $10 \mu \mathrm{~s}$.)
		Destructive	10 to 55 Hz at double amplitude of 2 mm
Expected life	Mechanical		Min. 10^{7}
Conditions	Conditions for operation, transport and storage ${ }^{* 3}$		Ambient temperature: $-50^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}-58^{\circ} \mathrm{F}$ to $+104^{\circ} \mathrm{F}$ Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature)
	Max. Operating speed		20 cpm (at max. rating)
Unit weight			2 Form C: approx. 60g 2.12oz, 3 Form C: approx. $100 \mathrm{~g} 3.53 \mathrm{oz}, 4$ Form C: approx. 125 g 4.41 oz

*1 This value can change due to the switching frequency, environmental conditions and desired reliability level, therefore it is recommended to check this with the actual load *2For the AC coil types, the operate/release time will differ depending on the phase.
*3The upper operation ambient temperature limit is the maximum temperature that can satisfy the coil temperature rise value. Refer to " 6 . Usage, Storage and Transport Conditions" in AMBIENT ENVIRONMENT (page 599).

3. Electrical life

1) $A C$ load

Voltage	125 VAC		250 V AC		Expected life
Load Current	Resistive $(\mathrm{A})(\cos \varphi=1)$	Inductive $(\mathrm{A})(\cos \varphi=0.4)$	Resistive $(\mathrm{A})(\cos \varphi=1)$	Inductive (A) $(\cos \varphi=0.4)$	

Note: When the electromagnet or exciting coil (Solenoid, etc.) is the load, the value of motor or lamp load is applicable.

2) DC load					
Voltage	24V DC		125V DC		Expected life
Load	Resistive (A)	Inductive (A)	Resistive (A)	Inductive (A)	
Current	-	7	-	-	Min. 2×10^{5}
	7.5	5	0.5	0.4	Min. 5×10^{5}
	5	3	0.3	0.2	Min. 10^{6}
	1	0.6	0.1	0.06	Min. 2×10^{6}

Notes

1. For DC inductive loads, use an arc suppressing circuit.
2. Cautions at DC load use: when used under a DC load operating at high repetition rate with considerable arcing, corrosion of the contacts and/or the contact blades is likely to occur.
3. Life of LED and neon lamp (with operation indication)

	Continuous	Use rating (ON time) 50%
With neon lamp	25,000 hours (approx. 3 years)	Approx. 6 years
With LED indication	50,000 hours (approx. 5.5 years)	100,000 hours (approx. 11 years)

Schematic

Coil terminal No. and polarity (DC type)

	Polarity	HP2	HP3	HP4
Terminal	$(+)$	7	10	10
No.	$(-)$	2	2	1

REFERENCE DATA

1. Life curve

2. Max. switching capacity

DIMENSIONS (mm inch) Interested in CAD data? You can obtain CAD data for all products with a CAD Data mark from your local Panasonic Electric Works representative.

TM type
(2 Form C)
CAD Data

Dimension:
Max. 2mm . 079 inch:
2 to 9 mm .079 to .354 inch: $\pm 0.5 \pm .020$
9 to 20 mm .354 to .787 inch: $\pm 1 \pm .039$
Min. 20 mm .787 inch: $\pm 1.5 \pm .059$

Schematic (Bottom view)

Direct mounting type

(3 Form C)

CAD Data

Dimension:
Max. 2mm 079 inch: 2 to 9 mm .079 to .354 inch: 9 to 20 mm .354 to .787 inch: Min. 20mm . 787 inch:

External dimensions

Schematic (Bottom view)

Mounting hole diagram

For Cautions for Use, see Relay Technical Information (page 582).

Panasonic ideas for life

ACCESSORIES
 (Sockets and
 Terminal sockets)

Socket for rectangular hold boring

Terminal socket for DIN rail assembly

TYPES

1. For DIN rail terminal sockets, hold-down clip included.
2. For square hole sockets, powerful hold-down clip included.

Type	No. of poles	Item	Part No.	Packing quantity	
				Carton	Case
Square hole socket	2-pole	HP2-square hole socket	HP2-SRS	20 pcs .	$100 \mathrm{pcs}$.
	3 -pole	HP3-square hole socket	HP3-SRS	10 pcs .	$50 \mathrm{pcs}$.
	4-pole	HP4-square hole socket	HP4-SRS	10 pcs .	50 pcs .
DIN rail terminal socket	2-pole	HP2-DIN terminal socket	HP2-SFD	10 pcs .	50 pcs.
	3 -pole	HP3-DIN terminal socket	HP3-SFD	10 pcs .	50 pcs .
	4-pole	HP4-DIN terminal socket	HP4-SFD	5 pcs.	25 pcs.
Common part	2/3/4-pole (common)	HP-hold down clip for socket	AW5806	-	50 pcs.

[^28]DIMENSIONS (Unit: mm inch)

1. Socket for rectangular hold boring (hold-down clip included)

HP2-Socket (HP2-SRS)

External dimensions

General tolerance: $\pm 0.1 \pm .004$

Front surface mounting
2-4.2 dia. hole (or 2-M4 screw hole)
$2-.165$ dia. hole (or 2-M. 157 screw hole)

Mounting dimensions

Notes: 1. Optimum space-saving panel cut-out
2. Can be mounted from either the front or the rear of the panel.
3. Hold-down clip is included in package.

External dimensions

General tolerance: $\pm 0.1 \pm .004$

Front surface mounting

Tolerance: $\pm 0.1 \pm .004$
Rear surface mounting

Tolerance: $\pm 0.1 \pm .004$

Mounting dimensions

Notes: 1. Optimum space-saving panel cut-out.
2. Can be mounted from either the front or the rear of the panel.
3. Hold-down clip is included in package.

Front surface mounting

Tolerance: $\pm 0.1 \pm .004$

External dimensions

General tolerance: $\pm 0.1 \pm .004$

Rear surface mounting

Tolerance: $\pm 0.1 \pm .004$

Mounting dimensions

Notes: 1. Optimum space-saving panel cut-out.
2. Can be mounted from either the front o the rear of the panel.
3. Hold-down clip is included in package.

*When using the former hold-down clip, it is necessary to cut out the A section marked by the broken line (not necessary with the powerful hold-down clip).
2. Terminal socket for DIN rail assembly (hold-down clip and installation screw included)

HP2-Terminal socket for DIN rail assembly (HP2-SFD)

Schematic

Notes: 1. For direct mounting, use the included installation screw block.
2. A hold-down clip is included with the terminal socket.

HP3-Terminal socket for DIN rail assembly (HP3-SFD)

External dimensions

Schematic

Mounting hole diagram

Notes: 1. For direct mounting, use the included installation screw block.
2. A hold-down clip is included with the terminal socket.

HP4-Terminal socket for DIN rail assembly (HP4-SFD)

External dimensions

Notes: 1. For direct mounting, use the included installation screw block.
2. A hold-down clip is included with the terminal socket.

Schematic

Mounting hole diagram

NOTES

1. There are two types of HP relay: plugin and direct mounting (HP2-TM and HP3-M only).
Avoid use of direct mounting types in sockets or terminal sockets.
Note: Mounting measurements for direct mounting types (HP2-TM and HP3-M) are shown in the drawing on page 283.
2. The terminals are compatible with tab terminals. Consequently, for direct mounting types, in addition to soldering, AMP terminals can be used.

Part number	Compatible tab terminal
HP2	$\# 205$ series
HP3	$\# 187$ series
HP4	$\# 205$ series

3. When tightening the fixing screws of direct mounting types, use washers to prevent damage or distortion.
The optimum torque range is 0.49 to 0.69 $\mathrm{N} \cdot \mathrm{m}$, (5 to $7 \mathrm{kgf} \cdot \mathrm{cm}$).
To prevent loosening of direct mounting types, terminal sockets and sockets, etc., when fixing the screws, use spring washers, etc. Moreover, wiring (soldering), should be done with care while ensuring strong connections.
4. When tightening terminal socket fixing screws, to prevent damage, the optimum torque range should be 0.784 to 0.98 $\mathrm{N} \cdot \mathrm{m}$, (8 to $10 \mathrm{kgf} \cdot \mathrm{cm}$).
5. Avoid use in adverse conditions, such as where the relay will be subjected to strong vibrations or shock, where there is exposure to harmful gas, or where ambient temperatures are high (more than $40^{\circ} \mathrm{C}$).
6. Use in DC load

Abnormal wear of the contacts and contact springs will occur when the switching frequency is high and there are large arcs. In particular, if high-frequency operation in hot or humid conditions is intended, use arc-suppressing circuits. 7. There is no particular specification for HP relay mounting orientation.
8. Do not insert or remove relays into or out of live circuits.

For Cautions for Use, see Relay Technical Information (page 584).

Panasonic ideas for life

COMPACT POWER RELAYS

PC board type

Plug-in type

FEATURES

- High inrush current capability

1 Form A: 163 A inrush (TV-8)
2 Form A: 111 A inrush (TV-5)

- High dielectric withstanding for transient protection:
JC can withstand $10,000 \mathrm{~V}$ surge in $\mu \mathrm{s}$ between coil and contact.
- Electrical life:

1 Form A: 10^{5} ope. at 15 A 250 V AC resistive load 2 Form A: 10^{5} ope. at 10 A 250 V AC resistive load

- UL/CSA, VDE, TÜV, SEMKO also approved.

SPECIFICATIONS

Contact

Arrangement			1 Form A	2 Form A
Initial contact resistance, max. (By voltage drop 6 V DC 1 A)			$30 \mathrm{~m} \Omega$(Cd free type: $100 \mathrm{~m} \Omega$)	
Contact material			Silver alloy	
Contact force, min.			30 g	
Rating (resistive load)	Maximum	witching power	3,750 VA	2,500 VA
	Maximum	witching voltage	250 V AC	250 V AC
	Max. switc	ing current	15 A	10 A
	Min. switc	ng capacity\#1	$100 \mathrm{~mA}, 5 \mathrm{~V}$ DC	
Expected life (min. operation)	Mechanica		5×10^{6}	
	Electrical	15 A 250 V AC	10^{5}	-
	(resistive)	10 A 250 V AC	-	10^{5}

Coil

Nominal operating power	900 mW	$1,000 \mathrm{~mW}$

\#1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.

Remarks

* Specifications will vary with foreign standards certification ratings.
*1 Measurement of same location as "Initial breakdown voltage" section
*2 Detection current: 10 mA
${ }^{{ }^{3}}$ Excluding contact bounce time
${ }^{* 4}$ Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$
${ }^{* 5}$ Half-wave pulse of sine wave: 6 ms
${ }^{*} 6$ Detection time: $10 \mu \mathrm{~s}$
${ }^{* 7}$ Refer to "6. Usage, Storage and Transport Conditions" in AMBIENT ENVIRONMENT (page 599).

Characteristics

Maximum operating speed			20 cpm .
Initial insulation resistance*1			Min. $100 \mathrm{M} \Omega$ at 500 V DC
Initial breakdown voltage*2	Between open contacts		$2,000 \mathrm{~V} \mathrm{rms} \mathrm{for} 1 \mathrm{~min}$.
	Between contacts sets		2,000 Vrms for 1 min .
	Between contacts and coil		4,000 Vrms for 1 min .
Operate time*3 (at nominal voltage)			Max. 30 ms
Release time(without diode)*3 (at nominal voltage)			Max. 10 ms
Temperature rise (at nominal voltage)			Max. $55^{\circ} \mathrm{C}$
Shock resistance	Functional*4		$196 \mathrm{~m} / \mathrm{s}^{2}\{20 \mathrm{G}\}$
	Destructive*5		$980 \mathrm{~m} / \mathrm{s}^{2}\{100 \mathrm{G}\}$
Vibration resistance	Functional**		$98 \mathrm{~m} / \mathrm{s}^{2}\{10 \mathrm{G}\}, 10$ to 55 Hz at double amplitude of 1.6 mm
	Destructive		$117.6 \mathrm{~m} / \mathrm{s}^{2}\{12 \mathrm{G}\}, 10$ to 55 Hz at double amplitude of 2 mm
Conditions for operation, transport and storage*7 (Not freezing and condensing at low temperature)		Ambient temp.	$\begin{aligned} & -50^{\circ} \mathrm{C} \text { to }+60^{\circ} \mathrm{C} \\ & -58^{\circ} \mathrm{F} \text { to }+140^{\circ} \mathrm{F} \end{aligned}$
		Humidity	5 to 85\%R.H.
Unit weight			Approx. 31 g 1.09 oz

TYPICAL

APPLICATIONS
Automatic garage door openers
Microwave ovens
Dryers
Vending machines
Copiers
Air conditioners
Stereo equipment
TV sets

ORDERING INFORMATION

Contact arrangement	Mounting classification		Coil voltage	Environmental support	
1a: 1 Form A 2a: 2 Form A	Nil: PC board terminal S: Plug-in terminal TM: Top mounting		$\begin{aligned} & \mathrm{DC} 5,6,12, \\ & 24,48 \mathrm{~V} \end{aligned}$	F: RoHS Directive conforming type (AgSnO_{2} type)	

(Notes) 1. TV rated types available 1 Form A: TV-8; 2 Form A: TV-5.
2. Standard packing Carton: 50 pcs.; Case: 200 pcs.
3. UL/CSA, VDE, TÜV, and SEMKO certified products can also be supported. Please consult us.

COIL DATA (at $\mathbf{2 0}{ }^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)

Contact arrangement	Nominal voltage. V DC	Pick-up voltage. V DC (max.)	Drop-out voltage. V DC (min.)	Coil resistance, $\Omega(\pm 10 \%)$	Nominal operating current, mA	Nominal operating power, W	Maximum allowable voltage, V DC (at $60^{\circ} \mathrm{C}$)
1 Form A	6	4.8	0.6	40	150	0.9	6.6
	12	9.6	1.2	160	75	0.9	13.2
	24	19.2	2.4	640	37.5	0.9	26.4
	48	38.4	4.8	2,560	18.8	0.9	52.8
2 Form A	6	4.8	0.6	36	166.6	1.0	6.6
	12	9.6	1.2	144	83.3	1.0	13.2
	24	19.2	2.4	576	41.6	1.0	26.4
	48	38.4	4.8	2,304	20.8	1.0	52.8

DIMENSIONS (mm inch) Interested in CAD data? You can obtain CAD data for all products with a CAD Data mark from your local Panasonic Electric Works representative.

PC board type
JC1a

PC board pattern (Bottom view)

Schematic

Coil terminal	
Common terminal	
N.O. terminal	$4 \text { كَ }$

PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$

Plug-in type

CAD Data

REFERENCE DATA

JC1a type

1. Maximum value for switching capacity

3.-(2) Coil temperature rise

Point measured: Inside the coil
Ambient temperature: $40^{\circ} \mathrm{C} 104^{\circ} \mathrm{F}$

JC2a type

1. Maximum value for switching capacity

\longrightarrow Contact voltage, V
2. Life curve

\longrightarrow Contact current, A
3.-(3) Coil temperature rise

Point measured: Inside the coil Ambient temperature: $60^{\circ} \mathrm{C} 140^{\circ} \mathrm{F}$

3.-(1) Coil temperature rise Point measured: Inside the coil Ambient temperature: $26^{\circ} \mathrm{C} 79^{\circ} \mathrm{F}$

4. Operate / release time

2. Life curve
3.-(1) Coil temperature rise Point measured: Inside the coil Ambient temperature: $26^{\circ} \mathrm{C} 79^{\circ} \mathrm{F}$

3.-(2) Coil temperature rise Point measured: Inside the coil Ambient temperature: $40^{\circ} \mathrm{C} 104^{\circ} \mathrm{F}$

3.-(3) Coil temperature rise Point measured: Inside the coil Ambient temperature: $60^{\circ} \mathrm{C} 140^{\circ} \mathrm{F}$

4. Operate / release time

For Cautions for Use, see Relay Technical Information (page 582).

ACCESSORIES

JC2-SS
JC2-PS
mm inch

(Note)
Outward dimensions and chassis cutout dimensions for JC1-SS and JC1-PS are same as those of JC2-SS and JC2-PS respectively. UL/CSA approved type is standard.

Panasonic ideas for life

Data sheet addition for JC Relay

- Integrated arc-blowing magnet for high DC loads [H73 type]
- High switching capacity: 20A/60V DC
- Clearance and creepage distance contact/coil: $\mathbf{8 ~ m m}$
- Two contacts connected in series ensures even higher life expectancy

APPLICATIONS: Switching of DC loads in devices such as
 - Control of Industrial DC motors

- Emergency power-off for DC loads

Arrangement		2 Form A	
Contact material		AgSnO_{2}	
Contact connection		one contact	two contacts in series
Rating (resistive) load	250VDC / 5A	1×10^{4} ops.	2×10^{4} ops.
	250VDC / 4A	3×10^{4} ops.	4×10^{4} ops.
Special loads test data (min. operations at $20^{\circ} \mathrm{C}$)	220VDC / 1,6A; L/R = 14.6ms (1s On, 4s Off)	2×10^{4}	3×10^{4}
	220VDC / 1A; L/R = 17.4ms (1s On, 4s Off)	2×10^{4}	3×10^{4}
	60VDC / 20A; resistive load (30s On, 30s Off)	1×10^{4}	2×10^{4}

Mechanical, endurance and coil data according to JC-datasheet

Load limit curve for connection in series

Connection diagram

Attention: For the Blow-out effect, the polarity must be defined as: (-) at contacts: 2,5
$(+)$ at contacts: 3, 4

ORDERING AND TYPE INFORMATION (values a t $20^{\circ} \mathrm{C}$)

Type	Nominal voltage, V DC	Pick-up voltage, V DC (max.)	Drop-out voltage, V DC (min.)	Nominal operating power, W	Coil resistance, $\Omega(\pm 10 \%)$
JC2aF-DC5V-Y1-F-H73	5	4.0	0.5	1	25
JC2aF-DC6V-Y1-F-H73	6	4.8	0.6	1	
JC2aF-DC12V-Y1-F-H73	12	9.6	1.2	1	
JC2aF-DC24V-Y1-F-H73	24	19.2	2.4	146	
JC2aF-DC48V-Y1-F-H73	48	38.4	4.8	576	

COMPACT POWER RELAY FOR INDUCTIVE LOAD

FEATURES

- Compact, high-capacity, and resistant to inductive loads
The relay is a compact $16 \times 30.4 \times 26.5 \mathrm{~mm}$ $.630 \times 1.197 \times 1.043$ inch. It can control an inductive load $(\cos \varphi=0.7)$ with inrush current of 70 A and steady state current of 20 A .
- Excellent contact welding resistance High contact pressure, a forced opening mechanism, and a forced wiping mechanism realizes an excellent contact welding resistance.
- High breakdown voltage and surge resistant relay
More than 6.4 mm .252 inch maintained for the insulation distance between contacts and coil, and the breakdown voltage between contacts and coil is $5,000 \mathrm{~V}$ for 1 minute. In addition, the surge resistance between contacts and coil is greater than $10,000 \mathrm{~V}$.

- Resistant to external force

An absorber mechanism is used on the load terminals, giving a large improvement in characteristics variations caused by the external force during FASTON placement/removal.

- Flux resistance mechanism

The terminal area is plugged with resin to prevent flux seepage during PCB mounting. (TMP type)

- Conforms to the various safety standards
UL, CSA approved.
TÜV, VDE under application.
- The line up can support economical mounting methods.
The relay are equipped with a drive terminal (coil terminal) on one side for PCBs, and a load terminal (tab terminal \#250) on the reverse side. The line up includes the TM type which can be attached directly to the PCB composing a drive circuit, and the TMP type which supports economical wiring. The TMP type can also be directly attached, and a high capacity load can be wired to the tab terminal.

COMMENTS ABOUT Cd FREE

We have introduced Cadmium free type products to reduce the material which is not good for our environment. (The suffix "F" should be added to the part number.) If you are still using Cadmium containing parts, which don't have "F" on the suffix of the part number, please use Cadmium free parts from now on. The life of the Cadmium free parts may be shorter than the Cadmium containing parts based on the load condition, so please evaluate the Cadmium free parts with your actual application before use.

SPECIFICATIONS

Contact

Arrangement				1 Form A
Initial contact resistance, max. (By voltage drop 6 V DC 1 A)				$30 \mathrm{~m} \Omega$
Contact material				AgSnO_{2} type
Rating (resistive load)	Nominal switching capacity			20 A 250 V AC
	Max. switching power			5,000 VA
	Max. switching voltage			250 V AC
	Max. switching current			20 A
	Min. switching capacity\#1			$\begin{gathered} 100 \mathrm{~mA}, 5 \mathrm{~V} \\ \mathrm{DC} \end{gathered}$
Expected life (min. ope.)	Mechanical (at 180 cpm)			10^{6}
	Electrical Life (at 20 cpm)	$\begin{aligned} & \text { Resistive } \\ & 250 \mathrm{~V} \mathrm{AC} \end{aligned}$	$\begin{aligned} & \text { oad } 20 \mathrm{~A}, \\ & (\cos \varphi=1) \end{aligned}$	10^{5}
			Inrush 70 A , Steady 20 A (250 $\mathrm{VAC} \cos \varphi=0.7$)	10^{5}
		Inductive load	Inrush 80 A , Cut-off 80 A (When the motor is locked) (250 V AC $\cos \varphi=0.7)$	1.5×10^{3}

Coil

Nominal operating power
\#1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.

Remarks

* Specifications will vary with foreign standards certification ratings.
*1 Measurement at same location as "Initial breakdown voltage" section
*2 Detection current: 10 mA
${ }^{*} 3$ Wave is standard shock voltage of $\pm 1.2 \times 50 \mu \mathrm{~s}$ according to JEC-212-1981
${ }^{* 4}$ Excluding contact bounce time
${ }^{* 5}$ Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$
${ }^{*}$ Half-wave pulse of sine wave: 6 ms
${ }^{* 7}$ Detection time: $10 \mu \mathrm{~s}$
*8 Refer to "6. Usage, Storage and Transport Conditions" in AMBIENT ENVIRONMENT (page 599).

Characteristics

Max. operating speed	180 cpm	
Initial insulation resistance*1		Min. $100 \mathrm{M} \Omega$ (at $500 \mathrm{~V} \mathrm{DC)}$
Initial breakdown voltageBetween open contacts	Between contacts and coil	$5,000 \mathrm{Vrms}$ for 1 min.

Surge voltage between contact and coil ${ }^{3}$	Min. $10,000 \mathrm{~V}$

Operate time*4
(at nominal voltage)(at $20^{\circ} \mathrm{C}$)

Release time (without diode) ${ }^{* 4}$
(at nominal voltage) $\left(\right.$ at $20^{\circ} \mathrm{C}$)

Max. 20ms (Approx. 8 ms)
Max. 10ms (Approx. 3 ms)

Temperature rise (at $60^{\circ} \mathrm{C}$) | Max. $55^{\circ} \mathrm{C}$ (Contact switching current: |
| :--- |
| 20 A/voltage applied to coil: $100 \% \mathrm{~V}$) |

Approx. 28 g .99 oz
Approx. 32 g 1.13 oz
Approx. 33 g 1.16 oz

TYPICAL APPLICATIONS ORDERING INFORMATION

- Compressor and heater control in air conditioners
- Power control in hot air type heaters
- Magnetron control in microwave ovens
- Lamp and motor control in

OA equipment such as copiers and facsimiles.

(Note) 1. Standard packing: Carton: 50pcs. Case: 200pcs. UL/CSA, VDE approved type is standard.

TYPES AND COIL DATA (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)

Part No.				Nominal voltage, V DC	Pick-up voltage	Drop-out voltage,	Nominal operating current, mA	Coil resistance, $\Omega(\pm 10 \%)$	Nominal operating power, mW	Max. allowable voltage, V DC
Slim		Flat								
TMP	PCB	TMP	TM							
JM1aN-TMP-DC5V-F	JM1aN-P-DC5V-F	JM1aN-ZTMP-DC5V-F	JM1aN-ZTM-DC5V-F	5	3.5	0.5	180	27.8	900	5.5
JM1aN-TMP-DC6V-F	JM1aN-P-DC6V-F	JM1aN-ZTMP-DC6V-F	JM1aN-ZTM-DC6V-F	6	4.2	0.6	150	40	900	6.6
JM1aN-TMP-DC9V-F	JM1aN-P-DC9V-F	JM1aN-ZTMP-DC9V-F	JM1aN-ZTM-DC9V-F	9	6.3	0.9	100	90	900	9.9
JM1aN-TMP-DC12V-F	JM1aN-P-DC12V-F	JM1aN-ZTMP-DC12V-F	JM1aN-ZTM-DC12V-F	12	8.4	1.2	75	160	900	13.2
JM1aN-TMP-DC24V-F	JM1aN-P-DC24V-F	JM1aN-ZTMP-DC24V-F	JM1aN-ZTM-DC24V-F	24	16.8	2.4	37.5	640	900	26.4
JM1aN-TMP-DC48V-F	JM1aN-P-DC48V-F	JM1aN-ZTMP-DC48V-F	JM1aN-ZTM-DC48V-F	48	33.6	4.8	18.75	2,560	900	52.8

General tolerance: $\pm 0.4 \pm .016$

PC board pattern

Flat TMP type

General tolerance: $\pm 0.4 \pm .016$
Tolerance: $\pm 0.1 \pm .004$

Flat TM type

PC board pattern (Bottom view)

Schematic

Panel cutout

General tolerance: $\pm 0.4 \pm .016$

REFERENCE DATA

1. Coil temperature rise

Place to be measured: Inside of coil Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$

2. Ambient temperature characteristics Sample: JM1aN-TMP-DC24V-F, 5 pcs.

3. Operate/release time Sample: JM1aN-TMP-DC24V-F, 5 pcs.

4. Life curve

For Cautions for Use, see Relay Technical Information (page 582).

Panasonic ideas for life

HIGH ELECTRICAL \& MECHANICAL NOISE IMMUNITY RELAY

JQ RELAYS

FEATURES

- High electrical noise immunity
- High switching capacity in a compact package
- High sensitivity: 200 mW (1a), 400 mW (1c)
- High surge voltage: $8,000 \mathrm{~V}$ between contacts and coil
mm inch
- UL, CSA, VDE, TÜV, SEMKO

About Cd-free contacts

We have introduced cadmium-free type products to reduce environmentally hazardous substances. Please replace parts that contain cadmium with Cd-free products. Evaluate them with your actual application before use because the life of a relay depends on the contact material and load. approved

- Class B coil insulation type available

SPECIFICATIONS

				Standard type	High capacity type	
Arrangement				1 Form A, 1 Form C		
Initial contact resistance, max. (By voltage drop 6 V DC 1 A)				$100 \mathrm{~m} \Omega$		
Contact material				AgSnO_{2} type		
Rating (resistive)	Nominal switching capacity	1a		5 A 125 V AC, 2 A 250 V AC, 5 A 30 V DC	10 A 125 V AC, 5 A 250 V AC, 5 A 30 V DC	
		1c	N.O.	5 A 125 V AC, 2 A 250 V AC, 3 A 30 V AC	$10 \mathrm{~A} 125 \mathrm{~V} \mathrm{AC} 5 \mathrm{~A} 250 \mathrm{~V} \mathrm{AC},, 5 \mathrm{~A} 30 \mathrm{~V}$ DC	
			N.C.	2 A 125 V AC, 1 A 250 V AC, 1 A 30 V DC	3 A 125 V AC, 2 A 250 V AC, 1 A 30 V DC	
	Max. switching power	1a		$625 \mathrm{VA}, 150 \mathrm{~W}$	1,250 VA, 150 W	
		1c	N.O.	625 VA, 90 W	1,250 V AC, 150 W	
			N.C.	250 VA, 30 W	$500 \mathrm{~V} \mathrm{AC}$,	
	Max. switching voltage			250 V AC, 110 V DC (0.3A)		
	Max. switching current			N.O.: 5 A N.C.: 2 A	N.O.: 10 A N.C.: 3 A	
	Min. switching capacity\#1			$100 \mathrm{~mA}, 5 \mathrm{~V}$ DC		
Expected mechanical life (at 180 cpm)(min. operations)				10^{7}		
Expected electrical life (min. operations)						
Type				Switching capacity	No. of operations	
Standard type		1a		$\begin{aligned} & 5 \text { A } 125 \text { V AC } \\ & 3 \text { A } 125 \text { V AC } \\ & 2 \text { A } 250 \text { V AC } \\ & 5 \text { A } 30 \text { V DC } \end{aligned}$	$\begin{gathered} 5 \times 10^{4} \\ 2 \times 10^{5} \\ 2 \times 10^{5} \\ 10^{5} \\ \hline \end{gathered}$	
		1c	N.O.	$\begin{aligned} & 5 \text { A } 125 \text { V AC } \\ & 2 \text { A } 250 \mathrm{~V} \text { AC } \\ & 3 \text { A } 30 \mathrm{~V} \text { DC } \end{aligned}$	$\begin{gathered} 5 \times 10^{4} \\ 2 \times 10^{5} \\ 10^{5} \\ \hline \end{gathered}$	
		N.C.	$\begin{gathered} 2 \text { A } 125 \text { V AC } \\ 1 \text { A } 250 \text { V AC } \\ 1 \text { A } 30 \text { V DC } \\ \hline \end{gathered}$	$\begin{gathered} 2 \times 10^{5} \\ 2 \times 10^{5} \\ 10^{5} \end{gathered}$		
High capacity type			1a		$\begin{gathered} 10 \mathrm{~A} 125 \mathrm{~V} \text { AC } \\ 5 \mathrm{~A} 250 \mathrm{~V} \text { AC } \\ 5 \mathrm{~A} 30 \mathrm{~V} \text { DC } \end{gathered}$	$\begin{gathered} 5 \times 10^{4} \\ 5 \times 10^{4} \\ 10^{5} \end{gathered}$
		1c	N.O.	10 A 125 V AC 5 A 250 V AC 5 A 30 V DC	$\begin{gathered} 5 \times 10^{4} \\ 5 \times 10^{4} \\ 10^{5} \\ \hline \end{gathered}$	
		N.C.	$\begin{aligned} & 3 \text { A } 125 \text { V AC } \\ & 2 \text { A } 250 \text { V AC } \\ & 1 \text { A } 30 \text { V DC } \end{aligned}$	$\begin{gathered} 2 \times 10^{5} \\ 2 \times 10^{5} \\ 10^{5} \\ \hline \end{gathered}$		
Coil (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)						
Nominal operating power				1a: 200 mW	1c: 400 mW	

[^29]
Characteristics

Max. operating speed			20 cpm
Initial insulation resistance*1			Min. 1,000 M 2 at 500 V DC
Initial breakdown voltage*2	Between open contacts		1a: 1,000 Vrms for 1 min . 1c: 750 Vrms for 1 min .
	Between c	ntacts and coil	4,000 Vrms for 1 min.
Surge voltage between contact and coil* ${ }^{* 3}$			8,000 V
Operate time*4 (at nominal voltage)			Max. 20 ms
Release time*4 (at nominal voltage)(without diode)			Max. 10 ms
Temperature rise*5			Max. $45^{\circ} \mathrm{C}$
Shock resistance	Functional* ${ }^{*}$		Min. $294 \mathrm{~m} / \mathrm{s}^{2}\{30 \mathrm{G}\}$
	Destructive*7		Min. $980 \mathrm{~m} / \mathrm{s}^{2}$ \{100 G\}
Vibration resistance	Functional**		$98 \mathrm{~m} / \mathrm{s}^{2}\{10 \mathrm{G}\}, 10$ to 55 Hz at double amplitude of 1.6 mm
	Destructive		$117.6 \mathrm{~m} / \mathrm{s}^{2}\{12 \mathrm{G}\}, 10$ to 55 Hz at double amplitude of 2.0 mm
Conditions for operation, transport and storage*9 (Not freezing and condensing at low temperature)		Ambient temp.*10	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+185^{\circ} \mathrm{F}$
		Humidity	5 to 85\% R.H.
Unit weight			Approx. 7 g .25 oz

Remarks

Specifications will vary with foreign standards certification ratings.
*1 Measurement at same location as "Initial breakdown voltage" section
*2 Detection current: 10 mA
*3 Wave is standard shock voltage of $\pm 1.2 \times 50 \mu$ s according to JEC-212-1981
*4 Excluding contact bounce time
*5 Measured conditions
Standard type \quad Resistive, nominal voltage applied to the coil. Contact carrying current: 5 A , at $70^{\circ} \mathrm{C} 158^{\circ} \mathrm{F}$
High capacity type Resistive, nominal voltage applied to the coil. Contact carrying current: 10 A , at $70^{\circ} \mathrm{C} 158^{\circ} \mathrm{F}$
*6 Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$
*7 Half-wave pulse of sine wave: 6 ms

* Detection time: $10 \mu \mathrm{~s}$
*9 Refer to "6. Usage, Storage and Transport Conditions" in AMBIENT ENVIRONMENT (page 599).
${ }^{* 10} \mathrm{When}$ using relays in a high ambient temperature, consider the pick-up voltage rise due to the high temperature (a rise of approx. $0.4 \% \mathrm{~V}$ for each $1^{\circ} \mathrm{C} 33.8^{\circ} \mathrm{F}$ with $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$ as a reference) and use a coil impressed voltage that is within the maximum allowable voltage range.

TYPICAL APPLICATIONS

- Air conditioners
- Refrigerators
- Microwave ovens
- Heaters

ORDERING INFORMATION

UL/CSA, VDE, SEMKO approved type is standard.

* Available only for 1 Form C type

TYPES AND COIL DATA at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$

		Part No.	Nominal voltage, V DC	$\begin{gathered} \text { Pick-up } \\ \text { voltage, V DC } \\ (\min .) \end{gathered}$	$\begin{gathered} \text { Drop-out } \\ \text { voltage, V DC } \\ \text { (min.) } \end{gathered}$	Nominal operating current, mA	Nominal operating power, mW	Coil resistance, $\Omega(\pm 10 \%)$	Max. allowable voltage, V DC
$\begin{aligned} & \mathbb{4} \\ & \underline{y} \\ & \stackrel{1}{4} \\ & \leftarrow \end{aligned}$		JQ1a-5V-F	5	3.75	0.25	40	200	125	180\% of nominal voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
		JQ1a-6V-F	6	4.5	0.3	33.3		180	
		JQ1a-9V-F	9	6.75	0.45	22.2		405	
		JQ1a-12V-F	12	9	0.6	16.7		720	
		JQ1a-18V-F	18	13.5	0.9	11.1		1,620	
		JQ1a-24V-F	24	18	1.2	8.3		2,880	
		JQ1aP-5V-F	5	4	0.25	40	200	125	130% of nominal voltage (at $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$)
		JQ1aP-6V-F	6	4.8	0.3	33.3		180	
		JQ1aP-9V-F	9	7.2	0.45	22.2		405	
		JQ1aP-12V-F	12	9.6	0.6	16.7		720	
		JQ1aP-18V-F	18	14.4	0.9	11.1		1,620	
		JQ1aP-24V-F	24	19.2	1.2	8.3		2,880	
$\begin{aligned} & 0 \\ & \underline{y} \\ & \stackrel{0}{0} \\ & \stackrel{4}{2} \end{aligned}$		JQ1-5V-F	5	3.75	0.25	80	400	62.5	150% of nominal voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
		JQ1-6V-F	6	4.5	0.3	66.7		90	
		JQ1-9V-F	9	6.75	0.45	44.4		202.5	
		JQ1-12V-F	12	9	0.6	33.3		360	
		JQ1-18V-F	18	13.5	0.9	22.2		810	
		JQ1-24V-F	24	18	1.2	16.7		1,440	
		JQ1-48V-F	48	36	2.4	8.3		5,760	
		JQ1P-5V-F	5	4	0.25	80	400	62.5	110\% of nominal voltage (at $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$)
		JQ1P-6V-F	6	4.8	0.3	66.7		90	
		JQ1P-9V-F	9	7.2	0.45	44.4		202.5	
		JQ1P-12V-F	12	9.6	0.6	33.3		360	
		JQ1P-18V-F	18	14.4	0.9	22.2		810	
		JQ1P-24V-F	24	19.2	1.2	16.7		1,440	
		JQ1P-48V-F	48	38.4	2.4	8.3		5,760	

DIMENSIONS (mm inch) Interested in CAD data? You can obtain CAD data for all products with
CAD Data mark from your local Panasonic Electric Works representative.

1 Form A

1 Form C

Dimension :
Max. 1mm . 039 inch
General tolerance
$\pm 0.2 \pm .008$
1 to 5 mm .039 to .118 inch $\pm 0.3 \pm .012$
Min. 5 mm .118 inch $\pm 0.4 \pm .016$

1 Form A

PC board pattern (Bottom view)
1 Form A
1FormC

Tolerance: $\pm 0.1 \pm .004$

REFERENCE DATA

Max. switching capacity (1 Form A type)

— Contact voltage, V

Max. switching capacity (1 Form C type)

——Contact voltage, V

Standard type

1-(1). Operate \& release time (1 Form A type) Tested sample: JQ1a-12V-F, 25 pcs.

3-(1). Coil temperature rise (1 Form A type) Contact carrying current: 3 A, 5 A Measured portion: Inside the coil

4-(1). Ambient temperature characteristics (1 Form A type)
Tested sample: JQ1a-24V-F
Contact carrying current: 3 A, 5 A

-(2). Operate \& release time (1 Form C type) Tested sample: JQ1-24V-F, 25 pcs.

\longrightarrow Coil applied voltage, \%V

3-(2). Coil temperature rise (1 Form C type)
Contact carrying current: 3 A, 5 A
Measured portion: Inside the coil

2. Life curve

Ambient temperature: room temperature

4-(2). Ambient temperature characteristics
(1 Form C type)
Tested sample: JQ1-24V-F
Contact carrying current: $3 \mathrm{~A}, 5 \mathrm{~A}$

(1) Allowable ambient temperature against \% coil voltage (max. inside the coil temperature set as $130^{\circ} \mathrm{C} 266^{\circ} \mathrm{F}$) (Carrying current: 3 A)
(2) Allowable ambient temperature against $\%$ coil voltage (max. inside the coil temperature set as $130^{\circ} \mathrm{C} 266^{\circ} \mathrm{F}$) (Carrying current: 5 A)
(3) Allowable ambient temperature against \% coil voltage (max. inside the coil temperature set as $115^{\circ} \mathrm{C} 239^{\circ} \mathrm{F}$) (Carrying current: 3 A)
(4) Allowable ambient temperature against \% coil voltage (max. inside the coil temperature set as $115^{\circ} \mathrm{C} 239^{\circ} \mathrm{F}$) (Carrying current: 5 A)
(5) Pick-up voltage with a hot-start condition of $100 \% \mathrm{~V}$ on the coil (Carrying current: 5 A)
(6) Pick-up voltage with a hot-start condition of $100 \% \mathrm{~V}$ on the coil (Carrying current: 3 A)
(7) Pick-up voltage

High capacity type

1-(1). Operate \& release time (1 Form A type)
Tested sample: JQ1aP-12V-F, 25 pcs.

3-(1). Coil temperature rise (1 Form A type) Contact carrying current: $5 \mathrm{~A}, 10 \mathrm{~A}$
Measured portion: Inside the coil

4-(1). Ambient temperature characteristics (1 Form A type)
Tested sample: JQ1aP-24V-F
Contact carrying current: $5 \mathrm{~A}, 10 \mathrm{~A}$

1-(2). Operate \& release time (1 Form C type) Tested sample: JQ1P-12V-F, 25 pcs.

2. Life curve

Ambient temperature: room temperature

3-(2). Coil temperature rise (1 Form C type) Contact carrying current: $5 \mathrm{~A}, 10 \mathrm{~A}$
Measured portion: Inside the coil

4-(2). Ambient temperature characteristics (1 Form C type)
Tested sample: JQ1P-24V-F
Contact carrying current: $5 \mathrm{~A}, 10 \mathrm{~A}$

(1) Allowable ambient temperature against \% coil voltage (max. inside the coil temperature set as $130^{\circ} \mathrm{C} 266^{\circ} \mathrm{F}$) (Carrying current: 5 A)
(2) Allowable ambient temperature against $\%$ coil voltage (max. inside the coil temperature set as $130^{\circ} \mathrm{C} 266^{\circ} \mathrm{F}$) (Carrying current: 10 A)
(3) Allowable ambient temperature against \% coil voltage (max. inside the coil temperature set as $115^{\circ} \mathrm{C} 239^{\circ} \mathrm{F}$) (Carrying current: 5 A)
(4) Allowable ambient temperature against \% coil voltage (max. inside the coil temperature set as $115^{\circ} \mathrm{C} 239^{\circ} \mathrm{F}$) (Carrying current: 10 A)
(5) Pick-up voltage with a hot-start condition of $100 \% \mathrm{~V}$ on the coil (Carrying current: 10 A)
(6) Pick-up voltage with a hot-start condition of $100 \% \mathrm{~V}$ on the coil (Carrying current: 5 A)
(7) Pick-up voltage

For Cautions for Use, see Relay Technical Information (page 582).

TUV

Panasonic ideas for life

MINIATURE PC BOARD TYPE

 POWER RELAY

FEATURES

- Miniature size with universal terminal footprint
- High contact capacity: 10 A
- TV-5 type available (Standard type)

1 Form A type \rightarrow TV-5
1 Form C type \rightarrow TV-5 (N.O. side only)

- VDE, TÜV also approved
- Sealed construction for automatic cleaning (Standard type)
- Class B and F coil insulation type also available.
- EN60335-1 GWT compliant (Tested by VDE) type available
- Surge voltage 6 kV type also available

About Cd-free contacts

We have introduced Cadmium free type products to reduce Environmental Hazardous Substances.
(The suffix "F" should be added to the part number)
Please replace parts containing Cadmium with Cadmium-free products and evaluate them with your actual application before use because the life of a relay depends on the contact material and load.

SPECIFICATIONS

Contact

Types		Standard type	Long endurance type
Arrangement		1 Form A, 1 Form C	1 Form A
Initial contact resistance, max. (By voltage drop 6 V DC 1 A)		$100 \mathrm{~m} \Omega$	
Contact material		AgSnO_{2} type	
Rating (resistive load)	Nominal switching capacity	10 A 250 V AC 10 A 125 V AC 6 A 277 V AC	10 A 250 V AC 10 A 125 V AC 10 A 277 V AC
	Max. switching power	2,500 VA	
	Max. switching voltage	250 V AC, 100 V DC	
	Max. switching current	10 A (AC), 5 A (DC)	
	Min. switching capacity\#1	$100 \mathrm{~mA}, 5 \mathrm{~V}$ DC	
Expected life (min. ope.)	Mechanical (at 180 cpm)	10^{7}	
	Electrical at 10 A 125 V AC, 6 A 277 V AC resistive (standard) 10 A 277 V AC resistive (High power)	1×10^{5}	2×10^{5}
	10 A 250 V AC resistive (Standard: at 20 cpm) (High power: at 20 cpm , $\left.105^{\circ} \mathrm{C} 221^{\circ} \mathrm{F}\right)^{* *}$	$\begin{aligned} & 5 \times 10^{4} \\ & \text { (No contact } \\ & \text { only) } \end{aligned}$	1.2×10^{5}

[^30]Coil

Nominal operating power	360 mW

\#1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.

Remarks

${ }^{* 1}$ Detection current: 10 mA
*2 Excluding contact bounce time

Characteristics

Max. operating speed			20 cpm	
Types			Standard type	Long endurance type
Initial insulation resistance			Min. $100 \mathrm{M} \Omega$ (at 500 V DC)	
Initial breakdown voltage*1	Between open contacts		750 Vrms for 1 min .	
	Between contacts and coil		1,500 Vrms for 1 min.	
Operate time*2 (at nominal voltage)			Max. 10 ms	
Release time (without diode)*2 (at nominal voltage)			Max. 10 ms	
Temperature rise (at nominal voltage)			Max. $35^{\circ} \mathrm{C}$, resistive, nominal voltage applied to coil. Contact carrying current: 10 A , at $70^{\circ} \mathrm{C} 158^{\circ} \mathrm{F}$	
Shock resistance		Functional* ${ }^{* 3}$	$98 \mathrm{~m} / \mathrm{s}^{2}\{10 \mathrm{G}\}$	
		Destructive*4	$980 \mathrm{~m} / \mathrm{s}^{2}\{100 \mathrm{G}\}$	
Vibration resistance		Functional*5	10 to 55 Hz at double amplitude of 1.6 mm	
		Destructive	10 to 55 Hz at double amplitude of 2 mm	
Conditions for operation, transport and storage*6 (Not freezing and condensing at low temperature)		Ambient temp.*7	$\begin{gathered} -40^{\circ} \mathrm{C} \text { to } \\ +85^{\circ} \mathrm{C} \\ -40^{\circ} \mathrm{F} \text { to } \\ +185^{\circ} \mathrm{F} \end{gathered}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +105^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{F} \text { to } \\ & +221^{\circ} \mathrm{F} \end{aligned}$
		Humidity	5 to 85\% R.H.	
Unit weight			Approx. 12 g .423 oz	

${ }^{*} 3$ Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$
${ }^{*} 4$ Half-wave pulse of sine wave: 6 ms
${ }^{*} 5$ Detection time: $10 \mu \mathrm{~s}$
${ }^{*}$ Refer to "6. Usage, Storage and Transport Conditions" in AMBIENT ENVIRONMENT (page 599).
${ }^{* 7}$ When using relays in a high ambient temperature, consider the pick-up voltage rise due to the high temperature (a rise of approx. $0.4 \% \mathrm{~V}$ for each $1^{\circ} \mathrm{C} 33.8^{\circ} \mathrm{F}$ with $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$ as a reference) and use a coil impressed voltage that is within the maximum allowable voltage range.

TYPICAL APPLICATIONS

1. Home appliances

Air conditioner, heater, etc.
2. Automotive

Power-window, car antenna, door-lock, etc.
3. Office machines

PPC, facsimile, etc.
4. Vending machines

ORDERING INFORMATION

Standard: UL/CSA, VDE, TÜV (Standard type)
UL/CSA, VDE (Long endurance type and EN60335-1 GWT compliant type)
UL/CSA (Surge voltage 6kV type)
Notes: 1. Standard packing: Carton: 100 pcs. Case: 500 pcs.
2. When ordering TV rated (TV-5) types, add suffix -TV.
3. Contact arrangement 1aP type is Flux-resistant type only (Class B insulation only).

COIL DATA

Part No.					Nominal voltage, V DC	Pick-up voltage, V DC (max.) (at $20^{\circ} \mathrm{C}$ $68^{\circ} \mathrm{F}$)	Drop-out voltage, V DC (min.) (at $20^{\circ} \mathrm{C}$ 68° F)	Coil resistance, $\Omega(\pm 10 \%)$ (at $20^{\circ} \mathrm{C}$ $68^{\circ} \mathrm{F}$)	Nominal operating current, $m A(\pm 10 \%)$ (at $20^{\circ} \mathrm{C}$ 68° F)	Nominal operating power, mW (at $20^{\circ} \mathrm{C}$ $68^{\circ} \mathrm{F}$)	Max. allowable voltage (at $85^{\circ} \mathrm{C}$ $185^{\circ} \mathrm{F}$)
Standard type				Long endurance type							
Seale	type	Flux-resis	tant type	Flux-resistant type							
1 Form A	1 Form C	1 Form A	1 Form C	1 Form A							
JS1a-5V-F	JS1-5V-F	JS1aF-5V-F	JS1F-5V-F	JS1aPF-B-5V-F	5	3.5	0.5	69.4	72		
JS1a-6V-F	JS1-6V-F	JS1aF-6V-F	JS1F-6V-F	JS1aPF-B-6V-F	6	4.2	0.6	100	60		
JS1a-9V-F	JS1-9V-F	JS1aF-9V-F	JS1F-9V-F	JS1aPF-B-9V-F	9	6.3	0.9	225	40		130\%V
JS1a-12V-F	JS1-12V-F	JS1aF-12V-F	JS1F-12V-F	JS1aPF-B-12V-F	12	8.4	1.2	400	30	360	nominal
JS1a-18V-F	JS1-18V-F	JS1aF-18V-F	JS1F-18V-F	JS1aPF-B-18V-F	18	12.6	1.8	900	20		voltage
JS1a-24V-F	JS1-24V-F	JS1aF-24V-F	JS1F-24V-F	JS1aPF-B-24V-F	24	16.8	2.4	1,600	15		
JS1a-48V-F	JS1-48V-F	JS1aF-48V-F	JS1F-48V-F	JS1aPF-B-48V-F	48	33.6	4.8	6,400	7.5		

Notes) 1. Class B and F coil insulation types available.

Ex) JS1aF-B-12V-F

JS1aF-F-12V-F
2. Surge voltage 6kV types available. When ordering, please add suffix "6K" (except for Long endurance type and EN60335-1 GWT compliant type). Ex) JS1aF-B-12V-F-6K

EN60335-1 GWT compliant types. When ordering, please add suffix "TT", e.g. JS1aF-B-12V-FTT

Part No.					Nominal voltage, V DC	Pick-up voltage, V DC (max.) (at $20^{\circ} \mathrm{C}$ 68° F)	Drop-out voltage, V DC (min.) (at $20^{\circ} \mathrm{C}$ $68^{\circ} \mathrm{F}$)	Coil resistance, $\Omega(\pm 10 \%)$ (at $20^{\circ} \mathrm{C}$ $68^{\circ} \mathrm{F}$)	Nominal operating current,$\begin{gathered} \mathrm{mA}(\pm 10 \%) \\ \left(\mathrm{at} 20^{\circ} \mathrm{C}\right. \\ \left.68^{\circ} \mathrm{F}\right) \end{gathered}$	Nominal operating power, mW (at $20^{\circ} \mathrm{C}$ 68° F)	Max. allowable voltage (at $85^{\circ} \mathrm{C}$ $185^{\circ} \mathrm{F}$)
Standard type				Long endurance type							
Seale	type	Flux-resistant type		Flux-resistant type							
1 Form A	1 Form C	1 Form A	1 Form C	1 Form A							
JS1a-5V-FTT	JS1-5V-FTT	JS1aF-5V-FTT	JS1F-5V-FTT	JS1aPF-B-5V-FTT	5	3.5	0.5	69.4	72	360	$\begin{gathered} \text { 130\%V } \\ \text { of } \\ \text { nominal } \\ \text { voltage } \end{gathered}$
JS1a-6V-FTT	JS1-6V-FTT	JS1aF-6V-FTT	JS1F-6V-FTT	JS1aPF-B-6V-FTT	6	4.2	0.6	100	60		
JS1a-9V-FTT	JS1-9V-FTT	JS1aF-9V-FTT	JS1F-9V-FTT	JS1aPF-B-9V-FTT	9	6.3	0.9	225	40		
JS1a-12V-FTT	JS1-12V-FTT	JS1aF-12V-FTT	JS1F-12V-FTT	JS1aPF-B-12V-FTT	12	8.4	1.2	400	30		
JS1a-18V-FTT	JS1-18V-FTT	JS1aF-18V-FTT	JS1F-18V-FTT	JS1aPF-B-18V-FTT	18	12.6	1.8	900	20		
JS1a-24V-FTT	JS1-24V-FTT	JS1aF-24V-FTT	JS1F-24V-FTT	JS1aPF-B-24V-FTT	24	16.8	2.4	1,600	15		
JS1a-48V-FTT	JS1-48V-FTT	JS1aF-48V-FTT	JS1F-48V-FTT	JS1aPF-B-48V-FTT	48	33.6	4.8	6,400	7.5		

Notes) 1. Class B and F coil insulation types available.
Ex) JS1aF-B-12V-FTT
JS1aF-E-12V-FTT
2. Surge voltage 6kV types are not available for the EN60335-1 GWT compliant type

DIMENSIONS (mm inch) Interested in CAD data? You can obtain CAD data for all products with a CAD Data mark from your local Panasonic Electric Works representative.

CAD Data

Note: Terminal No. 4 is only for Standard 1 Form C type
General tolerance: $\pm 0.3 \pm .012$

$$
\begin{array}{lc}
\text { Schematic } & \text { PC board patterr } \\
\text { (Bottom view) } & \text { (Bottom view) }
\end{array}
$$

1a

1a
(Standard, High Power)

REFERENCE DATA

1. Maximum value for switching capacity

4-(1). Coil temperature rise Sample: 5 pcs., JS1a-24V-F Measured portion: Inside the coil Contact current: 5 A

2. Operate/release time Sample: 25 pcs., JS1-12V-F

4-(2). Coil temperature rise
Sample: 5 pcs., JS1a-24V-F
Measured portion: Inside the coil Contact current: 10 A

3. Life curve

Ambient temperature: Room temperature

5. Ambient temperature characteristics Sample: 6 pcs., JS1-12V-F

For Cautions for Use, see Relay Technical Information (page 582).
${ }_{c} \mathrm{TH}_{\text {us }}$

PCB type

TMP type

FEATURES

- Surge withstand voltage: Min. 6,000 V
- High switching capacity - 30 A for 1 Form A
- 2 contact arrangements - 1 Form A or 1 Form C
- "TMP" types available
- UL/C-UL recognized
- Class F types standard

SPECIFICATIONS

Contacts

		PCB \& TMP type	
Arrangement		1 Form A	1 Form C
Initial contact resistance, max. (By voltage drop method, 6 V DC 1 A)		$50 \mathrm{~m} \Omega$	
Contact material		AgSnO_{2} type	
Rating	Max. switching power	8310 VA	$\text { N.C.: } 2770 \text { VA }$
	Max. switching voltage	277 V AC	
	Max. switching current	30 A	$\begin{aligned} & \text { N.C.: } 10 \mathrm{~A} \\ & \text { N.O.: } 20 \mathrm{~A} \end{aligned}$
	Min. switching capacity\#1	$100 \mathrm{~mA}, 5 \mathrm{~V}$ DC	
Expected life	Mechanical	Min. 1×10^{7}	
	Electrical (Resistive load)	$\begin{gathered} 20 \text { A } 277 \text { V AC } \\ \text { Min. } 1 \times 10^{5^{*}} \end{gathered}$	$\begin{gathered} \text { N.O.: } \\ 20 \text { A } 277 \text { V AC } \\ \text { Min. } 1 \times 10^{5^{*}} \\ \text { N.C.: } \\ 10 \text { A } 277 \text { V AC } \\ \text { Min. } 1 \times 10^{5^{*}} \end{gathered}$

* The life is for open venting-hole condition.

Coil at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$

	PCB \& TMP type
Nominal operating power	Approx. 1,000 mW

Characteristics

			PCB \& TMP type
Initial insulation resistance*1			Min. $100 \mathrm{M} \Omega$ at 500 V DC
Initial breakdown voltage*2	Between contacts		1,200 Vrms
	Between contacts and coil		3,500 Vrms
Initial surge voltage between contact and coil			Min. 6,000 V*3
Operate time*4 (at nominal voltage)			Max. 15 ms
Release time (without diode)*4 (at nominal voltage)			Max. 10 ms
Shock resistance		Functional*5	Min. $98 \mathrm{~m} / \mathrm{s}^{2}\{10 \mathrm{G}\}$
		Destructive*6	Min. $980 \mathrm{~m} / \mathrm{s}^{2}$ \{100 G\}
Vibration resistance		Functiona\|*7	Max. $88.2 \mathrm{~m} / \mathrm{s}^{2}\{9 \mathrm{G}\}, 10$ to 55 Hz at double amplitude of 1.5 mm
		Destructive	Max. $117.6 \mathrm{~m} / \mathrm{s}^{2}\{12 \mathrm{G}\}, 10$ to 55 Hz at double amplitude of 2 mm
Conditions for operation, transport and storage*8 (Not freezing and condensing at low temperature)		Ambient temp.	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & -67^{\circ} \mathrm{F} \text { to }+185^{\circ} \mathrm{F} \end{aligned}$
		Humidity	5 to 85\% R.H.
Unit weight			PCB type: Approx. 25 g (. 88 oz) TMP type: Approx. 30 g (1.06 oz)

[^31]
TYPICAL APPLICATIONS

- Oven
- Heating \& ventilation
- Home appliance

ORDERING INFORMATION

JT-V Relays (PCB and TMP type)

Notes: 1. UL/C-UL approved type is standard.
2. $5 \mathrm{~V}, 6 \mathrm{~V}, 9 \mathrm{~V}$ DC types are also available. Please contact us for details.
3. Standard packing: PCB type: Carton: 50 pcs. Case: 500 pcs.

TMP type: Carton: 50 pcs. Case: 300 pcs.

COIL DATA (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)

Nominal voltage, V DC	(ex voltage,	Drop-out volage,	Coil resistance, Ω ($\pm 10 \%$)	Nominal operating power, mW	Max. allowable voltage, V DC (at $70^{\circ} \mathrm{C} 158^{\circ} \mathrm{F}$)
	V DC (max.) (Initial)	V DC (min.) (Initial)	PCB \& TMP	PCB \& TMP	
12	9.0	1.2	144	1000	14.4
18	13.5	1.8	324	1000	21.6
24	18.0	2.4	576	1000	28.8
48	36.0	4.8	2304	1000	57.6

DIMENSIONS (m
(mm inch) Interested in CAD data? You can obtain CAD data for all products with a CAD Data mark from your local Panasonic Electric Works representative.

CAD Data

REFERENCE DATA

1. Change of rate of pick-up and drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
Sample: JTV1S-TMP-24V (6 pcs.)

2. Distribution frequency of pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
Sample: JTV1S-TMP-12V (100 pcs.)

3. Distribution frequency of drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
Sample: JTV1S-TMP-12V (100 pcs.)

4.-(1) Coil temperature rise (TMP type)*

Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$
Sample: JTV1aS-TMP-12V (6 pcs.)

* Coil temperature rise of sealed types are same as data of the dust cover type.

Ambient temperature: $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$
Sample: JTV1aS-TMP-12V (6 pcs.)

For Cautions for Use, see Relay Technical Information (page 582).

COMPACT FLAT
 POWER RELAY FOR HEATER LOADS

FEATURES

- High 16 A capacity

The contacts are high capacity 16A, 125 V AC.

- Compact, flat type with low 10.9 mm . 429 inch height
Compact flat type with low surface area of $16 \times 22 \mathrm{~mm} .630 \times .866$ inch and height of 10.9 mm .429 inch .
- High sensitivity at 200 mW High sensitivity at 200 mW coil power consumption.
- Represses contact terminal heat The contact terminals are larger and thicker compared to the existing JV relay. This limits the rise in temperature of the terminals when there is a large current flowing to approx. $28^{\circ} \mathrm{C} 62^{\circ} \mathrm{F}$ (normal current of 16 A).
- Conforms to the various safety standards
UL/CSA, TÜV approved.

COMMENTS ABOUT Cd FREE

We have introduced Cadmium free type products to reduce the material which is not good for our environment. (The suffix " F " should be added to the part number.) If you are still using Cadmium containing parts, which don't have " F " on the suffix of the part number, please use Cadmium free parts from now on. The life of the Cadmium free parts may be shorter than the Cadmium containing parts based on the load condition, so please evaluate the Cadmium free parts with your actual application before use.

SPECIFICATIONS

Contact

Arrangement		1 Form A
Initial contact resistance, max. (By voltage drop 6 V DC 1 A)		Max. $100 \mathrm{~m} \Omega$
Contact material		AgSnO_{2} type
Rating (resistive load)	Nominal switching capacity	16 A $125 \mathrm{~V} \mathrm{AC}$,10 A 277 V AC 10 A 30 V DC, 10 A 125 V AC
	Max. switching power	2,770 VA, 300 W
	Max. switching voltage	277 V AC, 30 V DC
	Max. switching current	16 A (AC 125 V), 10 A (DC)
	Min. switching capacity\#1	$100 \mathrm{~mA}, 5 \mathrm{~V}$ DC
Expected life (min. ope.) Mechanical (at 180 cpm)		2×10^{7}
Electrical at resistive load (at 20 cpm)	Sealed type 16 A 125 V AC, 10 A 30 V DC	10^{5}
	Flux-resistant type 10 A 125 V AC	3×10^{5}

Coil

Nominal operating power	$\left.\begin{array}{l}200 \mathrm{~mW}(\text { DC } 4.5 \text { to } 48 \mathrm{~V}) \\ 600 \mathrm{~mW} \\ \hline\end{array} \mathrm{DC} 100 \mathrm{~V}\right)$

\#1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.

Remarks

* Specifications will vary with foreign standards certification ratings.
*1 Excluding contact bounce time
*2 Excluding contact bounce time, without diode
${ }^{* 3}$ By resistive method; nominal voltage applied to the coil; contact carrying current: 16 A , at $70^{\circ} \mathrm{C} 158^{\circ} \mathrm{F}$
${ }^{*} 4$ Nominal voltage applied to the coil, at $60^{\circ} \mathrm{C} 140^{\circ} \mathrm{F}$
*5 Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$
*6 Half-wave pulse of sine wave: 6 ms
${ }^{*}{ }^{*}$ Detection time: $10 \mu \mathrm{~s}$
*8 Refer to "6. Usage, Storage and Transport Conditions" in AMBIENT ENVIRONMENT (page 599).

Characteristics

Max. operating speed		20 cpm
Operate time*1 (at nominal voltage)		Max. 12 ms (DC 4.5 V to 48 V) Max. 8 ms (DC 100 V)
Release time*2 (at nominal voltage)		Max. 5 ms
Initial insulation resistance		Min. 1,000 M (at 500 V DC)
Initial breakdown voltage (Detection current: 10 mA	Between open contacts	1,000 Vrms for 1 min.
	Between contacts and coil	2,500 Vrms for 1 min.
Surge voltage between contact and coil		Min. 4,500 V
Temperature rise		$\begin{gathered} \text { Max. } 45^{\circ} \mathrm{C}(\mathrm{DC} 4.5 \mathrm{~V} \text { to } 48 \mathrm{~V}) \\ { }^{{ }^{3}} \mathrm{Max} .55^{\circ} \mathrm{C}(\mathrm{DC} 100 \mathrm{~V})^{\star 4} \end{gathered}$
		Ambient temperature -40 to $70^{\circ} \mathrm{C}-40$ to $158^{\circ} \mathrm{F}$

(DC 4.5 to 48 V)
Conditions in case of operation, transport and storage*8
-40 to $60^{\circ} \mathrm{C}-40$ to $140^{\circ} \mathrm{F}$
(DC 100V)
Humidity: 5 to 85 \% R.H.
(Note freezing and condensing at low temperature)
Air pressure: 86 to 106 kPa

		Air pressure: 86 to 106 kPa	
Shock resistance	Functional	Min. $200 \mathrm{~m} / \mathrm{s}^{2}\{20 \mathrm{G}\}^{* 5}$	
	Destructive	Min. $1,000 \mathrm{~m} / \mathrm{s}^{2}\{100 \mathrm{G}\}^{* 6}$	
Vibration resistance	Functional	10 to $55 \mathrm{~Hz}{ }^{* 7}$	
	Destructive	10 to 55 Hz at double amplitude of 2 mm	
	Unit weight		

TYPICAL APPLICATIONS ORDERING INFORMATIONS

- AV equipment: TV's, VTR's, etc.
- OA equipment
- HA equipment

UL/CSA, TÜV approved type is standard.
Please inquire about the previous products (Cadmium containing parts).

TYPES AND COIL DATA (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)

Part No.		Nominal voltage, V DC	$\begin{gathered} \text { Pick-up } \\ \text { voltage } \\ \text { V DC (max.) } \end{gathered}$	Drop-out voltage V DC (min.)	Coil resistance, W ($\pm 10 \%$)	Nominal operating current, $m A(\pm 10 \%)$	Nominal operating power, mW	Max. allowable voltage, V DC
Sealed type	Flux-resistant type							
JVN1a-4.5V-F	JVN1aF-4.5V-F	4.5	3.375	0.23	101	44.4	200	6.75
JVN1a-6V-F	JVN1aF-6V-F	6	4.5	0.3	180	33.3	200	9
JVN1a-9V-F	JVN1aF-9V-F	9	6.75	0.45	405	22.2	200	13.5
JVN1a-12V-F	JVN1aF-12V-F	12	9	0.6	720	16.7	200	18
JVN1a-18V-F	JVN1aF-18V-F	18	13.5	0.9	1,620	11.1	200	27
JVN1a-24V-F	JVN1aF-24V-F	24	18	1.2	2,880	8.3	200	36
JVN1a-48V-F	JVN1aF-48V-F	48	36	2.4	11,520	4.2	200	72
JVN1a-100V-F	JVN1aF-100V-F	100	60	4	16,600	6	600	110

DIMENSIONS (mm inch)
Interested in CAD data? You can obtain CAD data for all products with a CAD Data mark from your local Panasonic Electric Works representative.

REFERENCE DATA

1. Max. switching power

2. Operate/release time Sample: JVN1aF-12 V-F, 6 pcs.

3. Coil temperature rise

Sample: JVN1aF-12 V-F, 6 pcs. point measured: coil inside Contact current: 16 A

4. Ambient temperature characteristics

Sample: JVN1aF-12 V-F, 6 pcs.

5. Life curve

Operation frequency: 20 times $/ \mathrm{min}$. Ambient temperature: room temperature

For Cautions for Use, see Relay Technical Information (page 582).

Panasonic ideas for life

COMPACT PC BOARD

 POWER RELAY
JW RELAYS

FEATURES

- Miniature package with universal terminal footprint
- High dielectric withstanding for transient protection: $10,000 \mathrm{~V}$ surge in μ s between coil and contact
- Sealed construction
- Class B coil insulation types available
mm inch - TV rated (TV-5) types available (only for 1 Form A type)
- VDE, TÜV, SEMKO, SEV, FIMKO, TV-5 also approved

About Cd-free contacts

We have introduced cadmium-free type products to reduce environmentally hazardous substances. Please replace parts that contain cadmium with Cd-free products. Evaluate them with your actual application before use because the life of a relay depends on the contact material and load.

Note: Add the suffix "F" to the part number for the 1 Form A contact type. The 1 Form C, 2 Form A and 2 Form C contact types were originally Cd-free, hence the suffix " F " is not required.

SPECIFICATIONS

Contact

		Standard type	High capacity type
Arrangement		1 Form A, 1 Form C, 2 Form A, 2 Form C	1 Form A, 1 Form C
Initial contact resistance, max. (By voltage drop 6 V DC 1 A)		$100 \mathrm{~m} \Omega$	
Contact material		1a: AgSnO2 type 1c, 2a, 2c: AgNi type	
Rating (resistive load)	Nominal switching capacity	$\begin{aligned} & 5 \mathrm{~A} 250 \mathrm{~V} \text { AC, } \\ & 5 \mathrm{~A} 30 \mathrm{~V} \text { DC } \end{aligned}$	$\begin{aligned} & 10 \text { A } 250 \text { V AC, } \\ & 10 \text { A } 30 \text { V DC } \end{aligned}$
	Max. switching power	1,250 VA, 150 W	2,500 VA, 300 W
	Max. switching voltage	250 V AC, 30 V DC	
	Max. switching current	5 A	10 A
	Min. switching capacity\#1	$100 \mathrm{~mA}, 5 \mathrm{~V}$ DC	
Expected life (min. ope.)	Mechanical (at 180 cpm)	5×10^{6}	
	Electrical (at 6 cpm) (Resistive load)	10^{5}	

Coil

Nominal operating power $\quad 530 \mathrm{~mW}$
\#1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.

Remarks

* Specifications will vary with foreign standards certification ratings.
${ }^{*}$ Detection current: 10 mA
*2 Wave is standard shock voltage of $\pm 1.2 \times 50 \mu$ s according to JEC-212-1981
*3 Excluding contact bounce time
${ }^{*} 45$ Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$
${ }^{*} 5$ Half-wave pulse of sine wave: 6 ms
${ }^{*} 6$ Detection time: $10 \mu \mathrm{~s}$
${ }^{* 7}$ Refer to " 6 . Usage, Storage and Transport Conditions" in AMBIENT ENVIRONMENT (page 599).
*8 When using relays in a high ambient temperature, consider the pick-up voltage rise due to the high temperature (a rise of approx. $0.4 \% \mathrm{~V}$ for each $1^{\circ} \mathrm{C} 33.8^{\circ} \mathrm{F}$ with $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$ as a reference) and use a coil impressed voltage that is within the maximum allowable voltage range.

Characteristics

			Standard type	High capacity type
Max. operating speed (at rated load)			6 cpm	
Initial insulation resistance			Min. 1,000 M at 500 V DC	
Initial breakdown voltage*1	Between open contacts		1,000 Vrms for 1 min.	
	Between contacts and coil		5,000 Vrms for 1 min.	
	Between contact sets		3,000 Vrms for 1 min. (2 Form A, 2 Form C)	
Initial surge voltage between contacts and coil*2			Min. 10,000 V	
Operate time*3 (at nominal voltage)			Max. 15 ms	
Release time (without diode)*3 (at nominal voltage)			Max. 5 ms	
Temperature rise (at $20^{\circ} \mathrm{C}$) (at nominal voltage) (with nominal coil voltage and at nominal switching capacity)			1a: max. $45^{\circ} \mathrm{C}$ 1c, 2a, 2c: max. $55^{\circ} \mathrm{C}$ (resistance method)	```1a: max. }4\mp@subsup{5}{}{\circ}\textrm{C 1c: max. }5\mp@subsup{5}{}{\circ}\textrm{C (resistance method)```
Shock resistance	Functiona**4		Min. $98 \mathrm{~m} / \mathrm{s}^{2}\{10 \mathrm{G}\}$	
	Destructive*5		Min. $980 \mathrm{~m} / \mathrm{s}^{2}\{100 \mathrm{G}\}$	
Vibration resistance	Functional* ${ }^{*}$		10 to 55 Hz at double amplitude of 1.6 mm	
	Destructive		10 to 55 Hz at double amplitude of 2.0 mm	
Conditions for operation, transport and storage*7 (Not freezing and condensing at low temperature)		Ambient temp.*8	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+185^{\circ} \mathrm{F}$	
		Humidity	5 to 85\% R.H.	
Unit weight			Approx. $13 \mathrm{~g} \mathrm{}$.	

TYPICAL APPLICATIONS

1. Home appliances
TV sets, VCR, Microwave ovens
2. Office machines

Photocopiers, Vending machines
3. Industrial equipment

NC machines, Robots, Temperature controllers

ORDERING INFORMATION

	Ex. JW 1	F S	\square			
Contact arrangement	Contact capacity	Protective construction	Pick-up voltage	Coil insulation class	Coil voltage	Contact material
1: 1 Form C 1a: 1 Form A 2: 2 Form C 2a: 2 Form A	Nil: Standard (5 A) F: High capacity (10 A)*	S: Sealed type	$\mathrm{N}: 70 \%$ of nominal voltage	Nil: Class E insulation B: Class B insulation	$\begin{aligned} & \text { DC } 5,6,9,12, \\ & 18,24,48 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { F: AgSnO2 type (1a) } \\ & \text { Nil: AgNi type (1c, 2a, 2c) } \end{aligned}$

*Only for 1 Form A and 1 Form C type
UL/CSA, VDE, SEMKO, FIMKO, SEV approved type is standard.
Notes: 1. When ordering TV rated (TV-5) types, add suffix-TV (available only for 1 Form A type).
2. Standard packing: Carton: 100 pcs. Case: 500 pcs.
3. Please inquire about the previous products (Cadmium containing parts).

TYPES

Standard (5A) types

Contact arrangement	Coil voltage, V DC	Part No.	Contact arrangement	Coil voltage, V DC	Part No.
1 Form A	5	JW1aSN-DC5V-F	2 Form A	5	JW2aSN-DC5V
	6	JW1aSN-DC6V-F		6	JW2aSN-DC6V
	9	JW1aSN-DC9V-F		9	JW2aSN-DC9V
	12	JW1aSN-DC12V-F		12	JW2aSN-DC12V
	18	JW1aSN-DC18V-F		18	JW2aSN-DC18V
	24	JW1aSN-DC24V-F		24	JW2aSN-DC24V
	48	JW1aSN-DC48V-F		48	JW2aSN-DC48V
1 Form C	5	JW1SN-DC5V	2 Form C	5	JW2SN-DC5V
	6	JW1SN-DC6V		6	JW2SN-DC6V
	9	JW1SN-DC9V		9	JW2SN-DC9V
	12	JW1SN-DC12V		12	JW2SN-DC12V
	18	JW1SN-DC18V		18	JW2SN-DC18V
	24	JW1SN-DC24V		24	JW2SN-DC24V
	48	JW1SN-DC48V		48	JW2SN-DC48V

High capacity (10 A) types

Contact arrangement	Coil voltage, V DC	Part No.	Contact arrangement	Coil voltage, V DC	Part No.
1 Form A	5	JW1aFSN-DC5V-F	1 Form C	5	JW1FSN-DC5V
	6	JW1aFSN-DC6V-F		6	JW1FSN-DC6V
	9	JW1aFSN-DC9V-F		9	JW1FSN-DC9V
	12	JW1aFSN-DC12V-F		12	JW1FSN-DC12V
	18	JW1aFSN-DC18V-F		18	JW1FSN-DC18V
	24	JW1aFSN-DC24V-F		24	JW1FSN-DC24V
	48	JW1aFSN-DC48V-F		48	JW1FSN-DC48V

COIL DATA (at $\mathbf{2 0}{ }^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)

Nominal voltage, V DC	$\begin{gathered} \text { Pick-up voltage, } \\ \text { V DC (max.) } \\ \text { (Initial) } \end{gathered}$	Drop-out voltage, V DC (min.) (Initial)	Nominal operating current, mA ($\pm 10 \%$)	$\begin{gathered} \text { Coil resistance, } \\ W \\ (\pm 10 \%) \end{gathered}$	Nominal operating power, mW	Max. allowable voltage
5	3.5	0.5	106	47	530	130% V of Nominal Voltage (at $60^{\circ} \mathrm{C} 140^{\circ} \mathrm{F}$)
6	4.2	0.6	88	68		
9	6.3	0.9	58	155		
12	8.4	1.2	44	270		
18	12.6	1.8	29	611		120\% V of
24	16.8	2.4	22	1,100		Nominal Voltage
48	33.6	4.8	11	4,400		

DIMENSIONS $(\mathrm{mm}$ inch) Interested in CAD data? You can obtain CAD data for all products with a CAD Data mark from your local Panasonic Electric Works representative.

REFERENCE DATA

1-(1). Maximum operating power
1 Form A Standard (5 A) type

1-(2). Maximum operating power 1 Form A High Capacity (10 A) type

1-(3). Maximum operating power
1 Form C Standard (5 A) type

1-(4). Maximum operating power 1 Form C High Capacity (10 A) type

10
\longrightarrow Contact voltage, V

1-(5). Maximum operating power 2 Form A Standard (5A) type

\longrightarrow Contact voltage, V

1-(6). Maximum operating power
2 Form C Standard (5A) type

3-(1). Operate/release time
Sample: JW1aSN-DC12V-F, 10 pcs.
Ambient temperature: $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$

3-(3). Operate/release time Sample: JW1SN-DC12V-F, 6 pcs. Ambient temperature: $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$

3-(4). Operate/release time
Sample: JW2aSN-DC24V-F, 6 pcs.
Ambient temperature: $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$

3－（5）．Operate／release time
Sample：JW2SN－DC12V－F， 6 pcs．
Ambient temperature： $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$

4－（1）．Coil temperature rise （Contact carrying current：5A） Sample JW1aFSN－DC12V－F， 6 pcs Point measured：Inside the coil

4－（2）．Coil temperature rise （Contact carrying current： 10 A ） Sample：JW1aFSN－DC12V－F， 6 pcs． Point measured：Inside the coil

ACCESSORIES

DIN terminal sockets

PCB sockets

JW1PI	JW2PI
	可号口
	（1）

Retaining springs

JWHFSI
JWHFI

$\mathrm{h}($ relay height $)=20.4 \mathrm{~mm}$

DIMENSIONS

JW1PI

For Cautions for Use，see Relay Technical Information（page 582）．

Panasonic ideas for life

mm inch

2 FORM A SLIM POWER RELAY

FEATURES

1. 2 Form A slim type

 $24(\mathrm{~L}) \times 12(\mathrm{~W}) \times 25(\mathrm{H}) \mathrm{mm}$ $.945(\mathrm{~L}) \times .472(\mathrm{~W}) \times .984(\mathrm{H})$ inch
2. 3A type and 5A TV type

3A type: Contact reliability and break performance best suited for protecting and switching speakers. 5A TV type: Tough against inrush current and optimal for turning on and off the power supply. Rated TV-4 (UL/CSA).

3. High insulation resistance

- Creepage distance and clearances between contact and coil: Min. 6 mm .236 inch (In compliance with IEC65)
- Surge withstand voltage between contact and coil: $10,000 \mathrm{~V}$ or more.

4. High noise immunity realized by the card separation structure between contact and coil
5. Conforms to the various safety standards

- UL/CSA, VDE, TÜV, SEMKO, SEV approved

TYPICAL APPLICATIONS

- Audio devices
- Monitor
- Automatic vending machine

SPECIFICATIONS

Contact

Type		3A rated	5A TV rated
Arrangement		2 Form A	
Initial contact resistance, max. (By voltage drop 6 V DC 1 A)		Max. $50 \mathrm{~m} \Omega$	Max. $100 \mathrm{~m} \Omega$
Contact material		Gold-clad AgNi type	AgSnO_{2} type
Rating (resistive load)	Nominal switching capacity	3 A 125 V AC	5 A 277 V AC
	Max. switching power	625 VA	1,385 V A
	Max. switching voltage	125 V AC	277 V AC
	Max. switching current	5 A (AC)	
	Min. switching capacity\#1	$100 \mathrm{~mA}, 5 \mathrm{~V}$ DC	
Expected life (min. operations)	Mechanical (at 180 cpm)	10^{6}	
	Electrical (at 20 cpm) (at rated load)	$\begin{gathered} 5 \times 10^{4} \\ (\mathrm{ON}: \mathrm{OFF}=1.5 \mathrm{~s}: 1.5 \mathrm{~s}) \end{gathered}$	

Coil

Nominal operating power	530 mW

\#1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.

Remarks

* Specifications will vary with foreign standards certification ratings.
${ }^{*} 1$ Measurement at same location as "Initial breakdown voltage" section.
*2 Detection current: 10 mA
*3 Wave is standard shock voltage of $\pm 1.2 \times 50 \mathrm{~ms}$ according to JEC-212-1981
${ }^{*} 4$ Excluding contact bounce time.
${ }^{* 5}$ Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$
*6 Half-wave pulse of sine wave: 6 ms
${ }^{* 7}$ Detection time: $10 \mu \mathrm{~s}$
*8 Refer to "6. Usage, Storage and Transport Conditions" in AMBIENT ENVIRONMENT (page 599).

Characteristics

Type				3 A rated	5A TV rated
Max. operating speed				20 cpm	
Initial insulation resistance*1				Min. 1,000 M Ω (at 500 V DC)	
Initial *2 breakdown voltage	Between contact sets			1,000 Vrms for 1 min .	
	Between open contacts			1,000 Vrms for 1 min .	
	Between contact and coil			4,000 Vrms for 1 min.	
Surge voltage between contact and coil ${ }^{* 3}$				Min. 10,000 V	
Operate time*4 (at nominal voltage)				Max. $15 \mathrm{~ms}\left(\right.$ at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	
Release time (with diode)*4 (at nominal voltage)				Max. 15 ms (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	
Temperature rise (at $70^{\circ} \mathrm{C}$)				Max. $45^{\circ} \mathrm{C}$ with nominal coil voltage and at 3 A contact carrying current	Max. $45^{\circ} \mathrm{C}$ with nominal coil voltage and at 5 A contact carrying current
Shock resistance		Functional*5		Min. $200 \mathrm{~m} / \mathrm{s}^{2}$ \{approx. 20 G \}	
		Destructive*6		Min. $1,000 \mathrm{~m} / \mathrm{s}^{2}\{$ approx. 100 G$\}$	
Vibration resistance		Functional*7		10 to 55 Hz at double amplitude of 1.5 mm	
		Destructive		10 to 55 Hz at double amplitude of 1.5 mm	
Conditions for operation, transport and storage*8 (Not freezing and condensing at low temperature)			Ambient temp.	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{F} \text { to }+158^{\circ} \mathrm{F} \end{aligned}$	
			Humidity	5 to 85\% R.H.	
			Air pressure	86 to 106 kPa	
Unit weight				Approx. 13 g .46 oz	

ORDERING INFORMATION

Ex. A	LA	$2 \quad \mathrm{P}$	F	12
Product name	Contact arrangement	Contact capacity	Protective construction	Coil voltage(V DC)
LA	2: 2 Form A	$\begin{aligned} & \text { Nil: 3A } \\ & \text { P: } 5 \mathrm{~A} \text { TV-4 } \end{aligned}$	F: Flux-resistant type	12, 24

UL/CSA, VDE, TÜV, SEMKO, TV-4 approved type is standard.
Notes: 1. Standard packing Carton: 100 pcs. Case: 500 pcs.
2. $4.5 \mathrm{~V}, 5 \mathrm{~V}, 9 \mathrm{~V}$ and 18 V DC types are also available. Please consult us for details.

TYPES AND COIL DATA (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)

Part No.		Nominal voltage, V DC	Pick-up voltage, V DC (max.)	Drop-out voltage, V DC (min.)	Coil resistance, $\Omega(\pm 10 \%)$	Nominal operating current, $\mathrm{mA}(\pm 10 \%)$	Nominal operating power, mW	Maximum allowable voltage, V DC
ALA2F12	5A TV type		12	(Initial) 9	(Initial) 0.6	272	44.2	530
ALA2F24	ALA2PF24	24	(Initial) 18	(Initial) 1.2	1,087	22.1	530	31.2

DIMENSIONS (mm inch) $^{\text {m }}$
Interested in CAD data? You can obtain CAD data for all products with a CAD Data mark from your local Panasonic Electric Works representative.

CAD Data
PC board pattern (Bottom view)

Tolerance : $\pm 0.1 \pm .004$
Schematic (Bottom view)

Dimension:
Max. 1mm . 039 inch:
1 to 3 mm .039 to .118 inch: $\pm 0.1 \pm .004$
Min. 3mm . 118 inch: $\quad \pm 0.3 \pm .012$

REFERENCE DATA

1. Max. switching power (AC resistive load) 2. Life curve (250 V AC resistive load)

LA (ALA)

3-(1). Coil temperature rise Sample: ALA2F12, 6 pcs.
Measured portion: coil inside
Contact current: 0 A, 3A

3-(2). Coil temperature rise
Sample: ALA2PF12, 6 pcs.
Measured portion: coil inside
Contact current: $0 \mathrm{~A}, 5 \mathrm{~A}$

Change of pick-up and drop-out voltage

\longrightarrow No. of operations, $\times 10^{4}$

Change of pick-up and drop-out voltage

4. Ambient temperature characteristics and coil applied voltage
Contact current: ALA2F=3A
ALA2PF=5A

5-(1). Electrical life test
(3 A 125 V AC, resistive load)
Sample: ALA2F12, 6 pcs.
Operation frequency: 20 times $/ \mathrm{min}$.
(ON/OFF = 1.5s: 1.5 s)
Ambient temperature: $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$
Circuit:

5-(2). Electrical life test
(5 A 250 V AC, resistive load)
Sample: ALA2PF12, 6 pcs.
Operation frequency: 20 times $/ \mathrm{min}$.
(ON/OFF = 1.5s: 1.5 s)
Ambient temperature: $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$
Circuit:

Change of contact resistance

\longrightarrow No. of operations, $\times 10^{4}$

5-(3). Electrical life test
(UL lamp load test TV-4)
Tested sample: ALA2PF12, 6 pcs.

- Overload test

Load: 6.0 A 120 V AC $(60 \mathrm{~Hz})$,
Inrush: 91 A
Operation frequency: 10 times/min
(ON: OFF = $1 \mathrm{~s}: 5 \mathrm{~s}$)
No. of operations: 50 ope.

- Endurance test

Load: 4A 120 V AC $(60 \mathrm{~Hz})$,
Inrush: 65 A
Operation frequency: 10 times/min
(ON: OFF = $1 \mathrm{~s}: 5 \mathrm{~s}$)
No. of operations: 25,000 ope.

Change of pick-up and drop-out voltage

Change of contact resistance

Change of contact resistance

For Cautions for Use, see Relay Technical Information (page 582).

VDE
TUV

Panasonic ideas for life

1 FORM A SLIM POWER RELAY

FEATURES

1. Slim type: Width 7 mm .276 inch. $20.3(\mathrm{~L}) \times 7.0(\mathrm{~W}) \times 15.0(\mathrm{H}) \mathrm{mm}$
$.799(\mathrm{~L}) \times .276(\mathrm{~W}) \times .591(\mathrm{H})$ inch
2. Perfect for small load switching of home appliances
10^{5} switching operations possible with a 3A 250V AC resistive load.
mm inch

Compact size, nominal operating power as low as 200 mW .

4. High shock resistance

The relay withstands a functional shock resistance of $300 \mathrm{~m} / \mathrm{s}^{2}$ [approx. 30 G more]

LD RELAYS

 (ALD)
5. High insulation resistance

- Creepage distance and clearances between contact and coil: Min. 6 mm .236 inch
- Surge withstand voltage between contact and coil: 10,000 V or more.

6. UL/CSA, VDE, TÜV approved.

TYPICAL APPLICATIONS

- Air conditioner
- Refrigerator
- Hot water units
- Microwave ovens
- Fan heaters

SPECIFICATIONS

Contact

Arrangement			1 Form A
Initial contact resistance, max. (By voltage drop 6 V DC 1 A)			Max. $100 \mathrm{~m} \Omega$
Contact material			AgSnO_{2} type
Rating (resistive load)	Nominal switching capacity		$\begin{gathered} 3 \text { A } 277 \text { V AC, } \\ 3 \text { A } 30 \mathrm{~V} \text { DC } \end{gathered}$
	Max. switching power		$\begin{gathered} 831 \mathrm{~V} \text { A (AC), } \\ 90 \mathrm{~W}(\mathrm{DC}) \end{gathered}$
	Max. switching voltage		277 V AC, 30 V DC
	Max. switching current		3 A
	Min. switching capacity\#1		$100 \mathrm{~mA}, 5 \mathrm{~V}$ DC
Expected life (min.operations)	Mechanical (at 180 cpm)		5×10^{6}
	Electrical (at 20 cpm) (at rated load)	$\begin{aligned} & \text { 3A 125V AC, } \\ & \text { 3A 30V DC } \end{aligned}$	2×10^{5}
		3 A 250 V AC	10^{5}
		5A 250V AC	5×10^{4}

Coil

Nominal operating power	200 mW

\#1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.

Remarks

* Specifications will vary with foreign standards certification ratings.
${ }^{* 1}$ Measurement at same location as "Initial breakdown voltage" section.
${ }^{*}$ 2 Detection current: 10 mA
${ }^{*} 3$ Wave is standard shock voltage of $\pm 1.2 \times 50 \mathrm{~ms}$ according to JEC-212-1981
${ }^{* 4}$ Excluding contact bounce time.
${ }^{* 5}$ Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$
${ }^{*} 6$ Half-wave pulse of sine wave: 6 ms
${ }^{* 7}$ Detection time: $10 \mu \mathrm{~s}$
${ }^{*}{ }^{8}$ Refer to " 6 . Usage, Storage and Transport Conditions" in AMBIENT ENVIRONMENT (page 599).

Characteristics

Max. operating speed				20 cpm (at rated load)
Initial insulation resistance*1				Min. 1,000 M (at 500 V DC)
Initia\|*2 breakdown voltage	Between open contacts			750 Vrms for 1 min.
	Between contact and coil			4,000 Vrms for 1 min.
Initial surge voltage between contact and coil* ${ }^{\star 3}$				Min. 10,000 V
Operate time ${ }^{* 4}$ (at nominal voltage)				Max. 10 ms (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
Release time (with diode) ${ }^{* 4}$ (at nominal voltage)				Max. 10 ms (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
Temperature rise (at $70^{\circ} \mathrm{C} 158^{\circ} \mathrm{F}$)				Max. $45^{\circ} \mathrm{C}$ with nominal coil voltage and at 3 A contact carrying current (resistance method)
Shock resistance			ctional*5	Min. $300 \mathrm{~m} / \mathrm{s}^{2}\{$ approx. 30 G$\}$
			structive*6	Min. $1,000 \mathrm{~m} / \mathrm{s}^{2}\{$ approx. 100 G$\}$
Vibration resistance			ctional*7	10 to 55 Hz at double amplitude of 1.5 mm
			structive	10 to 55 Hz at double amplitude of 1.5 mm
Conditions for operation, transport and storage*8 (Not freezing and condensing at low temperature)			Ambient temp.	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{F} \text { to }+158^{\circ} \mathrm{F} \end{aligned}$
			Humidity	5 to 85\% R.H.
Unit weight				Approx. 4 g .14 oz

ORDERING INFORMATION

UL/CSA, TÜV, VDE approved type is standard.
Note: Tube packing: Tube: 50pcs, Case: 1,000pcs
Carton packing: Carton: 100pcs, Case: 500pcs

TYPES AND COIL DATA (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)

Part No.	Nominal voltage, V DC	Pick-up voltage, V DC (max.) (Initial)	Drop-out voltage, V DC (min.) (Initial)	Coil resistance, $\Omega(\pm 10 \%)$	Nominal operating current, $m A(\pm 10 \%)$	Nominal operating power, mW	Maximum allowable voltage, V DC (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
ALD14H	4.5	3.38	0.22	101	44.6	200	5.85
ALD105	5	3.75	0.25	125	40.0	200	6.5
ALD106	6	4.5	0.3	180	33.3	200	7.8
ALD109	9	6.75	0.45	405	22.2	200	11.7
ALD112	12	9	0.6	720	16.7	200	15.6
ALD118	18	13.5	0.9	1,620	11.1	200	23.4
ALD124	24	18	1.2	2,880	8.3	200	31.2

DIMENSIONS (mm inch) Interested in CAD data? You can obtain CAD data for all products with a CAD Data mark from your local Panasonic Electric Works representative.

CAD Data

Dimension:
Max. 1mm . 039 inch:
1 to 3 mm .039 to .118 inch:
Min. 3mm . 118 inch:

General tolerance
$\pm 0.1 \pm .004$
$\pm 0.2 \pm .008$
$\pm 0.3 \pm .012$

REFERENCE DATA

2. Life curve

PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$

Schematic (Bottom view)
COIL

3. Coil temperature rise

Sample: ALD112, 6 pcs.
Point measured: inside the coil
Contact current: 0 A, 3 A

4-(1). Operate time
Sample: ALD112, 6 pcs.

5-(1). Electrical life test (3 A 250 V AC, resistive load) Sample: ALD112, 6 pcs.
Operating speed: 20 cpm
Ambient temperature: room temperature circuit:

4-(2). Release time (without diode) Sample: ALD112, 6 pcs.

Change of pick-up and drop-out voltage

4-(3). Release time (with diode) Sample: ALD112, 6 pcs.

Change of contact resistance

5-(2). Electrical life test
(3 A 30 V DC, resistive load)
Sample: ALD112, 6 pcs.
Operating speed: 20 cpm
Ambient temperature: room temperature circuit:

Change of pick-up and drop-out voltage

SAFETY STANDARDS

UL/C-UL (Recognized)		CSA (Certified)		VDE (Certified)		TÜV (Certified)	
File No.	Contact rating	File No.	Contact rating	File No.	Contact rating	File No.	Rating
E43028	$\begin{array}{\|l} \hline 3 \mathrm{~A} 277 \mathrm{~V} \text { AC } \\ 3 \mathrm{~A} 30 \mathrm{~V} \text { D } \end{array}$	$\begin{aligned} & \text { LR26550 } \\ & \text { etc. } \end{aligned}$	$\begin{array}{\|l} \hline 3 \mathrm{~A} 277 \mathrm{~V} \text { AC } \\ 3 \mathrm{~A} 30 \mathrm{~V} \text { DC } \end{array}$	40014384	$\begin{aligned} & \text { 3A } 250 \mathrm{~V} \text { AC }\left(\mathrm{cos}^{\circ}=1.0\right) \\ & 3 \mathrm{~A} 30 \mathrm{~V} \text { DC }(0 \mathrm{~ms}) \end{aligned}$	$\begin{array}{\|l\|} \hline \text { B } 1002 \\ 13461274 \end{array}$	$\begin{aligned} & \text { 3A 250V AC }(\cos \phi=1.0) \\ & 3 \mathrm{~A} 30 \mathrm{~V} \text { DC }(0 \mathrm{~ms}) \\ & \hline \end{aligned}$

For Cautions for Use, see Relay Technical Information (page 582).

Panasonic ideas for life

Protective construction: Sealed type

1 Form A 5A
 Slim size (7 mm) Power Relay

LD.PREAYS (ALDP)

FEATURES

1. Nominal switching capacity: 5A 277V AC
2. Ambient temperature:
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+185^{\circ} \mathrm{F}$
3. Excellent heat resistance and tracking performance:
EN60695 (GWT2-11, GWFI2-12,
GWIT2-13) data available
(Please consult us for details.)
4. Slim type:
$20.3(\mathrm{~L}) \times 7.0(\mathrm{~W}) \times 15(\mathrm{H}) \mathrm{mm} .799(\mathrm{~L}) \times$ $.276(\mathrm{~W}) \times .591(\mathrm{H})$ inch

5. High insulation resistance:

- Creepage distance and clearances between contact and coil: Min. 6 mm .236 inch (In compliance with IEC65)
- Surge withstand voltage between contact and coil: 10,000 V or more.

TYPICAL APPLICATIONS

- Boilers
- Air conditioner
- Refrigerator
- Hot water units
- Microwave ovens
- Fan heaters

ORDERING INFORMATION

Note: UL, C-UL and VDE approved type is standard.

TYPES

Contact arrangement	Nominal coil voltage	Part No.
1 Form A	5 V DC	ALDP105
	6 V DC	ALDP106
	9 V DC	ALDP109
	12 V DC	ALDP112
	18 V DC	ALDP118
	24 V DC	ALDP124

Packing quantity: inner 100 pieces, outer 500 pieces

RATING

1. Coil data

Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$	$\begin{gathered} \text { Coil resistance } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$	Nominal operating power	Max. allowable voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
5V DC	$75 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$5 \% \mathrm{~V}$ or more of nominal voltage (Initial)	40.0 mA	125Ω	200mW	$\begin{gathered} 130 \% \mathrm{~V} \text { of } \\ \text { nominal voltage } \end{gathered}$
6 V DC			33.3 mA	180Ω		
9V DC			22.2 mA	405Ω		
12V DC			16.7 mA	720Ω		
18V DC			11.1 mA	1,620		
24V DC			8.3 mA	2,880		

2. Specifications

Characteristics	Item		Specifications
Contact	Arrangement		1 Form A
	Contact resistance (Initial)		Max. $100 \mathrm{~m} \Omega$ (By voltage drop 6 V DC 1A)
	Contact material		AgNi type
Rating	Nominal switching capacity (resistive load)		5A 277V AC
	Max. switching power (resistive load)		1,385VA
	Max. switching voltage		277 V AC
	Max. switching current		5A
	Min. switching capacity (reference value)*		$100 \mathrm{~mA} \mathrm{5V} \mathrm{DC}$
Electrical characteristics	Insulation resistance (Initial)		Min. 1,000M Ω (at 500V DC) Measurement at same location as "Breakdown voltage" section.
	Breakdown voltage (Initial)	Between open contacts	750 Vrms for 1 min . (Detection current: 10 mA)
		Between contact and coil	$4,000 \mathrm{Vrms}$ for 1 min . (Detection current: 10 mA)
	Surge breakdown voltage*2 (Between contact and coil)		10,000 V (initial)
	Temperature rise		Max. $30^{\circ} \mathrm{C} 86^{\circ} \mathrm{F}$ (By resistive method, nominal coil voltage applied to the coil; contact carrying current: 5 A , at $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$)
	Operate time (at nominal voltage) (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 10 ms (excluding contact bounce time.)
	Release time (at nominal voltage) (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 10 ms (excluding contact bounce time) (With diode)
Mechanical characteristics	Shock resistance	Functional	Min. $300 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 11 ms ; detection time: 10 $\mu \mathrm{s}$.)
		Destructive	Min. $1,000 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 6 ms .)
	Vibration resistance	Functional	10 to 55 Hz at double amplitude of 1.5 mm (Detection time: $10 \mu \mathrm{~s}$.)
		Destructive	10 to 55 Hz at double amplitude of 1.5 mm
Expected life	Mechanical (at 180 cpm)		Min. 5×10^{6}
	Electrical (at 20 cpm)		Min. 2×10^{5} (5A 125V AC at rated load), Min. 10^{5} (5A 250V AC at rated load)
Conditions	Conditions for operation, transport and storage ${ }^{* 3}$		Ambient temperature: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+185^{\circ} \mathrm{F}$; Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature)
	Max. operating speed (at nominal switching capacity)		20 cpm
Unit weight			Approx. 4 g .14 oz

Notes:
*1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.
*2Wave is standard shock voltage of $\pm 1.2 \times 50 \mu \mathrm{~s}$ according to JEC-212-1981
*3The upper limit of the ambient temperature is the maximum temperature that can satisfy the coil temperature rise value. Refer to " 6 . Usage, Storage and Transport Conditions" in AMBIENT ENVIRONMENT (page 599).

REFERENCE DATA

4-(1). Operate time
Sample: ALDP112, 30 pcs

2. Life curve

4-(2). Release time (without diode) Sample: ALDP112, 30 pcs.

3. Coil temperature rise

Sample: ALDP112, 6 pcs.
Point measured: inside the coil
Contact current: 0 A, 5 A

4-(3). Release time (with diode) Sample: ALDP112, 30 pcs.

5. Electrical life test
(5A 250V AC Resistive load)
Sample: ALDP112, 6 pcs
Operation frequency: 20 times $/ \mathrm{min}$.
(ON:OFF = 1.5s:1.5s)
Circuit:

Change of pick-up and drop-out voltage

Change of contact resistance

DIMENSIONS (mm inch) Interested in CAD data? You can obtain CAD data for all products with a CAD Data mark from your local Panasonic Electric Works representative.

PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$

Schematic (Bottom view)

COIL \% \% 웅

Dimension:
General tolerance
Max. 1mm .039 inch: $\pm 0.1 \pm .004$
1 to 3 mm .039 to .118 inch: $\pm 0.2 \pm .008$
Min. 3mm . 118 inch: $\pm 0.3 \pm .012$

SAFETY STANDARDS

Certification authority	
UL, C-UL	
	$5 \mathrm{~A} 277 \mathrm{~V} \mathrm{AC} 70^{\circ} \mathrm{C}$
	$5 \mathrm{~A} \mathrm{30V} \mathrm{DC}$
VDE	$5 \mathrm{~A} 250 \mathrm{~V} \mathrm{AC} \mathrm{cos}^{\circ}=1.070^{\circ} \mathrm{C}$
	$5 \mathrm{~A} \mathrm{30V} \mathrm{DC} \mathrm{ms}$

NOTES

■ Usage, transport and storage conditions

1) Temperature:
-40 to $+85^{\circ} \mathrm{C}-40$ to $+185^{\circ} \mathrm{F}$
2) Humidity: 5 to 85% RH
(Avoid freezing and condensation.) The humidity range varies with the temperature. Use within the range indicated in the graph below.
3) Atmospheric pressure: 86 to 106 kPa Temperature and humidity range for usage, transport, and storage

4) Condensation

Condensation forms when there is a sudden change in temperature under high temperature and high humidity conditions. Condensation will cause deterioration of the relay insulation. 5) Freezing

Condensation or other moisture may freeze on the relay when the temperatures is lower than $0^{\circ} \mathrm{C} 32^{\circ} \mathrm{F}$. This causes problems such as sticking of movable parts or operational time lags. 6) Low temperature, low humidity environments
The plastic becomes brittle if the relay is exposed to a low temperature, low humidity environment for long periods of time.

- Solder and cleaning conditions

1) Please obey the following conditions when soldering automatically.
(1) Preheating: Within $120^{\circ} \mathrm{C} 248^{\circ} \mathrm{F}$ (solder surface terminal portion) and within 120 seconds
(2) Soldering iron: $260^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$
$500^{\circ} \mathrm{F} \pm 41^{\circ} \mathrm{F}$ (solder temperature) and within 6 seconds (soldering time)
2) Do not use ultrasonic cleaning. This will adversely affect the relay characteristics. Also, it is recommended that alcoholic solvents be used.

- Certification

1) This relay is UL and C-UL certified.

UL and C-UL standards:
5 A 277 V AC $70^{\circ} \mathrm{C}$
5 A 30 V DC
2) This relay is certified by VDE

VDE standards:
$5 \mathrm{~A} 250 \mathrm{VAC} \cos ^{\circ}=1.070^{\circ} \mathrm{C}$
5 A 30 V DC 0 ms
3) UL, C-UL and VDE certified ratings are displayed on the packaging box.
(On the relay, only the certification marks are shown and not the certified ratings. Please refer to the product specification diagrams to see what is stamped.)

- Part number display

The " W " at the end of the part number only appears on the inner and outer packaging. It does not appear on the relay itself.

- Others

1) To ensure good operation, please keep the voltage on the coil ends to $\pm 5 \%$ (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$) of the rated coil operation voltage. Also, please be aware that the pick-up voltage and drop-out voltage may change depending on the temperature and conditions of use.
2) Keep the ripple rate of the nominal coil voltage below 5%.
3) The cycle lifetime is defined under the standard test condition specified in the JIS C 5442 standard (temperature 15 to $35^{\circ} \mathrm{C} 59$ to $95^{\circ} \mathrm{F}$, humidity 25 to 75% R.H.). Check this with the real device
as it is affected by coil driving circuit, load type, activation frequency, activation phase, ambient conditions and other factors.
Also, be especially careful of loads such as those listed below.
(1) When used for AC load-operating and the operating phase is synchronous.
Rocking and fusing can easily occur due to contact shifting.
(2) Highly frequent load-operating

When highly frequent opening and closing of the relay is performed with a load that causes arcs at the contacts, nitrogen and oxygen in the air is fused by the arc energy and HNO_{3} is formed. This can corrode metal materials.
Three countermeasures for these are listed here.

- Incorporate an arc-extinguishing circuit.
- Lower the operating frequency
- Lower the ambient humidity

4) Minimum switching capacity is a guideline as to the lowest possible level at which it will be possible for a low level load to allow switching. This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.
5) Heat, smoke, and even a fire may occur if the relay is used in conditions outside of the allowable ranges for the coil ratings, contact ratings, operating cycle lifetime, and other specifications. Therefore, do not use the relay if these ratings are exceeded.
6) If the relay has been dropped, the appearance and characteristics should always be checked before use.
7) Incorrect wiring may cause unexpected events or the generation of heat or flames.
8) Creepage distance and clearances between contact and coil: Min. 6 mm

UDE
TUV

Panasonic ideas for life

16A POWER RELAY FOR

 MICRO WAVE OVEN
FEATURES

\author{

1. Supports magnetron and heater loads.
}

Capable for switching magnetron and heater loads found in microwave ovens.

2. Excellent heat resistance

Ambient temperature: up to $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$ Certified UL coil insulation class B and class F
3. High insulation resistance Creepage distance and clearances between contact and coil:
Min. 8 mm .315 inch
Surge withstand voltage: $10,000 \mathrm{~V}$
4. Low operating power

Nominal operating power: $400 \mathrm{~mW} /$
200 mW (High sensitive type)
5. A wide variety of types

Product line consists of 4 types with different shapes and pins

6. Conforms to the various safety standards:

UL/CSA, TÜV, VDE approved and SEMKO available (TMP type)
UL/CSA, VDE approved (PCB type)

TYPICAL APPLICATIONS

- Microwave ovens
- Refrigerators
- OA equipment

SPECIFICATIONS

Contact

Arrangement	1 Form A			
Initial contact resistance, max. (By voltage drop 6 V DC 1 A)	$100 \mathrm{~m} \Omega$			
Contact material				AgSnO2 type
Rating (resistive load)	Nominal switching capacity	Max. switching power		
	Max. switching voltage	$4,432 \mathrm{~V} \mathrm{~A}$		
	Max. switching current	277 V AC		
	Min. switching capacity\#1 (Reference value)	$100 \mathrm{~mA}, 5 \mathrm{~V} \mathrm{DC}$		
Expected life (min. operations)	Mechanical (at 180 cpm)	Electrical (at 20 cpm) (Resistive load)		

Coil

Type	Standard	High sensitive
Nominal operating power	400 mW	200 mW

\#1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.

Remarks

* Specifications will vary with foreign standards certification ratings.
*1 Measurement at same location as "Initial breakdown voltage" section.
*2 Detection current: 10 mA
${ }^{* 3}$ Wave is standard shock voltage of $\pm 1.2 \times 50 \mu$ s according to JEC-212-1981
${ }^{* 4}$ Excluding contact bounce time.
${ }^{*}$ Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$
*6 Half-wave pulse of sine wave: 6 ms
*7 Detection time: $10 \mu \mathrm{~s}$
*8 Refer to "6. Usage, Storage and Transport Conditions" in AMBIENT ENVIRONMENT (page 599).

Characteristics

Max. operating speed (at rated load)			20 cpm
Initial insulation resistance*1			Min. 1,000 M (at 500 V DC)
Initial breakdown voltage*2	Between	pen contacts	1,000 Vrms for 1 min.
	Between coil	ontacts and	4,000 Vrms for 1 min .
Initial surge voltage between contact and coil*3			10,000 V
Operate time ${ }^{* 4}$ (at nominal voltage) (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)			Max. 20ms
Release time (with diode) ${ }^{* 4}$ (at nominal voltage) (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)			$\begin{gathered} \text { Max. 20ms } \\ \text { Max. 25ms } \\ (200 \mathrm{~mW} \text { type) } \end{gathered}$
Temperature rise (at nominal voltage) (resistance method, contact current $16 \mathrm{~A}, 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)			Max. $55^{\circ} \mathrm{C}$ Max. $45^{\circ} \mathrm{C}$ $(200 \mathrm{~mW}$ type)
Shock resistance		Functional*5	$200 \mathrm{~m} / \mathrm{s}^{2}\{20 \mathrm{G}\}$
		Destructive*6	$1,000 \mathrm{~m} / \mathrm{s}^{2}\{100 \mathrm{G}\}$
Vibration resistance		Functional*7	$10 \text { to } 55 \mathrm{~Hz}$ at double amplitude of 1.5 mm
		Destructive	10 to 55 Hz at double amplitude of 1.5 mm
Conditions for operation, transport and storage*8 (Not freezing and condensing at low temperature)		Ambient temp.	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{F} \text { to }+185^{\circ} \mathrm{F} \end{aligned}$
		Humidity	5 to 85\% R.H.
Unit weight			Approx. 17 g . 60 oz Approx. 15 g . 53 oz (PCB type)

ORDERING INFORMATION

UL/CSA, TÜV, VDE approved type is standard (TMP type). SEMKO approved types are also available, please consult us.
UL/CSA, VDE approved type is standard (PCB type).
Note: Standard packing; Carton: 100 pcs. Case 500 pcs.

TYPES

1. Standard type

O: Input the following letter. Class B: B, Class F: F
2. High sensitive type

Contact arrangement	Coil voltage, V DC	TMP type/PCB side three terminals (includes one dummy terminal)	TMP type/PCB side three terminals	TMP type/PCB side four terminals
		Part No.	Part No.	Part No.
1 Form A (High sensitivity: 200 mW)	5	ALE72O05	ALE73O05	ALE74O05
	6	ALE72O06	ALE73O06	ALE74O06
	9	ALE72O09	ALE73O09	ALE74O09
	12	ALE72O12	ALE73O12	ALE74O12
	18	ALE72O18	ALE73O18	ALE74O18
	24	ALE72O24	ALE73O24	ALE74O24
	48	ALE72O48	ALE73O48	ALE74O48

O: Input the following letter. Class B: B, Class F: F

COIL DATA (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)

1. Standard type

Nominal voltage, V DC	Pick-up voltage, V DC (max.) (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage, V DC (min.) (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Coil resistance, } \\ \Omega(\pm 10 \%) \\ \left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right. \text {) } \end{gathered}$	Nominal operating current, mA ($\pm 10 \%$) (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating power, mW (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Maximum allowable voltage, V DC (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
5	3.75	0.25	63	80	400	7.25
6	4.5	0.3	90	66.7		8.7
9	6.75	0.45	203	44.4		13.05
12	9	0.6	360	33.3		17.4
18	13.5	0.9	810	22.2		26.1
24	18	1.2	1,440	16.7		34.8
48	36	2.4	5,760	8.3		69.6

2. High sensitive type

Nominal voltage, V DC	Pick-up voltage, V DC (max.) (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage, V DC (min.) (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Coil resistance, Ω ($\pm 10 \%$) (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating current, mA $(\pm 10 \%)$ (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating power, mW (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Maximum allowable voltage, V DC (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
5	3.75	0.25	125	40	200	7.25
6	4.5	0.3	180	33.3		8.7
9	6.75	0.45	405	22.2		13.05
12	9	0.6	720	16.7		17.4
18	13.5	0.9	1,620	11.1		26.1
24	18	1.2	2,880	8.3		34.8
48	36	2.4	11,520	4.2		69.6

DIMENSIONS (mm inch) Interested in CAD data? You can obtain CAD data for all products with a CAD Data mark from your local Panasonic Electric Works representative.

1. TMP type

PCB side three terminals
(includes one dummy terminal)

CAD Data

Dimension: Max. 1 mm .039 inch: $\quad \frac{\text { Tolerance }}{ \pm 0.1 \pm .004}$ 1 to 3 mm .039 to .118 inch: $\pm 0.2 \pm .008$ Min. 3 mm .118 inch: $\quad \pm 0.3 \pm .012$

PC board pattern (Bottom view)

Tolerance : $\pm 0.1 \pm .004$
Schematic (Bottom view)

\square

PCB side three terminals

PC board pattern (Bottom view)

Tolerance : $\pm 0.1 \pm .004$
Schematic (Bottom view)

2. PCB type
(No tab terminals)
CAD Data

0.8
.031

Dimension:
Max. 1mm . 039 inch: $\begin{array}{ll}1 \text { to } 3 \mathrm{~mm} .039 \text { to } .118 \text { inch: } & \pm 0.2 \pm .008 \\ \text { Min. } 3 \mathrm{~mm} .118 \text { inch: } & \pm 0.3 \pm .012\end{array}$

PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$

Schematic (Bottom view)

LE (ALE)

REFERENCE DATA

$1-1$. Coil temperature rise (400 mW type)
Sample: ALE14B12, 6 pcs.
Point measured: coil inside
Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}, 85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$

1-2. Coil temperature rise (200 mW type) Sample: ALE74B12, 6 pcs.
Point measured: coil inside
Ambient temperature: $23.7^{\circ} \mathrm{C} 74.66^{\circ} \mathrm{F}, 85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$

2. Life curve

3. Electrical life test (16 A 277 V AC, resistive load)

Sample: ALE14B12, 6 pcs.
Operation frequency: 20 times $/ \mathrm{min}$.
(ON/OFF = 1.5s: 1.5 s)
Ambient temperature: Room temperature
Circuit:

For Cautions for Use, see Relay Technical Information (page 582).

20A POWER RELAY FOR HOME APPLIANCES

LF REAYS (ALF)

FEATURES

1. Ideal for compressor and inverter loads

1) Compressor load: 20A 250 V AC
2) Inverter load: 20A 100 V AC,

10A 200V AC
2. High insulation resistance

- Creepage distance and clearances between contact and coil; Creepage Min. 9.5mm .374inch/ Clearance Min. 8mm .315inch
- Surge withstand voltage: Min. 10,000V

3. "PCB" and "TMP" types available
4. Conforms to the various safety standards:
UL/CSA, TÜV, VDE approved

SPECIFICATIONS

Contact

Arrangement		1 Form A
Initial contact resistance, max. (By voltage drop 6 V DC 1 A)		$100 \mathrm{~m} \Omega$
Contact material		AgSnO_{2} type
Rating (resistive load)	Nominal switching capacity	20 A 250V AC
	Max. switching power	6,250 V A
	Max. switching voltage	250V AC
	Max. switching current	25 A
	Min. switching capacity\#1	$100 \mathrm{~mA}, 5 \mathrm{~V}$ DC
Expected life (min. operations)	Mechanical (at 180 cpm)	2×10^{6}
	Electrical (at 20 cpm) (Resistive load)	10^{5}

Nominal operating power	900 mW

\#1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.

Remarks

* Specifications will vary with foreign standards certification ratings.
${ }^{* 1}$ Measurement at same location as "Initial breakdown voltage" section.
*2 Detection current: 10 mA
${ }^{*}{ }^{*}$ Wave is standard shock voltage of $\pm 1.2 \times 50 \mu$ s according to JEC-212-1981
${ }^{*} 4$ Excluding contact bounce time.
${ }^{* 5}$ Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$
${ }^{*} 6$ Half-wave pulse of sine wave: 6 ms
${ }^{* 7}$ Detection time: $10 \mu \mathrm{~s}$
${ }^{*}$ R Refer to "6. Usage, Storage and Transport Conditions" in AMBIENT ENVIRONMENT (page 599).

Characteristics

Max. operating speed (at rated load)			20 cpm
Initial insulation resistance*1			Min. 1,000 M (at 500 V DC)
Initial breakdown voltage*2	Between open contacts		1,000 Vrms for 1 min.
	Between contacts and coil		5,000 Vrms for 1 min.
Surge voltage between contact and coil ${ }^{* 3}$			Min. 10,000 V
Operate time*4 (at nominal voltage)			Max. 20 ms (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
Release time (without diode)*4 (at nominal voltage)			Max. 15 ms (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
Temperature rise (at nominal voltage)			Max. $45^{\circ} \mathrm{C}$ (resistance method, contact current 20 A , rated coil voltage, $60^{\circ} \mathrm{C} 140^{\circ} \mathrm{F}$)
Shock resistance		Functional*5	Min. $100 \mathrm{~m} / \mathrm{s}^{2}\{10 \mathrm{G}\}$
		Destructive*6	Min. 1,000 m/s ${ }^{2}\{100 \mathrm{G}\}$
Vibration resistance		Functional*7	10 to 55 Hz at double amplitude of 1.5 mm
		Destructive	10 to 55 Hz at double amplitude of 1.5 mm
Conditions for operation, transport and storage*8 (Not freezing and condensing at low temperature)		Ambient temp.	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to }+60^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{F} \text { to }+140^{\circ} \mathrm{F} \end{aligned}$
		Humidity	5 to 85\% R.H.
Unit weight			Approx. 23 g .81 oz

TYPICAL APPLICATIONS ORDERING INFORMATION

- Air conditioner
- Refrigerators
- OA equipment

Note: Standard packing; Carton: 50 pcs. Case 200 pcs. UL/CSA,VDE, TÜV approved type is standard.

TYPES

Contact arrangement	Coil voltage, V DC	TMP type	PCB type
1 Form A	5	ALF1T05	ALF1P05
	6	ALF1T06	ALF1P06
	9	ALF1T09	ALF1P09
	12	ALF1T12	ALF1P12
	18	ALF1T18	ALF1P18
	24	ALF1T24	ALF1P24

COIL DATA

Nominal voltage, V DC	Pick-up voltage, V DC (max.)	Drop-out voltage, V DC (min.)	Coil resistance, $\Omega(\pm 10 \%)$	Nominal operating current, mA ($\pm 10 \%$)	Nominal operating power, W	Maximum allowable voltage, V DC
5	3.5	0.5	27.8	180	0.9	5.5
6	4.2	0.6	40	150		6.6
9	6.3	0.9	90	100		9.9
12	8.4	1.2	160	75		13.2
18	12.6	1.8	360	50		19.8
24	16.8	2.4	640	37.5		26.4

DIMENSIONS (mm inch) Interested in CAD data? You can obtain CAD data for all products with a CAD Data mark from your local Panasonic Electric Works representative.

2. PCB type CAD Data

PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$
Schematic (Bottom view)

REFERENCE DATA

1. Coil temperature rise

Sample: ALF1T12, 6 pcs.
Point measured: coil inside
Contact current: 20A
Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}, 60^{\circ} \mathrm{C} 140^{\circ} \mathrm{F}$

2-(1). 200V AC electrical life test (200V AC, inverter load)
Sample: ALF1T12, 6 pcs.
Load: Inrush 102A (wave peak value), Steady 14.4A (wave peak value)
Inverter dummy 200 V AC
Switching frequency: ON 1s, OFF 5 s Circuit:

2-(2). 100V AC electrical life test
(100V AC, inverter load)
Sample: ALF1T12, 6 pcs.
Load: Inrush 224A (wave peak value), Steady 30.5A (wave peak value)
Inverter dummy 100V AC
Switching frequency: ON 1s, OFF 5s Circuit:

LF (ALF)

2-(3). Inrush 70.7A, Steady 20A, 250V AC electrical life test (Compressor dummy load)
Sample: ALF1T12, 3 pcs.
Load: Inrush 70.7A, $\cos \phi=0.7$
Steady 20A, $\cos \phi 0.9$
250 V AC compressor dummy
Switching frequency: ON 1.5 s , OFF 1.5 s Circuit:

2-(4). Electrical life test (20A 250V AC, resistive load)
Sample: ALF1T12, 6 pcs
Switching frequency: ON 1.5 s , OFF 1.5 s

For Cautions for Use, see Relay Technical Information (page 582).

Panasonic ideas for life

Ideal for Solar inverter Compact size, 1 Form A 22A/31A Power Relay

FEATURES

TYPICAL APPLICATIONS

- Photovoltaic power generation systems (Solar inverter)
- Uninterruptible Power Supplies (UPS)
- Home appliances
- Office equipment

- High capacity

High capacity control possible at 22A/ 31 A (High capacity type) 250 V AC rating in compact size (L: $15.7 \times \mathrm{W}: 30.1 \times$
H: 23.3 mm L: . $618 \times$ W: $1.185 \times \mathrm{H}: .917$
inch)

- Contact gap: 1.5 mm . 059 inch

Compliant with European photovoltaic standard (VDE0126).
EN61810-1 certified: 2.5 kV surge breakdown voltage (between contacts)

- Coil holding voltage contributes to saving energy of equipment The coil holding voltage can be reduced up to 35% V of the nominal coil voltage (Ambient temperature: $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$). Power consumption at the lowest coil holding voltage: 170 mW equivalent *Coil holding voltage is the coil voltage after 100 ms from the applied nominal coil voltage.
*When the ambient temperature during use is $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$, make the coil holding voltage between 45% and $80 \% \mathrm{~V}$ of the nominal coil voltage.
- High insulation resistance

Creepage distance between contact and coil terminal: Min. 9.5 mm .354 inch Clearance distance between contact and coil terminal: Min. 6.5 mm .256 inch
Surge breakdown voltage: 6 kV

- Conforms to various safety standards
UL, C-UL and VDE approved

ORDERING INFORMATION

ALFG			P	F	

[^32]
TYPES

Contact arrangement	Nominal coil voltage	Part No.	
		Standard type	High capacity type
1 Form A	9 V DC	ALFG1PF09	ALFG2PF09
	12 V DC	ALFG1PF12	ALFG2PF12
	18 V DC	ALFG1PF18	ALFG2PF18
	24 V DC	ALFG1PF24	ALFG2PF24

Standard packing: Carton: 50 pcs.; Case: 200 pcs.

RATING

Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$) (Initial)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$) (Initial)	$\begin{gathered} \begin{array}{c} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{array} \\ \hline \end{gathered}$	$\begin{gathered} \text { Coil resistance } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$	Nominal operating power	Max. allowable voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
9V DC	$70 \% \mathrm{~V}$ or less of nominal voltage	$10 \% \mathrm{~V}$ or more of nominal voltage	115 mA	58Ω	1,400mW	$120 \% \mathrm{~V}$ of nominal voltage
12 V DC			117 mA	103Ω		
18 V DC			78 mA	230Ω		
24V DC			59 mA	410Ω		

Specifications

Characteristics	Item		Specifications	
			Standard type	High capacity type
Contact	Arrangement		1 Form A	
	Contact resistance (Initial)		Max. $100 \mathrm{~m} \Omega$ (By voltage drop 6 V DC 1A)	
	Contact material		AgSnO_{2} type	
Rating	Nominal switching capacity		22A 250V AC	31 A 250 V AC
	Max. switching power		5,500VA	7,750VA
	Max. switching voltage		250 V AC	
	Max. switching current		22A (AC)	31 A (AC)
	Nominal operating power		1,400mW	
	Min. switching capacity (Reference value)*1		100mA 5V DC	
Electrical characteristics	Insulation resistance (Initial)		Min. 1,000M Ω (at 500V DC) Measurement at same location as "Breakdown voltage" section.	
	Breakdown voltage (Initial)	Between open contacts	2,500 Vrms for 1 min . (Detection current: 10 mA)	
		Between contact and coil	$4,000 \mathrm{Vrms}$ for 1 min . (D	(Detection current: 10 mA)
	Surge breakdown voltage ${ }^{* 2}$ (Between contact and coil)		6,000 V (initial)	
	Temperature rise*3		Max. $95^{\circ} \mathrm{C} 203^{\circ} \mathrm{F}$ (By resistive method, nominal coil voltage applied to the coil; contact carrying current: 22A, at $60^{\circ} \mathrm{C} 140^{\circ} \mathrm{F}$) Max. $70^{\circ} \mathrm{C} 158^{\circ} \mathrm{F}$ (By resistive method, $80 \% \mathrm{~V}$ of nominal coil voltage applied to the coil; contact carrying current: 22 A , at $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$)	Max. $95^{\circ} \mathrm{C} 203^{\circ} \mathrm{F}$ (By resistive method, nominal coil voltage applied to the coil; contact carrying current: 31 A , at $60^{\circ} \mathrm{C} 140^{\circ} \mathrm{F}$) Max. $70^{\circ} \mathrm{C} 158^{\circ} \mathrm{F}$ (By resistive method, $80 \% \mathrm{~V}$ of nominal coil voltage applied to the coil; contact carrying current: 31 A , at $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$)
	Coil holding voltage*4		35 to $120 \% \mathrm{~V}$ (contact carrying current: 22A, at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$) 45 to $80 \% \mathrm{~V}$ (contact carrying current: 22A, at $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$)	35 to $120 \% \mathrm{~V}$ (contact carrying current: 31A, at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$) 45 to $80 \% \mathrm{~V}$ (contact carrying current: 31A, at $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$)
	Operate time (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 20 ms (at nominal coil voltage excluding contact bounce time.)	
	Release time (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 10 ms (at nominal coil voltage excluding contact bounce time, without diode)	
Mechanical characteristics	Shock resistance	Functional	Min. $100 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$.)	
		Destructive	Min. 1,000 m/s ${ }^{2}$ (Half-wave pulse of sine wave: 6 ms .)	
	Vibration resistance	Functional	10 to 55 Hz at double amplitude of 1.5 mm (Detection time: $10 \mu \mathrm{~s}$.)	
		Destructive	10 to 55 Hz at double amplitude of 1.5 mm	
Expected life	Mechanical		Min. 10^{6} (at 180 cpm)	
	Electrical	Resistive load	22A 250V AC, Min. 3×10^{4} (at 20 cpm)	-
		Inductive load	Destructive: 22A 250V AC $(\cos \phi=0.8)$, Min. 3×10^{4} (on:off $=0.1 \mathrm{~s}: 10 \mathrm{~s}$) Over load: 35A 250V AC $(\cos \phi=0.8)$, Min. 50 (on:off $=0.1 \mathrm{~s}$:10s)	Destructive: 31A 250V AC ($\cos \phi=0.8$), Min. 3×10^{4} (on:off $=0.1 \mathrm{~s}: 10 \mathrm{~s}$) Over load: 47A 250V AC $(\cos \phi=0.8)$, Min. 50 (on:off $=0.1 \mathrm{~s}: 10 \mathrm{~s}$)
Conditions	Conditions for operation, transport and storage*5		Ambient temperature: $-40^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+140^{\circ} \mathrm{F}$ (When nominal coil voltage applied)$-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}-40^{\circ} \mathrm{F} \text { to }+185^{\circ} \mathrm{F} \text { (Coil holding voltage is when } 45 \text { to } 80 \% \mathrm{~V}$of nominal coil voltage is applied.)Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature)Air pressure: 86 to 106 kPa	
Unit weight			Approx. 23 g .81 oz	

Notes: *1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.
*2 Wave is standard shock voltage of $\pm 1.2 \times 50 \mu \mathrm{~s}$ according to JEC-212-1981
*3 In accordance with UL class-F
*4 Coil holding voltage is the coil voltage after 100 ms from the applied nominal coil voltage.
*5 The upper limit of the ambient temperature is the maximum temperature that can satisfy the coil temperature rise value. Refer to 1 . Usage, transport and storage conditions in NOTES.

REFERENCE DATA

■ Standard type

1. Coil temperature rise

Sample: ALFG1PF09, 6 pcs
Point measured: coil inside
Ambient temperature: $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}, 60^{\circ} \mathrm{C} 140^{\circ} \mathrm{F}$
Contact carrying current: 22A

2. Ambient temperature characteristics and coil applied voltage

3. Electrical life test
(22A 250V AC Resistive load)
Sample: ALFG1PF09, 6 pcs
Operation frequency: ON:OFF $=1.5 \mathrm{~s}: 1.5 \mathrm{~s}$
Ambient temperature: $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$
Circuit:

Change of pick-up and drop-out voltage

Change of contact resistance

4. Electrical life test
(22A 250V AC $\cos \phi=0.8$ Inductive load)
Sample: ALFG1PF09, 6 pcs.
Operation frequency: ON:OFF $=0.1 \mathrm{~s}: 10 \mathrm{~s}$
Ambient temperature: $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$
Circuit:

Change of pick-up and drop-out voltage

Change of contact resistance

LF-G (ALFG)

High capacity type

1. Coil temperature rise

Sample: ALFG2PF09, 6 pcs.
Point measured: coil inside
Ambient temperature: $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}, 60^{\circ} \mathrm{C} 140^{\circ} \mathrm{F}$
Contact carrying current: 31A

3. Electrical life test
(31A 250V AC $\cos \phi=0.8$ Inductive load)
Sample: ALFG2PF09, 6 pcs.
Operation frequency: ON:OFF $=0.1 \mathrm{~s}: 10 \mathrm{~s}$
Ambient temperature: $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$

Circuit:

2. Ambient temperature characteristics and coil applied voltage

Change of pick-up and drop-out voltage

Change of contact resistance

DIMENSIONS (mm inch) Interested in CAD data? You can obtain CAD data for all products with a CAD Data mark from your local Panasonic Electric Works representative.

CAD Data

External dimensions

Dimension:
Max. 1mm 039 inch:
to 3 mm 039 to 118 inch:
Min. 3 mm .118 inch:
Min. 3mm . 118 inch:

PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$
Schematic (Bottom view)

SAFETY STANDARDS

Certification authority	Standard type	High capacity type
UL, C-UL	22A 277 V AC General Use (at $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$)	31A 277V AC General Use (at $85^{\circ} \mathrm{C} 185{ }^{\circ} \mathrm{F}$)
VDE (VDE0435)	22A 250V AC $\cos \phi=0.8\left(\right.$ at $\left.85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}\right)$	31 A 250 V AC $\cos \phi=0.8\left(\right.$ at $\left.85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}\right)$
342		ds_61B12_en_lfg: 050509J

NOTES

■ Usage, transport and storage

 conditions1) Temperature:
-40 to $+60^{\circ} \mathrm{C}-40$ to $+140^{\circ} \mathrm{F}$ (When nominal coil voltage applied)
-40 to $+85^{\circ} \mathrm{C}-40$ to $+185^{\circ} \mathrm{F}$ (When coil holding voltage is 45% to 80% of the nominal coil voltage)
2) Humidity: 5 to 85% RH
(Avoid freezing and condensation.) The humidity range varies with the temperature. Use within the range indicated in the graph below.
3) Atmospheric pressure: 86 to 106 kPa Temperature and humidity range for usage, transport, and storage

* -40 to $+85^{\circ} \mathrm{C}-40$ to $+185^{\circ} \mathrm{F}$ (When 45% to $80 \% \mathrm{~V}$ of coil holding voltage)

4) Condensation

Condensation forms when there is a sudden change in temperature under high temperature and high humidity conditions. Condensation will cause deterioration of the relay insulation.
5) Freezing

Condensation or other moisture may freeze on the relay when the temperatures is lower than $0^{\circ} \mathrm{C} 32^{\circ} \mathrm{F}$. This causes problems such as sticking of movable parts or operational time lags. 6) Low temperature, low humidity environments
The plastic becomes brittle if the relay is exposed to a low temperature, low humidity environment for long periods of time.

Solder and cleaning conditions

1) Please obey the following conditions when soldering automatically.
(1) Preheating: Within $120^{\circ} \mathrm{C} 248^{\circ} \mathrm{F}$
(solder surface terminal portion) and within 120 seconds

(2) Soldering iron: $260^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

$500^{\circ} \mathrm{F} \pm 41^{\circ} \mathrm{F}$ (solder temperature) and within 6 seconds (soldering time)
2) Since this is not a sealed type relay, do not clean it as is. Also, be careful not to allow flux to overflow above the PC board or enter the inside of the relay.

- Certification

1) This relay is UL, C-UL certified. UL, C-UL;

Standard type:
22A 277V AC General Use
High capacity type:
31A 277V AC General Use
2) This relay is certified by VDE
(VDE0435).
VDE;
Standard type: 22A 250V AC $\cos \phi=0.8$
High capacity type:
31 A 250 V AC $\cos \phi=0.8$

Cautions for use

1) For precautions regarding use and explanations of technical terminology, please refer to our web site.
(panasonic-electric-works.net/ac)
2) To ensure good operation, please keep the voltage on the coil ends to $\pm 5 \%$ (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$) of the rated coil operation voltage. Also, please be aware that the pick-up voltage and drop-out voltage may change depending on the temperature and conditions of use.
3) Keep the ripple rate of the nominal coil voltage below 5%.
4) Please test with actual device when using the coil holding voltage with PWM control.
5) The cycle lifetime is defined under the standard test condition specified in the JIS C5442 standard (temperature 15 to $35^{\circ} \mathrm{C} 59$ to $95^{\circ} \mathrm{F}$, humidity 25 to 75%). Check this with the real device as it is affected by coil driving circuit, load type, activation frequency, activation phase, ambient conditions and other factors.
Also, be especially careful of loads such as those listed below.
(1) When used for AC load-operating and the operating phase is synchronous. Rocking and fusing can easily occur due to contact shifting.
(2) Highly frequent load-operating When highly frequent opening and closing of the relay is performed with a load that causes arcs at the contacts, nitrogen and oxygen in the air is fused by the arc energy and HNO_{3} is formed. This can corrode metal materials.
Three countermeasures for these are listed here.

- Incorporate an arc-extinguishing circuit.
- Lower the operating frequency
- Lower the ambient humidity

6) This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.
7) Heat, smoke, and even a fire may occur if the relay is used in conditions outside of the allowable ranges for the coil ratings, contact ratings, operating cycle lifetime, and other specifications. Therefore, do not use the relay if these ratings are exceeded.
8) If the relay has been dropped, the appearance and characteristics should always be checked before use.
9) Incorrect wiring may cause
unexpected events or the generation of heat or flames.
10) If complying with the Electrical

Appliance and Material Safety Law (300V
AC), please use with a nominal current no higher than 10A.
11) In order to reduce the occurrence of solder cracking due to thermal stress on the PC board, please use a double-face through hole PC board.

Panasonic ideas for life

SLIM POWER RELAY WITH HIGH INRUSH CURRENT CAPABILITY

mm inch

FEATURES

1. High inrush current capability
1) Operating load capability: inrush 100 A , steady 5 A
2) UL/CSA, TV-5

2. High insulation resistance between contact and coil

1) Creepage distance and clearances between contact and coil: Min. 6 mm .236 inch (In compliance with IEC65)
2) Surge withstand voltage between contact and coil: $10,000 \mathrm{~V}$ or more 3. High noise immunity realized by the card separation structure between contact and coil
4. Popular terminal pitch in AV equipment field

5. Space-saving slim type
Base area: Width $11 \times$ Length 24 mm

Base area: Width $11 \times$ Length 24 mm
Width $.433 \times$ Length .945 inch
6. Conforms to the various safety standards
UL, CSA, VDE, TÜV, SEMKO, SEV, BSI
approved

SPECIFICATIONS

Contact

Arrangement		1 Form A
Initial contact resistance, max. (By voltage drop 6 V DC 1 A)		Max. $100 \mathrm{~m} \Omega$
Contact material		AgSnO_{2} type
Rating (resistive load)	Nominal switching capacity	5 A 277 V AC, 5 A 30 V DC
	Max. switching power	1,385 VA, 150 W
	Max. switching voltage	277 V AC, 30 V DC
	Max. switching current	5A (AC), 5 A (DC)
	Min. switching capacity\#1	$100 \mathrm{~mA}, 5 \mathrm{~V}$ DC
Expected life (min. ope.)	Mechanical (at 180 cpm)	2×10^{6}
	Electrical (at 20 cpm) (at rated load)	10^{5}
Coil		
Nominal operating power		530 mW

\#1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.

Remarks

* Specifications will vary with foreign standards certification ratings.
${ }^{*} 1$ Measurement at same location as "Initial breakdown voltage" section.
${ }^{*}$ 2 Detection current: 10 mA
${ }^{*}$ Wave is standard shock voltage of $\pm 1.2 \times 50 \mu \mathrm{~s}$ according to JEC-212-1981
${ }^{* 4}$ Excluding contact bounce time.
${ }^{*}$ Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$
${ }^{* 6}$ Half-wave pulse of sine wave: 6 ms
${ }^{* 7}$ Detection time: $10 \mu \mathrm{~s}$
${ }^{* 8}$ Refer to "6. Usage, Storage and Transport Conditions" in AMBIENT ENVIRONMENT (page 599).

Characteristics

Max. operating speed			20 cpm
Initial insulation resistance*1			Min. 1,000 M
Initial breakdown voltage*2	Between open contacts		1,000 Vrms for 1 min
	Between contacts and coil		4,000 Vrms for 1 min
Initial surge voltage between contact and coil*3			Min. 10,000 V
Operate time ${ }^{* 4}$ (at nominal voltage)			Max. 15 ms (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
Release time (without diode)*4 (at nominal voltage)			Max. 5 ms (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
Temperature rise (at $70^{\circ} \mathrm{C}$)			Max. $35^{\circ} \mathrm{C}$ with nominal coil voltage at 5A contact carrying current (resistance method)
Shock resistance	Functional*5		Min. $200 \mathrm{~m} / \mathrm{s}^{2}$
	Destructive*6		Min. 1,000 m/s ${ }^{2}$
Vibration resistance	Functional*7		10 to 55 Hz at double amplitude of 1.5 mm
	Destructive		10 to 55 Hz at double amplitude of 1.5 mm
Conditions for operation, transport and storage*8 (Not freezing and condensing at low temperature)		Ambient temp.	-40 to $+70^{\circ} \mathrm{C}-40$ to $+158^{\circ} \mathrm{F}$
		Humidity	5 to 85\%R.H.
		Air pressure	86 to 106 kPa
Unit weight			Approx. $12 \mathrm{~g} \mathrm{}$.

TYPICAL APPLICATIONS ORDERING INFORMATION

- AV equipment: TV's, VTR's, etc.
- OA equipment
- HA equipment

UL/CSA, TÜV, SEMKO, TV-5 approved type is standard.
(Note) Standard packing Carton: 100 pcs. Case: 500 pcs.

TYPES AND COIL DATA (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)

Part No.	Nominal voltage, V DC	Pick-up voltage V DC (max.) (Initial)	Drop-out voltage V DC (min.) (Initial)	Coil resistance, $\Omega(\pm 10 \%)$	Nominal operating current, $\mathrm{mA}(\pm 10 \%)$	Nominal operating power, mWW	Max. allowable voltage, V DC (at 20
LK1aF-5V $\left.68^{\circ} \mathrm{F}\right)$							

DIMENSIONS $(\mathrm{mm}$ inch) Interested in CAD data? You can obtain CAD data for all products with a CAD Data mark from your local Panasonic Electric Works representative.

CAD Data

Dimension :
Max. 1mm . 039 inch:
$\pm 0.1 \pm .004$
Min. 3mm .118 inch:
$\pm 0.3 \pm .012$

REFERENCE DATA

1. Max. switching power (AC resistive load)

PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$
Schematic (Bottom view)

2. Coil temperature rise Sample: LK1aF-12V, 6 pcs Point measured: coil inside Contact current: 5 A

3. Ambient temperature characteristics Contact current: 5 A

4. Life curve

Operation frequency: 20 times/min.
(ON/OFF = $1.5 \mathrm{~s}: 1.5 \mathrm{~s}$)
Ambient temperature: room temperature

6-1. Electrical life test
(5 A 277 V AC, resistive load)
Sample: LK1aF-12V, 6 pcs.
Operation frequency: 20 times $/ \mathrm{min}$.
(ON/OFF = 1.5s: 1.5 s)
Ambient temperature: $26^{\circ} \mathrm{C} 79^{\circ} \mathrm{F}$
Circuit:

Change of pick-up and drop-out voltage

Change of pick-up and drop-out voltage

6-2. Electrical life test
(UL lamp load test TV-5)
Tested sample: LK1aF-12V, 6 pcs.

- Overload test

Load: 7.5 A 120 V AC (60 Hz),
Inrush: 111 A
Operation frequency: 10 times $/ \mathrm{min}$
(ON: OFF = $1 \mathrm{~s}: 5 \mathrm{~s}$)
No. of operations: 50 ope.

- Endurance test

Load: 5A 120 V AC (60 Hz),
Inrush: 78 A
Operation frequency: 10 times $/ \mathrm{min}$
(ON: OFF = $1 \mathrm{~s}: 5 \mathrm{~s}$)
No. of operations: 25,000 ope

5-1. Operate \& release time (without diode) Sample: LK1aF-12V, 20 pcs
$5-2$. Operate \& release time (with diode)
Sample: LK1aF-12V, 20 pcs.

Change of contact resistance

Change of contact resistance

NOTES

1. Cleaning

This relay is not the sealed type, so it cannot be immersion cleaned. Be careful that flux does not overflow onto the PC board or penetrate inside the relay.

2. Soldering

We recommend the following soldering conditions

1) Automatic soldering

* Preheating: $100^{\circ} \mathrm{C} 212^{\circ} \mathrm{F}$, within 2 mins (PC board solder surface)
* Soldering: $260^{\circ} \mathrm{C} 500^{\circ} \mathrm{F}$, within 5 s

2) Hand soldering

* Iron tip temperature: 280 to $300^{\circ} \mathrm{C} 536$ to $571^{\circ} \mathrm{F}$
* Soldering iron: 30 to 60W
* Soldering time: Within 3 s

For Cautions for Use, see Relay Technical Information (page 582).

Panasonic ideas for life

FEATURES

- Low profile (10 mm height)

Height reduced 60% compared with previous product*.

*Previous product: LK-S relay

- Nominal switching capacity: 5A, 8A 277V AC

Low Profile (10 mm)

TV-5 and TV-8 Compatible

 Flat Power Relay- TV standards compatible: TV-5 and TV-8
- TV-5 type: 78 A inrush current and switching possible at 5 A rated current. - TV-8 type: 118 A inrush current and switching possible at 8 A rated current.
- Line up includes silent type

Approx. 10 dB less sound pressure than LK-S relay.

- High sensitivity: 250mW Ideal for device power reduction - 0.7 mm .028 inch stand off height

- Conforms to various safety standards
UL, C-UL, TÜV and SEMKO

TYPICAL APPLICATIONS

- Flat-panel TVs
- Audio visual equipment
- Other slim profile devices

ORDERING INFORMATION

[^33]
TYPES

Contact arrangement	Nominal coil voltage	Part No.			
		TV-5 type		TV-8 type	
		Standard type	Silent type	Standard type	Silent type
1 Form A	5V DC	LKF1aM-5V-1-5	LKF1aMQ-5V-1-5	LKF1aM-5V-1-8	LKF1aMQ-5V-1-8
	9V DC	LKF1aM-9V-1-5	LKF1aMQ-9V-1-5	LKF1aM-9V-1-8	LKF1aMQ-9V-1-8
	12 V DC	LKF1aM-12V-1-5	LKF1aMQ-12V-1-5	LKF1aM-12V-1-8	LKF1aMQ-12V-1-8
	24V DC	LKF1aM-24V-1-5	LKF1aMQ-24V-1-5	LKF1aM-24V-1-8	LKF1aMQ-24V-1-8

Standard packing: Tube: 50 pcs.; Case: 500 pcs.
*Operation noise standard type is available, please contact us.

RATING

1. Coil data

Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$) (JIS C 5442* pulse drive.)		Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \begin{array}{c} \text { Nominal operating } \\ \text { current } \end{array} \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right. \text {) }} \end{gathered}$	$\begin{gathered} \text { Coil resistance } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$	Nominal operating power	Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
	Standard type	Silent type					
5V DC	$70 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$80 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$10 \% \mathrm{~V}$ or more of nominal voltage (Initial)	50 mA	100Ω	250 mW	$130 \% \mathrm{~V}$ of nominal voltage
9V DC				27.8 mA	324Ω		
12 V DC				20.8 mA	576Ω		
24V DC				10.4 mA	2,304 Ω		

*JIS C 5442: JIS C 5442-1986 test method for miniature electromagnetic relays used for control applications.

2. Specifications

Characteristics	Item		Specifications	
			TV-5 type	TV-8 type
Contact	Arrangement		1 Form A	
	Contact resistance (Initial)		Max. $100 \mathrm{~m} \Omega$ (By voltage drop 6 V DC 1A)	
	Contact material		AgSnO_{2} type	
Rating	Nominal switching capacity (resistive load)		5 A 277 V AC	8 A 277 V AC
	Contact carring power		1,385 VA	2,216 VA
	Max. switching voltage		277 V AC	
	Max. switching current		5 A (AC)	8 A (AC)
	Min. switching capacity (Reference value) ${ }^{-1}$		100 mA 5 V DC	
Electrical characteristics	Insulation resistance (Initial)		Min. 1,000M Ω (at 500 V DC) Measurement at same location as "Breakdown voltage" section.	
	Breakdown voltage (Initial)	Between open contacts	1,000 Vrms for 1 min . (Detection current: 10 mA)	
		Between contact and coil	$4,000 \mathrm{Vrms}$ for 1 min . (Detection current: 10 mA)	
	Surge breakdown voltage ${ }^{*}$	Between contact and coil	10,000 V (initial)	
	Temperature rise (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. $45^{\circ} \mathrm{C} 113^{\circ} \mathrm{F}$ (By resistive method, nominal voltage applied to the coil; contact carrying current: 5 A at $70^{\circ} \mathrm{C} 158^{\circ} \mathrm{F}$.)	Max. $45^{\circ} \mathrm{C} 113^{\circ} \mathrm{F}$ (By resistive method, nominal voltage applied to the coil; contact carrying current: 8 A at $70^{\circ} \mathrm{C} 158^{\circ} \mathrm{F}$.)
	Operate time (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 15 ms (nominal coil voltage, excluding contact bounce time)	
	Release time (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 5 ms (nominal coil voltage, excluding contact bounce time) (without diode)	
Mechanical characteristics	Shock resistance	Functional	Min. $200 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$.)	
		Destructive	Min. 1,000 m/s ${ }^{2}$ (Half-wave pulse of sine wave: 6 ms .)	
	Vibration resistance	Functional	10 to 55 Hz at double amplitude of 1.5 mm (Detection time: $10 \mu \mathrm{~s}$.)	
		Destructive	10 to 55 Hz at double amplitude of 1.5 mm	
Expected life	Mechanical		Min. 10^{6} (at 180 cpm)	
	Electrical		Min. 10^{5} (at 20 cpm)	Min. 5×10^{4} (at 20 cpm)
Conditions	Conditions for operation, transport and storage*3		Ambient temperature: $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+158^{\circ} \mathrm{F}$; Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature); Atmospheric pressure: 86 to 106 kPa	
	Max. operating speed		20 cpm (at nominal switching capacity)	
Unit weight			Approx. $12 \mathrm{~g} \mathrm{}$.	

*1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.

* 2 Wave is standard shock voltage of $\pm 1.2 \times 50 \mu$ s according to JEC-212-1981
*3The upper operation ambient temperature limit is the maximum temperature that can satisfy the coil temperature rise value.
Refer to 1. Usage, transport and storage conditions in NOTES.
Refer to " 6 . Usage, Storage and Transport Conditions" in AMBIENT ENVIRONMENT (page 599).

REFERENCE DATA

1. Max. switching power (AC resistive load)

\longrightarrow Contact voltage, VAC

2-(1). Coil temperature rise (TV-5 type)
Sample: LKF1aMQ-12V-1-5, 6 pcs.
Point measured: coil inside
Contact current: 0A, 5A

2-(2). Coil temperature rise (TV-8 type)
Sample: LKF1aMQ-12V-1-8, 6 pcs.
Point measured: coil inside
Contact current: 0A, 8A

3-(1). Ambient temperature characteristics and coil applied voltage (TV-5 type)

4-(1). Electrical life test
(5A 277V AC, resistive load)
Sample: LKF1aMQ-12V-1-5, 6 pcs.
Operation frequency: 20 times $/ \mathrm{min}$.
(ON/OFF = 1.5s: 1.5s)
Ambient temperature: $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$

Circuit:

Change of pick-up and drop-out voltage

Change of contact resistance

4-(2). Electrical life test

(8A 277V AC, resistive load)

Sample: LKF1aMQ-12V-1-8, 6 pcs
Operation frequency: 20 times $/ \mathrm{min}$
(ON/OFF = 1.5s: 1.5s)
Ambient temperature: $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$
Circuit:

Change of pick-up and drop-out voltage

Change of contact resistance

5-(1). Operation noise distribution LK-F (Height: 10 mm , Silent)
Measuring conditions
Sample: LKF1aMQ-12V-1-5, 50pcs
Background noise: approx. 20dB
Coil voltage: 12 V DC
Equipment setting: "A" weighted
Single part (refer to figure below)
With diode

When release

5-(2). Operation noise distribution LK-F (Height: 10 mm , Standard)
Measuring conditions
Sample: LKF1aM-12V-1-5, 50pcs
Background noise: approx. 20 dB
Coil voltage: 12 V DC
Equipment setting: " A " weighted
Single part (refer to figure below)
With diode

When release

5-(3). Operation noise distribution
LK-S (Height: 25 mm) Refer to comparison
Measuring conditions
Sample: LKS1aF-12V, 50pcs
Background noise: approx. 20dB
Coil voltage: 12 V DC
Equipment setting: " A " weighted
Single part (refer to figure below)
With diode

When release

DIMENSIONS (mm inch) Interested in CAD data? You can obtain CAD data for all products with a CAD Data mark from your local Panasonic Electric Works representative.

External dimensions

Dimension:
General tolerance
Max. 1mm .039 inch: $\quad \pm 0.1 \pm .004$
1 to 3 mm .039 to .118 inch: $\pm 0.2 \pm .008$
Min. 3mm . 118 inch: $\quad \pm 0.3 \pm .012$

PC board pattern (Bottom view)

Schematic (Bottom view)

SAFETY STANDARDS

Certification authority	TV-5 type	TV-8 type
UL, C-UL	TV-5 5 A 277 V AC	TV-8 8 A 277 V AC
SEMKO	3/100 A 250 V AC 40 T85 μ	
TÜV	EN61810-1 5 A 250 V AC $(\cos \phi=1.0)$	EN61810-1 8 A 250 V AC $(\cos \phi=1.0)$

NOTES

- Usage, transport and storage conditions

1) Temperature:
-40 to $+70^{\circ} \mathrm{C}-40$ to $+158^{\circ} \mathrm{F}$
2) Humidity: 5 to 85% RH
(Avoid freezing and condensation.) The humidity range varies with the temperature. Use within the range indicated in the graph below.
3) Atmospheric pressure: 86 to 106 kPa Temperature and humidity range for usage, transport, and storage

4) Condensation

Condensation forms when there is a sudden change in temperature under high temperature and high humidity conditions. Condensation will cause deterioration of the relay insulation.
5) Freezing

Condensation or other moisture may freeze on the relay when the temperatures is lower than $0^{\circ} \mathrm{C} 32^{\circ} \mathrm{F}$. This causes problems such as sticking of movable parts or operational time lags.
6) Low temperature, low humidity environments
The plastic becomes brittle if the relay is exposed to a low temperature, low humidity environment for long periods of time.
\square Solder and cleaning conditions

1) Please obey the following conditions when soldering automatically.
(1) Preheating: Within $120^{\circ} \mathrm{C} 248^{\circ} \mathrm{F}$ (solder surface terminal portion) and within 120 seconds
(2) Soldering iron: $260^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ $500^{\circ} \mathrm{F} \pm 41^{\circ} \mathrm{F}$ (solder temperature) and within 6 seconds (soldering time)
2) Since this is not a sealed type relay, do not clean it as is. Also, be careful not to allow flux to overflow above the PC board or enter the inside of the relay.

■ Certification

1) This relay is UL and C-UL certified.

UL and C-UL standards:
TV-5 5 A 277 V AC
TV-8 8 A 277 V AC
2) This relay is certified by TÜV as an electromagnetic relay that complies with EN61810-1.
TÜV standards:
TV-5 type $5 \mathrm{~A} 250 \mathrm{~V} \sim \cos \phi=1.0$
TV-8 type 8 A $250 \mathrm{~V} \sim \cos \phi=1.0$
3) This relay is certified by SEMKO.

3/100 A 250 V AC 40 T85 μ
Steady-state current: 3A/Inrush current:
100 A, Load voltage: 250 V AC
Ambient temperature: -40 to $+85^{\circ} \mathrm{C}-40$
to $+185^{\circ}$ F, Micro-gap

■ Others

1) For precautions regarding use and explanations of technical terminology, please refer to our web site. (panasonic-electric-works.net/ac)
2) To ensure good operation, please keep the voltage on the coil ends to $\pm 5 \%$ (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$) of the rated coil operation voltage. Also, please be aware that the pick-up voltage and drop-out voltage may change depending on the temperature and conditions of use.
3) Keep the ripple rate of the nominal coil voltage below 5%.
4) The cycle lifetime is defined under the standard test condition specified in the JIS C 5442 standard (temperature 15 to $35^{\circ} \mathrm{C} 59$ to $95^{\circ} \mathrm{F}$, humidity 25 to 75%). Check this with the real device as it is affected by coil driving circuit, load type, activation frequency, activation phase, ambient conditions and other factors. Also, be especially careful of loads such as those listed below.
(1) When used for AC load-operating and the operating phase is synchronous.
Rocking and fusing can easily occur due to contact shifting.
(2) Highly frequent load-operating When highly frequent opening and closing of the relay is performed with a load that causes arcs at the contacts, nitrogen and oxygen in the air is fused by the arc energy and HNO_{3} is formed. This can corrode metal materials.
Three countermeasures for these are listed here.

- Incorporate an arc-extinguishing circuit.
- Lower the operating frequency
- Lower the ambient humidity

5) This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.
6) Heat, smoke, and even a fire may occur if the relay is used in conditions outside of the allowable ranges for the coil ratings, contact ratings, operating cycle lifetime, and other specifications. Therefore, do not use the relay if these ratings are exceeded.
7) If the relay has been dropped, the appearance and characteristics should always be checked before use.
8) Incorrect wiring may cause unexpected events or the generation of heat or flames.
9) The amount of relay operation noise will vary depending on the substrate used for mounting. Please use after verifying with the relay mounted on the substrate.
10) There are no restrictions as to how this relay should be oriented during installation. However, due to gravitation there may be slight differences in pick-up/ drop-out voltage and operate/release time, etc., depending on the orientation. Therefore, when evaluating the relay, please do so with the relay installed with the actual orientation.

For Cautions for Use, see Relay Technical Information (page 582).

Panasonic ideas for life

1 mm CONTACT GAP. 1 FORM A 10A/16A POWER RELAY

FEATURES

1. Contact gap: 1 mm .039 inch
2. Wide lineup of 3 types available
1) $10 \mathrm{~A}, 1 \mathrm{~mm}$ contact gap type
2) $16 \mathrm{~A}, 1 \mathrm{~mm}$ contact gap type
3) 16 A standard type
3. High insulation resistance
1) Creepage distance and clearances between contact and coil: Min. 6 mm .236 inch (In compliance with IEC65)
2) Surge withstand voltage between contact and coil: 10,000 V or more 4. High noise immunity

High noise immunity realized by the card separation structure between contact and coil
5. Conforms to the various safety standards
UL, C-UL and TÜV approved

TYPICAL APPLICATIONS

1. Audio visual equipment
2. HA equipment
3. Home appliances
4. Office equipment

ORDERING INFORMATION

TYPES

Contact arrangement	Nominal coil voltage	Part No.		
		10A, 1 mm contact gap type	$16 \mathrm{~A}, 1 \mathrm{~mm}$ contact gap type	16 A standard type
1 Form A	5V DC	LKG1aF-5V-10-1	LKG1aF-5V-16-1	LKG1aF-5V-16
	9V DC	LKG1aF-9V-10-1	LKG1aF-9V-16-1	LKG1aF-9V-16
	12V DC	LKG1aF-12V-10-1	LKG1aF-12V-16-1	LKG1aF-12V-16
	24V DC	LKG1aF-24V-10-1	LKG1aF-24V-16-1	LKG1aF-24V-16

Standard packing: Carton: 100 pcs.; Case: 500 pcs.

RATING

1. Coil data

Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Nominal operating } \\ \text { current } \\ \left.[\pm 10 \%] \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right) \end{gathered}$	$\begin{gathered} \text { Coil resistance } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$	Nominal operating power	Max. allowable voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
5V DC	$75 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$10 \% \mathrm{~V}$ or more of nominal voltage (Initial)	106.4 mA	47Ω	530 mW	$130 \% \mathrm{~V}$ of nominal voltage
9V DC			58.8 mA	153Ω		
12 V DC			44.2 mA	272Ω		
24V DC			22.1 mA	1,087 Ω		

2. Specifications

1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load. ${ }^{} 2$ Wave is standard shock voltage of $\pm 1.2 \times 50 \mu$ s according to JEC-212-1981
*3The upper limit of the ambient temperature is the maximum temperature that can satisfy the coil temperature rise value. Refer to 1 . Usage, transport and storage conditions in NOTES on page 356.

REFERENCE DATA

1. Max. switching power (AC resistive load)

\longrightarrow Contact voltage,
2. Ambient temperature characteristics and coil applied voltage

3-(1). Electrical life test (10A type)
Sample: LKG1aF-12V-10-1, 6 pcs.
Operation frequency: 6 times $/ \mathrm{min}$.
(ON/OFF = 1s: 9s)
Ambient temperature: $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$
Circuit:

Change of pick-up and drop-out voltage

Change of contact resistance

3-(2). Electrical life test (16A type)
Sample: LKG1aF-12V-16-1, 6 pcs.
Operation frequency: 6 times $/ \mathrm{min}$.
(ON/OFF = 1s: 9s)
Ambient temperature: $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$
Circuit:

Change of contact resistance

DIMENSIONS (mm inch) Interested in CAD data? You can obtain CAD data for all products with a CAD Data mark from your local Panasonic Electric Works representative.

NOTES

1. Usage, transport and storage conditions

1) Temperature:
-40 to $+70^{\circ} \mathrm{C}-40$ to $+158^{\circ} \mathrm{F}$
2) Humidity: 5 to $85 \% \mathrm{RH}$
(Avoid freezing and condensation.)
The humidity range varies with the temperature. Use within the range indicated in the graph below.
3) Atmospheric pressure: 86 to 106 kPa

Temperature and humidity range for usage, transport, and storage

4) Condensation

Condensation forms when there is a sudden change in temperature under high temperature and high humidity conditions. Condensation will cause deterioration of the relay insulation.
5) Freezing

Condensation or other moisture may freeze on the relay when the temperatures is lower than $0^{\circ} \mathrm{C} 32^{\circ} \mathrm{F}$. This causes problems such as sticking of movable parts or operational time lags.
6) Low temperature, low humidity environments
The plastic becomes brittle if the relay is exposed to a low temperature, low humidity environment for long periods of time.

2. Solder and cleaning conditions

1) Please obey the following conditions when soldering automatically.
(1) Preheating: Within $120^{\circ} \mathrm{C} 248^{\circ} \mathrm{F}$ (solder surface terminal portion) and within 120 seconds
(2) Soldering iron: $260^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C} 500^{\circ} \mathrm{F} \pm 41^{\circ} \mathrm{F}$ (solder temperature) and within 6 seconds (soldering time)
2) Since this is not a sealed type relay, do not clean it as is. Also, be careful not to allow flux to overflow above the PC board or enter the inside of the relay.

3. Certification

1) This relay is UL and C-UL certified.
2) This relay is certified by TÜV as an electromagnetic relay that complies with VDE0435.
The terminals of this relay can only be connected with solder.

4. Others

1) For precautions regarding use and explanations of technical terminology, please refer to "Relay Technical Information".
2) To ensure good operation, please keep the voltage on the coil ends to $\pm 5 \%$ (at $20^{\circ} \mathrm{C}$ 68° F) of the rated coil operation voltage. Also, please be aware that the pick-up voltage and drop-out voltage may change depending on the temperature and conditions of use.
3) Keep the ripple rate of the nominal coil voltage below 5%.
4) The cycle lifetime is defined under the standard test condition specified in the JIS C 5442 standard (temperature 15 to $35^{\circ} \mathrm{C}$ 59 to $95^{\circ} \mathrm{F}$, humidity 25 to 75%).

The cycle life time is based on the condition that a diode is connected in parallel with the coil. The cycle life time may be different if no diode was connected to the coil. Check this with the real device as it is affected by coil driving circuit, load type, activation frequency, activation phase, ambient conditions and other factors.
Also, be especially careful of loads such as those listed below.
(1) When used for AC load-operating and the operating phase is synchronous.
Rocking and fusing can easily occur due to contact shifting.
(2) Highly frequent load-operating When highly frequent opening and closing of the relay is performed with a load that causes arcs at the contacts, nitrogen and oxygen in the air is fused by the arc energy and HNO_{3} is formed. This can corrode metal materials.
Three countermeasures for these are listed here.

- Incorporate an arc-extinguishing circuit.
- Lower the operating frequency
- Lower the ambient humidity

5) Heat, smoke, and even a fire may occur if the relay is used in conditions outside of the allowable ranges for the coil ratings, contact ratings, operating cycle lifetime, and other specifications. Therefore, do not use the relay if these ratings are exceeded. 6) If the relay has been dropped, the appearance and characteristics should always be checked before use.
6) Incorrect wiring may cause unexpected events or the generation of heat or flames.

For Cautions for Use, see Relay Technical Information (page 582).

VDE TUV
TUV (S) $\stackrel{+}{S}$

10 A
 SLIM POWER RELAY

FEATURES

1. High switching capacity: 10 A 277V AC
2. High insulation resistance between contact and coil
1) Creepage distance and clearances between contact and coil: Min. 6 mm .236 inch (In compliance with IEC65)
2) Surge withstand voltage between contact and coil: 10,000 V or more
3. High noise immunity realized by the card separation structure between contact and coil

4. Popular terminal pitch in AV equipment field

5. Space-saving slim type

Base area: Width $11 \times$ Length 24 mm
Width $.433 \times$ Length .945 inch
6. Conforms to the various safety standards
UL/CSA, VDE, TÜV and SEMKO, SEV approved

SPECIFICATIONS

Contact

Arrangement		1 Form A
Initial contact resistance, max. (By voltage drop 6 V DC 1 A)		Max. $100 \mathrm{~m} \Omega$
Contact material		AgSnO_{2} type
Rating (resistive load)	Nominal switching capacity	10 A 277 V AC, 5 A 30V DC
	Max. switching power	2,770 V A, 150W
	Max. switching voltage	277 V AC, 30 V DC
	Max. switching current	$10 \mathrm{~A}(\mathrm{AC}), 5 \mathrm{~A}$ (DC)
	Min. switching capacity\#1	$100 \mathrm{~mA}, 5 \mathrm{~V}$ DC
Expected life (min. operations)	Mechanical (at 180 cpm)	2×10^{6}
	Electrical (at 20 cpm) (at rated load)	10^{5}
Coil		
Nominal operating power		530 mW

\#1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.

Remarks

* Specifications will vary with foreign standards certification ratings.
${ }^{* 1}$ Measurement at same location as "Initial breakdown voltage" section.
*2 Detection current: 10 mA
${ }^{* 3}$ Wave is standard shock voltage of $\pm 1.2 \times 50 \mu$ s according to JEC-212-1981
${ }^{*} 4$ Excluding contact bounce time.
${ }^{* 5}$ Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$
${ }^{*} 6$ Half-wave pulse of sine wave: 6 ms
${ }^{* 7}$ Detection time: $10 \mu \mathrm{~s}$
${ }^{*}$ Refer to " 6 . Usage, Storage and Transport Conditions" in AMBIENT ENVIRONMENT (page 599).

Characteristics

Max. operating speed				20 cpm (at rated load)
Initial insulation resistance*1				Min. 1,000 M (at 500 V DC)
Initial *2 breakdown voltage	Between open contacts			1,000 Vrms for 1 min .
	Betwee coil		act and	4,000 Vrms for 1 min.
Initial surge voltage between contact and coil**				Min. 10,000 V
Operate time ${ }^{* 4}$ (at nominal voltage)				Max. 15 ms (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
Release time (without diode)*4 (at nominal voltage)				Max. 5 ms (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
Temperature rise (at $70^{\circ} \mathrm{C}$)				Max. $45^{\circ} \mathrm{C}$ with nominal coil voltage and at 10 A contact carrying current (resistance method)
Shock resistance		Functional*5		Min. $200 \mathrm{~m} / \mathrm{s}^{2}\{$ approx. 20 G$\}$
		Destructive*6		Min. $1,000 \mathrm{~m} / \mathrm{s}^{2}\{$ approx. 100 G$\}$
Vibration resistance		Functional*7		10 to 55 Hz at double amplitude of 1.5 mm
		Destructive		10 to 55 Hz at double amplitude of 1.5 mm
Conditions for operation, transport and storage*8 (Not freezing and condensing at low temperature)			Ambient temp.	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{F} \text { to }+158^{\circ} \mathrm{F} \end{aligned}$
			Humidity	5 to 85\% R.H.
			Air pressure	86 to 106 kPa
Unit weight				Approx. $12 \mathrm{~g} \mathrm{}$.

TYPICAL APPLICATIONS ORDERING INFORMATION

- Audio visual equipment

TVs, VTRs

- Office equipment LBP, CRT
- Home appliances

Refrigerator, Air conditioner

Ex. LKP 1 a							$\mathrm{F}-\quad 12 \mathrm{~V}$		
Contact arrangement	Protective construction	Coil voltage(DC)							
1a: 1 Form A	F: Flux-resistant type	$5,6,9,12,18,24 \mathrm{~V}$							

UL/CSA, TÜV, SEMKO, TV-5 approved type is standard.
Notes 1. Standard packing Carton: 100 pcs. Case: 500 pcs.
2. $5 \mathrm{~V}, 9 \mathrm{~V}, 18 \mathrm{~V} \mathrm{DC}$ types are also available. Please consult us for details.

TYPES AND COIL DATA (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)

Part No.	Nominal voltage, V DC	Pick-up voltage V DC (max.) (Initial)	Drop-out voltage V DC (min.) (Initial)	Coil resistance, $\Omega(\pm 10 \%)$	Nominal operating current, $\mathrm{mA}(\pm 10 \%)$	Nominal operating power, mW	Max. allowable voltage, V DC (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
LKP1aF-5V	5	3.5	0.5	47	106.4	530	6.5
LKP1aF-6V	6	4.2	0.6	68	88.3	530	7.8
LKP1aF-9V	9	6.3	0.9	153	58.8	530	11.7
LKP1aF-12V	12	8.4	1.2	272	44.2	530	15.6
LKP1aF-18V	18	12.6	1.8	611	29.5	530	23.4
LKP1aF-24V	24	16.8	2.4	1,087	22.1	530	31.2

DIMENSIONS (mm inch) Interested in CAD data? You can obtain CAD data for all products with a CAD Data mark from your local Panasonic Electric Works representative.

PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$
Schematic (Bottom view)
O
$\%$
O

Dimension:
General tolerance
Max. 1mm .039 inch: $\quad \pm 0.1 \pm .004$
1 to 3 mm .039 to .118 inch: $\pm 0.2 \pm .008$
Min. 3 mm .118 inch: $\quad \pm 0.3 \pm .012$

REFERENCE DATA

\author{

1. Max. switching power
}

2. Coil temperature rise

Sample: LKP1aF-12V, 6 pcs.
Point measured: coil inside
Contact current: $5 \mathrm{~A}, 10 \mathrm{~A}$

3. Ambient temperature characteristics and coil applied voltage
Contact current: 10 A

4. Life curve

Operation frequency: 20 times/min.
(ON/OFF = 1.5s: 1.5 s)
Ambient temperature: room temperature

5. Electrical life test
(10 A 277 V AC, resistive load)
Sample: LKP1aF-12V, 6 pcs.
Operation frequency: 20 times $/ \mathrm{min}$.
(ON/OFF = 1.5s: 1.5 s)
Ambient temperature: $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$
Circuit:

Change of pick-up and drop-out voltage

Change of contact resistance

For Cautions for Use, see Relay Technical Information (page 582).

TUV

Panasonic ideas for life

QUIET TYPE,
 HIGH SENSITIVITY 250 mW , SLIM POWER RELAY

FEATURES

1. High sensitivity

The power-saving relay is highly sensitive at the nominal operating power of 250 mW .

2. Quiet

Approx. 10 dB less sound pressure than previous LK series relay
mm inch
3. High inrush current capability Switching capability;

- TV-5 type: inrush 100A, steady: 5A
- TV-8 type: inrush 118A, steady: 8A

4. High insulation resistance
1) Creepage distance and clearances between contact and coil: Min. 6 mm . 236 inch (In compliance with IEC65)
2) Surge withstand voltage between contact and coil: $10,000 \mathrm{~V}$ or more
5. High noise immunity realized by the card separation structure between contact and coil
6. Conforms to the various safety standards
UL, C-UL, TÜV, and SEMKO approved

TYPICAL APPLICATIONS

- Flat-panel TVs
- Audio visual equipment

SPECIFICATIONS

Contact

Arrangement		1 Form A
Initial contact resistance, max. (By voltage drop 6 V DC 1 A)		Max. $100 \mathrm{~m} \Omega$
Contact material		AgSnO_{2} type
Rating (resistive load)	Nominal switching capacity	TV-5 type: 5A 277V AC TV-8 type: 8A 277V AC
	Max. switching power	TV-5 type: 1,385 VA TV-8 type: 2,216 VA
	Max. switching voltage	277 V AC
	Max. switching current	TV-5 type: 5A (AC) TV-8 type: 8A (AC)
	Min. switching capacity\#1 (Reference value)	$100 \mathrm{~mA}, 5 \mathrm{~V}$ DC
Expected life (min. operations)	Mechanical (at 180 cpm)	10^{6}
	Electrical (at 20 cpm) (at rated load)	TV-5 type: 10^{5} TV-8 type: 5×10^{4}

Coil
Nominal operating power 250 mW
\#1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.

Remarks

* Specifications will vary with foreign standards certification ratings.
${ }^{* 1}$ Measurement at same location as "Initial breakdown voltage" section.
*2 Detection current: 10 mA
${ }^{* 3}$ Wave is standard shock voltage of $\pm 1.2 \times 50 \mu$ s according to JEC-212-1981
${ }^{*} 4$ Excluding contact bounce time
${ }^{*} 5$ Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$
*6 Half-wave pulse of sine wave: 6 ms
${ }^{* 7}$ Detection time: $10 \mu \mathrm{~s}$
*8 The upper limit of the ambient temperature is the maximum temperature that can satisfy the coil temperature rise value. Refer to 1. Usage, transport and storage conditions in NOTES on page 363.

Characteristics

Max. operating speed		20 cpm (at rated load)
Initial insulation resistance*1		Min. 1,000 M (at 500 V DC)
Initial *2 breakdown voltage	Between open contacts	1,000 Vrms for 1 min .
	Between contact and coil	4,000 Vrms for 1 min .
Initial surge voltage between contact and coil*3		10,000 V
Operate time ${ }^{* 4}$ (at nominal voltage)		Max. 15 ms (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
Release time (without diode)*4 (at nominal voltage)		Max. 5 ms (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
		TV-5 type:

Max. $35^{\circ} \mathrm{C}$ with nominal coil voltage and at 5 A contact carrying current (resistance method)

TV-8 type:
Max. $35^{\circ} \mathrm{C}$ with nominal coil voltage and at 8 A contact carrying current

		carrying current (resistance method)
Shock resistance	Functiona\|*5	$200 \mathrm{~m} / \mathrm{s}^{2}\{$ approx. 20 G$\}$
	Destructive*6	$1,000 \mathrm{~m} / \mathrm{s}^{2}$ \{approx. 100 G$\}$
Vibration resistance	Functiona\|*7	10 to 55 Hz at double amplitude of 1.5 mm
	Destructive	$10 \text { to } 55 \mathrm{~Hz}$ at double amplitude of 1.5 mm
Conditions for operation, transport and storage*8 (Not freezing and condensing at low temperature)	Ambient temp.	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{F} \text { to }+158^{\circ} \mathrm{F} \end{aligned}$
	Humidity	5 to 85\% R.H.
	Air pressure	86 to 106 kPa
Unit weight		Approx. $12 \mathrm{~g} \mathrm{}$.

ORDERING INFORMATION

UL/C-UL, TÜV, SEMKO approved type is standard.
Note: Standard packing Carton: 100 pcs. Case: 500 pcs.

TYPES AND COIL DATA (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)

Part No.		$\begin{array}{c}\text { Nominal } \\ \text { voltage, } \\ \text { V DC }\end{array}$	$\begin{array}{c}\text { Pick-up } \\ \text { voltage } \\ \text { V DC (max.) } \\ \text { (Initial) }\end{array}$	$\begin{array}{c}\text { Drop-out } \\ \text { voltage } \\ \text { V DC (min.) } \\ \text { (Initial) }\end{array}$	$\begin{array}{c}\text { Coil } \\ \text { resistance, } \\ \Omega(\pm 10 \%)\end{array}$	$\begin{array}{c}\text { Nominal } \\ \text { operating } \\ \text { current, } \\ \mathrm{mA}(\pm 10 \%)\end{array}$	$\begin{array}{c}\text { Nominal } \\ \text { operating } \\ \text { power, } \\ \mathrm{mW}\end{array}$	$\begin{array}{c}\text { Max. allowable } \\ \text { voltage, } \\ \text { V DC }\end{array}$
$\left(\right.$ at $\left.20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)$								

DIMENSIONS(mm inch)
Interested in CAD data? You can obtain CAD data for all products with a CAD Data mark from your local Panasonic Electric Works representative.

REFERENCE DATA

1. Max. switching power (AC resistive load)

2-(1). Coil temperature rise (TV-5 type) Sample: LKQ1aF-12V-TV5, 6 pcs.
Point measured: coil inside
Contact current: 0A, 5A

2-(2). Coil temperature rise (TV-8 type) Sample: LKQ1aF-12V-TV8, 6 pcs.
Point measured: coil inside
Contact current: 0A, 8A

3-(1). Ambient temperature characteristics and coil applied voltage (TV-5 type)

3-(2). Ambient temperature characteristics and coil applied voltage (TV-8 type)

4-(1). Electrical life test (TV-5 type)
(5A 277V AC, resistive load)
Sample: LKQ1aF-12V-TV5, 6 pcs.
Operation frequency: 20 times/min.
(ON/OFF $=1.5 \mathrm{~s}: 1.5 \mathrm{~s}$)
Ambient temperature: $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$

Circuit:

Change of pick-up and drop-out voltage

Change of contact resistance

4-(2). Electrical life test (TV-8 type)
(8A 277V AC, resistive load)
Sample: LKQ1aF-12V-TV8, 6 pcs.
Operation frequency: 20 times $/ \mathrm{min}$.
(ON/OFF = $1.5 \mathrm{~s}: 1.5 \mathrm{~s}$)
Ambient temperature: $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$

Circuit:

Change of pick-up and drop-out voltage

Change of contact resistance

5-(1). Operation noise distribution
Measuring conditions
Sample: LKQ1aF-12V-TV5, 50pcs
Background noise: approx. 20dB
Coil voltage: 12 V DC
Equipment setting: "A" weighted
Single part (refer to figure below)
With diode

When release

5-(2). Operation noise distribution (refer to comparison)
Measuring conditions
Sample: LKS1aF-12V, 50pcs
Background noise: approx. 20dB
Coil voltage: 12 V DC
Equipment setting: " A " weighted
Single part (refer to figure below)
With diode

NOTES

1. Usage, transport and storage

 conditions1) Temperature:
-40 to $+70^{\circ} \mathrm{C}-40$ to $+158^{\circ} \mathrm{F}$
2) Humidity: 5 to $85 \% \mathrm{RH}$
(Avoid freezing and condensation.) The humidity range varies with the temperature. Use within the range indicated in the graph below.
3) Atmospheric pressure: 86 to 106 kPa Temperature and humidity range for usage, transport, and storage

4) Condensation

Condensation forms when there is a sudden change in temperature under high temperature and high humidity conditions. Condensation will cause deterioration of the relay insulation. 5) Freezing

Condensation or other moisture may freeze on the relay when the temperatures is lower than $0^{\circ} \mathrm{C} 32^{\circ} \mathrm{F}$. This causes problems such as sticking of movable parts or operational time lags.
6) Low temperature, low humidity environments
The plastic becomes brittle if the relay is exposed to a low temperature, low humidity environment for long periods of time.
2. Solder and cleaning conditions

1) Please obey the following conditions when soldering automatically.
(1) Preheating: Within $120^{\circ} \mathrm{C} 248^{\circ} \mathrm{F}$ (solder surface terminal portion) and within 120 seconds
(2) Soldering iron: $260^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$
$500^{\circ} \mathrm{F} \pm 41^{\circ} \mathrm{F}$ (solder temperature) and within 6 seconds (soldering time)
2) Since this is not a sealed type relay, do not clean it as is. Also, be careful not to allow flux to overflow above the PC board or enter the inside of the relay.

3. Certification

1) This relay is UL and C-UL certified.
2) This relay is certified by TÜV as an electromagnetic relay that complies with VDE0435.
The terminals of this relay can only be connected with solder.
3) This relay is certified by SEMKO.

4. Others

1) For precautions regarding use and explanations of technical terminology, please refer to "Relay Technical Data Book".
2) To ensure good operation, please keep the voltage on the coil ends to $\pm 5 \%$ (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$) of the rated coil operation voltage. Also, please be aware that the pick-up voltage and drop-out voltage may change depending on the temperature and conditions of use.
3) Keep the ripple rate of the nominal coil voltage below 5\%.
4) The cycle lifetime is defined under the standard test condition specified in the JIS C 5442 standard (temperature 15 to $35^{\circ} \mathrm{C} 59$ to $95^{\circ} \mathrm{F}$, humidity 25 to 75%). Check this with the real device as it is affected by coil driving circuit, load type,
activation frequency, activation phase,ambient conditions and other factors.
Also, be especially careful of loads such as those listed below.
(1) When used for AC load-operating and the operating phase is synchronous.
Rocking and fusing can easily occur due to contact shifting.
(2) Highly frequent load-operating When highly frequent opening and closing of the relay is performed with a load that causes arcs at the contacts, nitrogen and oxygen in the air is fused by the arc energy and HNO_{3} is formed. This can corrode metal materials.
Three countermeasures for these are listed here.

- Incorporate an arc-extinguishing circuit.
- Lower the operating frequency
- Lower the ambient humidity

5) Heat, smoke, and even a fire may occur if the relay is used in conditions outside of the allowable ranges for the coil ratings, contact ratings, operating cycle lifetime, and other specifications. Therefore, do not use the relay if these ratings are exceeded.
6) If the relay has been dropped, the appearance and characteristics should always be checked before use. 7) Incorrect wiring may cause unexpected events or the generation of heat or flames.
7) The amount of relay operation noise will vary depending on the substrate used for mounting. Please use after verifying with the relay mounted on the substrate.

For Cautions for Use, see Relay Technical Information (page 582).

250 mW SLIM POWER RELAY

LK-S RELAYS

FEATURES

1. High sensitivity: 250 mW The power-saving relay is highly sensitive at the nominal operating power of 250 mW (530 mW power consumption on LK relays).
2. High insulation resistance between contact and coil
1) Creepage distance and clearances between contact and coil: Min. 6 mm .236 inch (In compliance with IEC65)
2) Surge withstand voltage between contact and coil: $10,000 \mathrm{~V}$ or more

3. High noise immunity realized by the card separation structure between contact and coil

4. Popular terminal pitch in AV equipment field
5. Space-saving slim type

Base area: Width $11 \times$ Length 24 mm
Width $.433 \times$ Length .945 inch
6. Conforms to the various safety standards
UL/CSA, VDE, TÜV and SEMKO SEV approved

SPECIFICATIONS

Contact

Arrangement		1 Form A
Initial contact resistance, max. (By voltage drop 6 V DC 1 A)		Max. $100 \mathrm{~m} \Omega$
Contact material		AgSnO_{2} type
Rating (resistive load)	Nominal switching capacity	5 A 277 V AC
	Max. switching power	1,385 V A
	Max. switching voltage	277 V AC
	Max. switching current	5 A (AC)
	Min. switching capacity\#1	$100 \mathrm{~mA}, 5 \mathrm{~V}$ DC
Expected life (min. operations)	Mechanical (at 180 cpm)	10^{6}
	Electrical (at 20 cpm) (at rated load)	10^{5}

Coil

Nominal operating power	250 mW

\#1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.

Remarks

* Specifications will vary with foreign standards certification ratings.
*1 Measurement at same location as "Initial breakdown voltage" section.
*2 Detection current: 10 mA
${ }^{* 3}$ Wave is standard shock voltage of $\pm 1.2 \times 50 \mu$ s according to JEC-212-1981
${ }^{*} 4$ Excluding contact bounce time.
${ }^{* 5}$ Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$
${ }^{* 6}$ Half-wave pulse of sine wave: 6 ms
${ }^{* 7}$ Detection time: $10 \mu \mathrm{~s}$
${ }^{* 8}$ Refer to "6. Usage, Storage and Transport Conditions" in AMBIENT ENVIRONMENT (page 599).

Characteristics

Max. operating speed				20 cpm (at rated load)
Initial insulation resistance*1				Min. 1,000 M (at 500 V DC)
\|nitial *2 breakdown voltage	Between open contacts			1,000 Vrms for 1 min .
	Between contact and coil			4,000 Vrms for 1 min.
Initial surge voltage between contact and coil* ${ }^{\star 3}$				Min. 10,000 V
Operate time ${ }^{* 4}$ (at nominal voltage)				Max. 15 ms (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
Release time (without diode)*4 (at nominal voltage)				Max. 5 ms (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
Temperature rise (at $70^{\circ} \mathrm{C}$)				Max. $35^{\circ} \mathrm{C}$ with nominal coil voltage and at 5 A contact carrying current (resistance method)
Shock resistance		Functional*5		Min. $200 \mathrm{~m} / \mathrm{s}^{2}$ \{approx. 20 G$\}$
		Destructive*6		Min. $1,000 \mathrm{~m} / \mathrm{s}^{2}$ \{approx. 100 G$\}$
Vibration resistance		Functional*7		10 to 55 Hz at double amplitude of 1.5 mm
		Destructive		10 to 55 Hz at double amplitude of 1.5 mm
Conditions for operation, transport and storage*8 (Not freezing and condensing at low temperature)			Ambient temp.	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{F} \text { to }+158^{\circ} \mathrm{F} \end{aligned}$
			Humidity	5 to 85\% R.H.
			Air pressure	86 to 106 kPa
Unit weight				Approx. $12 \mathrm{~g} \mathrm{}$.

TYPICAL APPLICATIONS ORDERING INFORMATION

- Audio visual equipment
- Office equipment
- Home appliances

Ex. LKS 1 la		F	12 V	
Contact arrangement	Protective construction	Coil voltage(DC)		
1a: 1 Form A	F: Flux-resistant type	$5,6,9,12,18,24 \mathrm{~V}$		

UL/CSA, TÜV, SEMKO, TV-5 approved type is standard.
Notes 1. Standard packing Carton: 100 pcs. Case: 500 pcs.
2. $6 \mathrm{~V}, 18 \mathrm{~V}$ DC types are also available. Please consult us for details.

TYPES AND COIL DATA (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)

Part No.	Nominal voltage, V DC	Pick-up voltage, V DC (max.) (Initial)	Drop-out voltage, V DC (min.) (Initial)	Coil resistance, $\Omega(\pm 10 \%)$	Nominal operating current, $m A(\pm 10 \%)$	Nominal operating power, mW	Maximum allowable voltage, V DC (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
LKS1aF-5V	5	3.5	0.5	100	50	250	6.5
LKS1aF-6V	6	4.2	0.6	144	41.7	250	7.8
LKS1aF-9V	9	6.3	0.9	324	27.8	250	11.7
LKS1aF-12V	12	8.4	1.2	576	20.8	250	15.6
LKS1aF-18V	18	12.6	1.8	1,296	13.9	250	23.4
LKS1aF-24V	24	16.8	2.4	2,304	10.4	250	31.2

DIMENSIONS(mm inch)
Interested in CAD data? You can obtain CAD data for all products with a CAD Data mark from your local Panasonic Electric Works representative.

REFERENCE DATA

1. Max. switching power (AC resistive load)

2. Coil temperature rise

Sample: LKS1aF-12V, 6 pcs.
Point measured: coil inside
Contact current: 0 A, 5A

3. Ambient temperature characteristics and coil applied voltage
Contact current: 5 A

4. Life curve

Operation frequency: 20 times/min.
(ON/OFF = $1.5 \mathrm{~s}: 1.5 \mathrm{~s}$)
Ambient temperature: Room temperature

5-(1). Electrical life test
(5 A 277 V AC, resistive load)
Sample: LKS1aF-12V, 6 pcs.
Operation frequency: 20 times $/ \mathrm{min}$.
(ON/OFF = $1.5 \mathrm{~s}: 1.5 \mathrm{~s}$)
Ambient temperature: $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$
Circuit:

Change of pick-up and drop-out voltage

Change of contact resistance

5-(2). Electrical life test
(UL lamp load test TV-5)
Tested sample: LKS1aF-12V, 6 pcs

- Overload test

Load: 7.5 A 120 V AC (60 Hz),
Inrush: 111 A
Operation frequency: 10 times/min (ON: OFF = $1 \mathrm{~s}: 5 \mathrm{~s}$)
No. of operations: 50 ope.
Endurance test
Load: 5A 120 V AC (60 Hz),
Inrush: 78 A
Operation frequency: 10 times/min
(ON: OFF = $1 \mathrm{~s}: 5 \mathrm{~s}$)
No. of operations: 25,000 ope

Change of pick-up and drop-out voltage

Change of contact resistance

For Cautions for Use, see Relay Technical Information (page 582).

SLIM POWER RELAY WITH HIGH INRUSH
 CURRENT CAPABILITY TV-8 CERTIFIED

FEATURES

1. High inrush current capability
1) Operating load capability: inrush 118 A , steady 8 A
2) UL/C-UL TV-8 approved
2. High insulation resistance
1) Creepage distance and clearances between contact and coil: Min. 6 mm . 236
inch (In compliance with IEC65)
2) Surge withstand voltage between contact and coil: $10,000 \mathrm{~V}$ or more
3. High noise immunity realized by the card separation structure between contact and coil
4. Conforms to the various safety standards
UL, C-UL, TÜV, and SEMKO approved

SPECIFICATIONS

Contact

Arrangement		1 Form A			
Initial contact resistance (By voltage drop 6 V DC 1 A)	Max. $100 \mathrm{~m} \Omega$				
Contact material				Nominal switching capacity	5 A 277 V AC
Rating (resistive load)	Max. switching power	$1,385 \mathrm{~V} \mathrm{~A}$			
	Max. switching voltage	277 V AC			
	Max. switching current	$8 \mathrm{~A} \mathrm{(120V} \mathrm{AC)}$			
	Min. switching capacity\#1 (Reference value)	$100 \mathrm{~mA}, 5 \mathrm{~V} \mathrm{DC}$			
Expected life (min. operations)	Mechanical (at 180 cpm)	Electrical (at 20 cpm) (at rated load)			

Coil

Nominal operating power $\quad 250 \mathrm{~mW}$
\#1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.

Remarks

${ }^{*}$. Measurement at same location as "Initial breakdown voltage" section.
*2 Detection current: 10 mA
${ }^{*}{ }_{3}$ Wave is standard shock voltage of $\pm 1.2 \times 50 \mu$ s according to JEC-212-1981
${ }^{*} 4$ Excluding contact bounce time.
${ }^{*} 5$ Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$
${ }^{*} 6$ Half-wave pulse of sine wave: 6 ms
${ }^{* 7}$ Detection time: $10 \mu \mathrm{~s}$
${ }^{* 8}$ The upper operation ambient temperature limit is the maximum temperature that can satisfy the coil temperature rise value. Refer to 1 . Usage, transport and storage conditions in NOTES on page 370.

Characteristics

Max. operating speed			20 cpm (at rated load)
Initial insulation resistance*1			Min. 1,000 M (at 500 V DC)
Initial *2 breakdown voltage	Between open contacts		1,000 Vrms for 1 min .
	Between contact and coil		4,000 Vrms for 1 min .
Initial surge voltage between contact and coil*3			10,000 V
Operate time ${ }^{* 4}$ (at nominal voltage)			Max. 15 ms (at $20^{\circ} \mathrm{C} 68{ }^{\circ} \mathrm{F}$)
Release time (without diode)*4 (at nominal voltage)			Max. 5 ms (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
Temperature rise (at $70^{\circ} \mathrm{C}$)			Max. $35^{\circ} \mathrm{C}$ with nominal coil voltage and at 5 A contact carrying current (resistance method)
Shock resistance	Functional*5		$200 \mathrm{~m} / \mathrm{s}^{2}\{$ approx. 20 G$\}$
	Destructive*6		$1,000 \mathrm{~m} / \mathrm{s}^{2}$ \{approx. 100 G$\}$
Vibration resistance	Functional*7		10 to 55 Hz at double amplitude of 1.5 mm
	Destructive		$10 \text { to } 55 \mathrm{~Hz}$ at double amplitude of 1.5 mm
Conditions for operation, transport and storage*8 (Not freezing and condensing at low temperature)		Ambient temp.	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{F} \text { to }+158^{\circ} \mathrm{F} \end{aligned}$
		Humidity	5 to 85\% R.H.
		Air pressure	86 to 106 kPa
Unit weight			Approx. $12 \mathrm{~g} \mathrm{}$.

TYPICAL

APPLICATIONS

- Audio visual equipment
- Flat TVs and audio equipment, etc.
- Office equipment
- Home appliances

ORDERING INFORMATION

UL/C-UL, TÜV, SEMKO, TV-8 approved type is standard.
Notes: 1. Standard packing Carton: 100 pcs. Case: 500 pcs.
2. $3 \mathrm{~V}, 6 \mathrm{~V}$, and 18 V DC types are also available. Please consult us for details.

TYPES AND COIL DATA (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)

Part No.	Nominal voltage, V DC	Pick-up voltage, V DC (max.) (Initial)	Drop-out voltage, V DC (min.) (Initial)	Coil resistance, $\Omega(\pm 10 \%)$	Nominal operating current, mA ($\pm 10 \%$)	Nominal operating power, mW	Maximum allowable voltage, V DC (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
LKT1aF-5V	5	(Initial) 3.5	(Initial) 0.5	100	50	250	6.5
LKT1aF-9V	9	(Initial) 6.3	(Initial) 0.9	324	27.8	250	11.7
LKT1aF-12V	12	(Initial) 8.4	(Initial) 1.2	576	20.8	250	15.6
LKT1aF-24V	24	(Initial) 16.8	(Initial) 2.4	2,304	10.4	250	31.2

DIMENSIONS (mm inch) Interested in CAD data? You can obtain CAD data for all products with a CAD Data mark from your local Panasonic Electric Works representative.

PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$

Schematic (Bottom view)

Dimension:	$\underline{\text { General tolerance }}$
Max. 1 mm .039 inch:	$\pm 0.1 \pm .004$
1 to 3 mm .039 to .118 inch: $\pm 0.2 \pm .008$	
Min. 3 mm .118 inch:	$\pm 0.3 \pm .012$

REFERENCE DATA

1. Max. switching power (AC resistive load)

2. Coil temperature rise

Sample: LKT1aF-12V, 6 pcs. Point measured: coil inside Contact current: 0 A, 5A

3. Ambient temperature characteristics and coil applied voltage

4-(1). Electrical life test
(5 A 277 V AC, resistive load)
Sample: LKT1aF-12V, 6 pcs.
Operation frequency: 20 times/min.
(ON/OFF = 1.5s: 1.5 s)
Ambient temperature: $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$
Circuit:

Change of pick-up and drop-out voltage

Change of contact resistance

4-(2). Electrical life test
(UL508 TV-8 rating test)
Sample: LKT1aF-12V, 6 pcs.

- Overload test

Load: 12 A 120 V AC (60 Hz),
Inductive load $(\cos \phi=0.75)$
Operation frequency: 6 times/min
(ON : OFF = $1 \mathrm{~s}: 9 \mathrm{~s}$)
No. of operations: 50 ope.

- Endurance test

Load: 8A 120 V AC (960 W lamp load),
(Inrush: 118 A)
Operation frequency: 1 times $/ \mathrm{min}$
(ON: OFF = $1 \mathrm{~s}: 59 \mathrm{~s}$)
No. of operations: 25,000 ope.

Change of pick-up and drop-out voltage

Change of contact resistance

NOTES

1. Usage, transport and storage conditions
1) Temperature:
-40 to $+70^{\circ} \mathrm{C}-40$ to $+158^{\circ} \mathrm{F}$
2) Humidity: 5 to $85 \% \mathrm{RH}$
(Avoid freezing and condensation.)
The humidity range varies with the temperature. Use within the range indicated in the graph below.
3) Atmospheric pressure: 86 to 106 kPa Temperature and humidity range for usage, transport, and storage

4) Condensation

Condensation forms when there is a sudden change in temperature under high temperature and high humidity conditions. Condensation will cause deterioration of the relay insulation.
5) Freezing

Condensation or other moisture may freeze on the relay when the temperatures is lower than $0^{\circ} \mathrm{C} 32^{\circ} \mathrm{F}$. This causes problems such as sticking of movable parts or operational time lags.
6) Low temperature, low humidity environments
The plastic becomes brittle if the relay is exposed to a low temperature, low humidity environment for long periods of time.

2. Solder and cleaning conditions

1) Please obey the following conditions when soldering automatically.
(1) Preheating: Within $120^{\circ} \mathrm{C} 248^{\circ} \mathrm{F}$ (solder surface terminal portion) and within 120 seconds
(2) Soldering iron: $260^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$
$500^{\circ} \mathrm{F} \pm 41^{\circ} \mathrm{F}$ (solder temperature) and within 6 seconds (soldering time)
2) Since this is not a sealed type relay, do not clean it as is. Also, be careful not to allow flux to overflow above the PC board or enter the inside of the relay.

3. Certification

1) This relay is UL and C-UL certified (File No. E43149).
UL, C-UL rating: TV-8
2) This relay is certified by TUV as an electromagnetic relay that complies with VDE0435 (File No. B040413461035).
(1) TUV rating: $8 \mathrm{~A}, 250 \mathrm{~V}$ to $\operatorname{COS} \phi=1.0$
(2) The terminals of this relay can only be connected with solder.
(3) This relay is certified by SEMKO (File No. 400968).
SEMKO rating: 3/100A 250 V AC, 5/40A 250 V AC
4. Others
1) For precautions regarding use and explanations of technical terminology, please refer to "Relay Technical Information".
2) To ensure good operation, please keep the voltage on the coil ends to $\pm 5 \%$ (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$) of the rated coil operation voltage. Also, please be aware that the pick-up voltage and drop-out voltage may change depending on the temperature and conditions of use.
3) Keep the ripple rate of the nominal coil voltage below 5%.
4) The cycle lifetime is defined under the standard test condition specified in the JIS* C 5442 standard (temperature 15 to $35^{\circ} \mathrm{C} 59$ to $95^{\circ} \mathrm{F}$, humidity 25 to 75%). Check this with the real device as it is affected by coil driving circuit, load type, activation frequency, activation phase,ambient conditions and other factors.
Also, be especially careful of loads such as those listed below.
(1) When used for AC load-operating and the operating phase is synchronous.
Rocking and fusing can easily occur due to contact shifting.
(2) High-frequency load-operating

When high-frequency opening and closing of the relay is performed with a load that causes arcs at the contacts, nitrogen and oxygen in the air is fused by the arc energy and HNO_{3} is formed. This can corrode metal materials.
Three countermeasures for these are listed here.

- Incorporate an arc-extinguishing circuit.
- Lower the operating frequency
- Lower the ambient humidity

5) Heat, smoke, and even a fire may occur if the relay is used in conditions outside of the allowable ranges for the coil ratings, contact ratings, operating cycle lifetime, and other specifications. Therefore, do not use the relay if these ratings are exceeded.
6) If the relay has been dropped, the appearance and characteristics should always be checked before use. 7) Incorrect wiring may cause unexpected events or the generation of heat or flames.

For Cautions for Use, see Relay Technical Information (page 582).

Ius

Panasonic ideas for life

10A COMPACT CUBE TYPE

 POWER RELAY

FEATURES

1. Universal terminal footprint Same terminal pitch as our JS relay

2. Space-saving and Compact cube type
$19.5(\mathrm{~L}) \times 15.5(\mathrm{~W}) \times 15.2(\mathrm{H}) \mathrm{mm}$
$.768(\mathrm{~L}) \times .610(\mathrm{~W}) \times .598(\mathrm{H})$ inch
Comparison with our JS relay:

- PCB mount area: 86\%

3. Excellent heat resistance and tracking performance
$-85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$ ambient operating temperature (UL Class B)

- Compatibility available for UL Class F
- Uses PTI250 material
- EN60335-1 GWT compliant (Tested by VDE)

4. Supports all safety standards

- UL, C-UL and VDE certified

TYPICAL APPLICATIONS

1. Household appliances

Refrigerator, Heater, Washing machine, Dishwasher, Rice cooker, etc.
2. Office automation equipment, Home appliances, etc.
3. Game machines, etc.

SPECIFICATIONS

Contact

Arrangement		1 Form A, 1 Form C
Initial contact resistance, max. (By voltage drop 6 V DC 1 A)		$100 \mathrm{~m} \Omega$
Contact material		$\mathrm{AgNi} / \mathrm{AgSnO} 2$ type
Rating	Nominal switching capacity (resistive load)	$\begin{aligned} & 10 \text { A } 277 \text { V AC (N.O.) } \\ & 6 \text { A } 277 \text { V AC (N.C.) } \end{aligned}$
	Max. switching power (resistive load)	2,770 VA
	Max. switching voltage	277 V AC
	Max. switching current	10 A (AC)
	Min. switching capacity\#1 (Reference value)	$100 \mathrm{~mA}, 5 \mathrm{~V}$ DC
Expected life (min. ope.)	Mechanical (at 180 cpm)	10^{7}
	Electrical at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$ (resistive load)	$\begin{gathered} 10 \text { A } 250 \text { V AC: } 5 \times 10^{4} \text { (N.O.) } \\ 6 \text { A } 250 \text { V AC: } 10^{5} \text { (N.O.) } \\ 6 \text { A } 250 \text { V AC: } 5 \times 10^{4} \text { (N.C.) } \end{gathered}$

Coil
Nominal operating power 360 mW
\#1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.

Remarks

*1 Detection current: 10 mA
*2 Excluding contact bounce time
${ }^{*} 3$ Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$
${ }^{*}$ Half-wave pulse of sine wave: 6 ms
${ }^{* 5}$ Detection time: $10 \mu \mathrm{~s}$
${ }^{*} 6$ The upper operation ambient temperature limit is the maximum temperature that can satisfy the coil temperature rise value.
${ }^{* 7}$ Pick-up and drop-out voltages increase approximately 0.4% for each $1^{\circ} \mathrm{C} 33.8^{\circ} \mathrm{F}$ where the standard temperature is $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$. Therefore, when using the relay where the ambient temperature is high, please take into consideration the rise in pick-up voltage due to ambient temperature and determine a coil nominal voltage that is within the maximum allowable voltage range.

Characteristics

Max. operating speed	
Initial insulation resistance	

LS (ALS)

ORDERING INFORMATION

Note: UL, C-UL, VDE approved type is standard.

TYPES

Contact arrangement	Nominal voltage, V DC	Part No.	
		Sealed type	Flux-resistant type
1 Form A	5	ALS4○05TW	ALS3O05TW
	6	ALS4○06TW	ALS3O06TW
	9	ALS4○09TW	ALS3O09TW
	12	ALS4○12TW	ALS3O12TW
	18	ALS4○18TW	ALS3O18TW
	24	ALS4○24TW	ALS3O24TW
	48	ALS4○48TW	ALS3O48TW
1 Form C	5	ALS2○05TW	ALS1O05TW
	6	ALS2○06TW	ALS1O06TW
	9	ALS2○09TW	ALS1O09TW
	12	ALS2○12TW	ALS1O12TW
	18	ALS2○18TW	ALS1O18TW
	24	ALS2O24TW	ALS1O24TW
	48	ALS2○48TW	ALS1O48TW

Packing quantity: inner 100 pieces, outer 500 pieces
Notes: 1. O: Input the following letter. Class B insulation: B, Class F insulation: F
2. Carton packing symbol "W" is not marked on the relay.
3. Please consult with our sales office on a tube packing type.

COIL DATA

Nominal voltage, V DC	Pick-up voltage, V DC (max.) $\left(\right.$ at $\left.20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)$	Drop-out voltage, V DC (min.) $\left(\right.$ at $\left.20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)$	Nominal operating current, $\mathrm{mA}(\pm 10 \%)$ $\left(\right.$ at $\left.20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)$	Coil resistance, $\Omega(\pm 10 \%)$ $\left(\right.$ at $\left.20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)$	Nominal operating power, mW $\left(\right.$ at $\left.20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)$	Maximum allowable voltage $\left(\right.$ at $\left.85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}\right)$
5	3.75	0.5	72	69.4	360	
6	4.5	0.6	60	100	360	
9	6.75	0.9	40	225	360	
12	9	1.2	30	400	360	
18	13.5	1.8	20	900	360	
24	18	2.4	15	1,600	360	
48	36	4.8	7.5	6,400	360	

[^34]
CAD Data

PC board pattern (Bottom view)
1 Form A

1 Form C

Tolerance: $\pm 0.1 \pm .00$

Schematic (Bottom view)
1 Form A

REFERENCE DATA

1. Maximum switching capacity

2. Ambient temperature characteristics Sample: 6 pcs., ALS2B12TW

3. Operate/release time

Sample: 25 pcs., ALS2B12TW

* Rate of change: for nominal voltage

1 Form C

Panasonic ideas for life

16A LOW PROFILE

 POWER RELAY
LZ RELAYS (ALZ)

FEATURES

1. Low profile type with height of 15.7 mm

Slim, low profile type with dimensions of $28.8(\mathrm{~L}) \times 12.5(\mathrm{~W}) \times 15.7(\mathrm{H}) \mathrm{mm}$ $1.134(\mathrm{~L}) \times .492(\mathrm{~W}) \times .618(\mathrm{H})$ inch.

2. High insulation resistance

Superior insulation characteristics have been achieved by maintaining an insulation distance between coil and contacts of at least 10 mm for both creepage distance and clearances. Furthermore, anti-surge voltage is 10 kV and higher. (Supports European reinforced insulation requirement.)

3. Superior heat resistance

Can be used in ambient temperatures up to $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$ for the class B and $105^{\circ} \mathrm{C}$ $221^{\circ} \mathrm{F}$ for the class F .

4. Low operating power

Power saved with a nominal operating power of only 400 mW .

5. Conforms to the various safety standards:

UL, C-UL, VDE approved.
6. Superior heat resistance and tracking resistance
EN60335-1 GWT compliant (Tested by VDE) type available.

TYPICAL APPLICATIONS

1) Household electrical appliances

TV, CATV, Audio equipment, Microwave ovens, and Heaters, etc.
2) Office equipment

Copy machines, Packaged air conditioners, and Vending machines 3) Industrial equipment Machine tools, Robots, and Temperature controllers

ORDERING INFORMATION

Note: UL, C-UL, VDE approved type is standard.

TYPES

1. Flux-resistant type

Contact arrangement	Coil voltage	Flux-resistant type		Packing style			
		Class B insulation	Class F insulation	Tube packing		Carton packing	
		Part No.	Part No.	Inner carton	Case	Inner carton	Case
1 Form C	5 V DC	ALZ11B05W	ALZ11F05W	20 pcs.	800 pcs.	100 pcs .	500 pcs .
	9 V DC	ALZ11B09W	ALZ11F09W				
	12 V DC	ALZ11B12W	ALZ11F12W				
	18 V DC	ALZ11B18W	ALZ11F18W				
	24 V DC	ALZ11B24W	ALZ11F24W				
	48 V DC	ALZ11B48W	ALZ11F48W				
1 Form A(New PC board terminal)	5 V DC	ALZ51B05W	ALZ51F05W				
	9 V DC	ALZ51B09W	ALZ51F09W				
	12 V DC	ALZ51B12W	ALZ51F12W				
	18 V DC	ALZ51B18W	ALZ51F18W				
	24 V DC	ALZ51B24W	ALZ51F24W				
	48 V DC	ALZ51B48W	ALZ51F48W				

2. Sealed type

Contact arrangement	Coil voltage	Sealed type		Packing style			
		Class B insulation	Class F insulation	Tube packing		Carton packing	
		Part No.	Part No.	Inner carton	Case	Inner carton	Case
1 Form C	5 V DC	ALZ12B05W	ALZ12F05W	20 pcs.	$800 \mathrm{pcs}$.	100 pcs .	500 pcs.
	9 V DC	ALZ12B09W	ALZ12F09W				
	12 V DC	ALZ12B12W	ALZ12F12W				
	18 V DC	ALZ12B18W	ALZ12F18W				
	24 V DC	ALZ12B24W	ALZ12F24W				
	48 V DC	ALZ12B48W	ALZ12F48W				
1 Form A (New PC board terminal)	5 V DC	ALZ52B05W	ALZ52F05W				
	9 V DC	ALZ52B09W	ALZ52F09W				
	12 V DC	ALZ52B12W	ALZ52F12W				
	18 V DC	ALZ52B18W	ALZ52F18W				
	24 V DC	ALZ52B24W	ALZ52F24W				
	48 V DC	ALZ52B48W	ALZ52F48W				

Notes: 1. If you desire tube packaging, please order without adding the packaging symbol "W" to the end of the part number.
2. Carton packing symbol "W" is not marked on the relay.
3. EN60335-1 GWT compliant types available. When ordering, please add suffix " T ".

Ex. ALZ51B12I, ALZ51F12TW

RATING

Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$	Coil resistance [$\pm 10 \%$] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating power (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
5 V DC	Max. 70\%V nominal voltage (Initial)	Min. 10\%V nominal voltage (Initial)	80 mA	63Ω	400 mW	$130 \% \mathrm{~V}$ of nominal voltage
9 V DC			44.4 mA	203Ω		
12 V DC			33.3 mA	360Ω		
18 V DC			22.2 mA	810Ω		
24 V DC			16.7 mA	1,440 ${ }^{\text {a }}$		
48 V DC			8.3 mA	$5,760 \Omega$		

2. Specifications

Characteristics	Item		Specifications
Contact	Arrangement		1 Form C, 1 Form A
	Contact resistance (Initial)		Max. $100 \mathrm{~m} \Omega$ (By voltage drop 6V DC 1A)
	Contact material		AgSnO_{2} type
Rating	Nominal switching capacity (resistive load)		16A 250V AC
	Max. switching power (resistive load)		4,000V A
	Max. switching voltage		440 V AC
	Max. switching current		16A
	Nominal operating power		400 mW
	Min. switching capacity ${ }^{-1}$		$100 \mathrm{~mA} \mathrm{5V} \mathrm{DC}$
Electrical characteristics	Insulation resistance (Initial)		Min. 1,000M Ω (at 500V DC)
	Breakdown voltage (Initial)	Between open contacts	$1,000 \mathrm{Vrms}$ for 1 min . (Detection current: 10 mA)
		Between contact and coil	$5,000 \mathrm{Vrms}$ for 1 min . (Detection current: 10 mA)
	Temperature rise (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. $55^{\circ} \mathrm{C} 131^{\circ} \mathrm{F}$ [with nominal coil voltage and at 16 A contact carrying current (resistance method) at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$]
	Surge breakdown voltage ${ }^{2}$ (Between contacts and coil)		10,000 V (Initial)
	Operate time (at nominal voltage) (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 15ms (excluding contact bounce time)
	Release time (at nominal voltage) (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 5ms (excluding contact bounce time, without diode)
Mechanical characteristics	Shock resistance	Functional	Min. $100 \mathrm{~m} / \mathrm{s}^{2}$ \{10G\} (Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$.)
		Destructive	Min. $1,000 \mathrm{~m} / \mathrm{s}^{2}\{100 \mathrm{G}\}$ (Half-wave pulse of sine wave: 6 ms .)
	Vibration resistance	Functional	10 to 55 Hz at double amplitude of 1.5 mm (Detection time: 10 $\mu \mathrm{s}$.) (Only the N.C. side of 1 Form C is 0.8 mm)
		Destructive	10 to 55 Hz at double amplitude of 1.5 mm
Expected life	Mechanical (at 180 cpm)		Min. 10^{7}
	Electrical (at 20 cpm)		N.O.: Min. 10^{5}, N.C.: Min. 5×10^{4}
Conditions	Conditions for operation, transport and storage ${ }^{\text {3, }}$, 4		Ambient temperature: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+185^{\circ} \mathrm{F}$ (Class B) Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature)
	Max. operating speed		20 cpm (at nominal switching capacity)
Unit weight			Approx. 12 g .42 oz

*1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load. *2Wave is standard shock voltage of $\pm 1.2 \times 50 \mu \mathrm{~s}$ according to JEC-212-1981
*3Class F type is ambient temperature $105^{\circ} \mathrm{C}+221^{\circ} \mathrm{F}$.
*4The upper limit of the ambient temperature is the maximum temperature that can satisfy the coil temperature rise value. Refer to " 6 . Usage, Storage and Transport Conditions" in AMBIENT ENVIRONMENT (page 599).
*Please note that some of the specifications listed above may not comply with overseas standards.

REFERENCE DATA

1. Max. switching power (AC resistive load)

2. Max. switching power (DC resistive load)

3. Coil temperature rise

Sample: ALZ11F12, 5pcs.
Measured portion: coil inside
Contact current: 0 A, 16 A

DIMENSIONS (mm inch) Interested in CAD data? You can obtain CAD data for all products with a from your local Panasonic Electric Works representative.

1. 1 Form A type (New PC board terminal)

CAD Data

Dimension:
Less than 1 mm .039inch:
Min. 1 mm .039inch less than 3 mm . 118 inch:
Min. 3 mm. 118 inch:

Tolerance
$\pm 0.1 \pm .004$
$\pm 0.2 \pm .008$
$\pm 0.3 \pm .012$

PC board pattern

Tolerance: $\pm 0.1 \pm .004$
Schematic (Bottom view)

2. 1 Form C type

CAD Data

Dimension:
Less than 1 mm .039inch:
Min. 1 mm.039inch less than 3 mm . 118inch: Min. 3 mm. 118inch:

Tolerance
$\pm 0.1 \pm .004$
$\pm 0.2 \pm .008$
$\pm 0.3 \pm .012$

For Cautions for Use, see Relay Technical Information (page 582).

Panasonic ideas for life

FEATURES

1. Slim size (width 5 mm .197 inch, height 12.5 mm .492 inch) permits higher density mounting Despite the slim 5 mm width, the 20 mm length is still compact and the 12.5 mm profile is low. Even when a socket is used, the height is still only 18 mm . Suitable for high-density mounting, these relays enable device size smaller.
2. Nominal operating power: High sensitivity of 120 mW
Enables smaller power supplies, facilitates energy saving applications, and contributes to device size smaller.

THE SLIM POWER RELAY

3. Control from low level loads to 5 A

Use of gold-clad twin contacts enables control of low level loads down to 100 mV $100 \mu \mathrm{~A}$ and up to 5 A 250 V AC and 30 V DC.
4. Reinforced according to IEC1131-2 (TÜV)
PAD type: 3.1 mm clearance 3.6 mm creepage distance
5. High surge breakdown voltage (4000 V) and high breakdown voltage (2000 V)
Between contacts and coil of $2,000 \mathrm{~V}$ and surge resistance of $4,000 \mathrm{~V}$ work to prevent controller malfunctions caused by noise and surges.
6. Outstanding vibration and shock resistance.
Functional shock resistance: $147 \mathrm{~m} / \mathrm{s}^{2}$ Functional vibration resistance:
10 to 55 Hz (at double amplitude of 2.5 mm .098 inch)

Keeps equipment from miss-operation due to vibration and shock.
Can be used as mounted on control panel doors.

7. Sealed construction allows

 automatic washing.8. SIL (single in line) terminal layout
9. Complies with safety standards

Complies with Japanese Electrical
Appliance and Material Safety Law, and certified by UL, CSA, and TÜV.
10. Sockets are also available

TYPICAL APPLICATIONS

1. Industrial equipment, office equipment
2. Measuring devices and test equipment
3. Interface relays for programmable controllers
4. Output relays in small devices such as timers, counters, sensors, and temperature controllers.

ORDERING INFORMATION

	PA(D)1a Contact arrangement 1a: 1 Form A (Bifurcated) Coil voltage (DC) $5,6,9,12,18,24 \mathrm{~V}$

Notes: 1) The PAD type offers sloghtly higher clearance (3.1 mm) and creepage distance (3.6 mm). 2) UL/CSA, TÜV approved type is standard.

TYPES

Contact arrangement	Nominal coil voltage	Part No.
1 Form A	5 V DC	PA(D)1a-5V
	6V DC	PA1a-6V
	9 V DC	PA1a-9V
	12 V DC	PA(D)1a-12V
	18 V DC	PA(D)1a-18V
	24V DC	PA(D)1a-24V

Standard packing: Carton: 25 pcs.; Case: 1,000 pcs.

RATING

1. Coil data

Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%] \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) }} \end{gathered}$	Coil resistance [$\pm 10 \%$] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating power	Max. allowable voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
5V DC	$70 \% \mathrm{~V}$ or less of nominal voltage *1 (Initial)	$5 \% \mathrm{~V}$ or more of nominal voltage ${ }^{* 1}$ (Initial)	24 mA	208Ω	120 mW	$120 \% \mathrm{~V}$ of nominal voltage
6 V DC			20 mA	300Ω		
9V DC			13.3 mA	675Ω		
12 V DC			10 mA	1,200		
18 V DC			6.7 mA	2,700		
24V DC			7.5 mA	3,200 Ω	$180 \mathrm{~mW}^{* 2}$	

[^35]*224V DC, 120 mW type are also available, please consult us.

2. Specifications

REFERENCE DATA

1. Max. switching capacity

2. Life curve

3.-(1) Coil temperature rise (120 mW) Tested sample: PA1a-12V Measured portion: Inside the coil Ambient temperature: $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$

3.-(2) Coil temperature rise (180 mW)

Tested sample: PA1a-24V
Measured portion: Inside the coil
Ambient temperature: $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$

5. Ambient temperature characteristics Tested sample: PA1a-12V, 6 pcs.

Tested sample: PA1a-12V, 20 pcs

6. Malfunctional shock

Tested sample: PA1a-12V, 6 pcs.

DIMENSIONS $(m m$ inch) Interested in CAD data? You can obtain CAD data for all products with a CAD Data mark from your local Panasonic Electric Works representative.

PA Socket

 CAD Data

PA1a-PS

1. Standard type (PA1a-PS)

External dimensions

General tolerance: $\pm 0.3 \pm .012$
2. Self clinching type (PA1a-PS-H)

External dimensions

General tolerance: $\pm 0.3 \pm .012$

PC board pattern (Bottom view) PA1a-PS

Tolerance: $\pm 0.1 \pm .004$

PC board pattern (Bottom view) PA1a-PS-H

Tolerance: $\pm 0.1 \pm .00$

NOTES

1. If it includes ripple, the ripple factor should be less than 5%.
2. Specification values for pick-up and drop-out voltages are for the relay mounting with its terminals below.

3. When mounting the relays within 1 mm .039 inch, please notice the condition below.
1) Mount the relays in the same direction.

2) Coil terminals (Terminal No. 1 \& 2) polarity should be arranged in the same direction.

3) Allowable contact current is 2 A .
4) About the electrical life for close mounting, please refer to data below.

For Cautions for Use, see Relay Technical Information (page 582).

Panasonic ideas for life

Compliant with European
standards (reinforced insulation) 1 Form A/1 Form C 6A Slim power relays

FEATURES

1. High density mounting with 5 mm .197 inch width
Space saved with 5 mm .197 inch slim type with 28 mm 1.102 inch length. Allows high density mounting and use in compact devices.
2. Satisfies reinforced insulation standard (EN/IEC 61810-1).
3. High switching capacity

Supports 6A 250 V AC nominal switching capacity (resistive load) and AC15 and DC13 (inductive load).
4. 1 Form A and 1 Form C contact arrangements with options for a variety of applications.
5. 4,000 V high breakdown voltage and $6,000 \mathrm{~V}$ high surge breakdown voltage. Controller protection against surges and noise with a breakdown voltage of 4,000 Vrms for 1 min . between contacts and coil, and $6,000 \mathrm{~V}$ surge breakdown voltage between contacts and coil. 6. Resistance to heat and fire; EN60335-1, clause 30 (GWT) approved.
7. Sealed construction allows automatic washing.
8. Complies with all safety standards. UL, C-UL, VDE certified.

TYPICAL APPLICATIONS

1. Interface relays for programmable controllers
2. Output relays for measuring equipment, timers, counters and temperature controllers
3. Industrial equipment, office equipment
4. Household appliances for Europe

ORDERING INFORMATION

[^36]
TYPES

Contact arrangement	Nominal coil voltage	Part No.	Contact arrangement	Nominal coil voltage	Part No.
1 Form A (AgNi type)	4.5 V DC	APF1024H	1 Form C (AgNi type)	4.5 V DC	APF3024H
	5 V DC	APF10205		5V DC	APF30205
	6V DC	APF10206		6V DC	APF30206
	9V DC	APF10209		9V DC	APF30209
	12 V DC	APF10212		12 V DC	APF30212
	18 V DC	APF10218		18 V DC	APF30218
	24V DC	APF10224		24V DC	APF30224
	48 V DC	APF10248		48 V DC	APF30248
	60 V DC	APF10260		60 V DC	APF30260
1 Form A (AgNi type/Au-plated)	4.5 V DC	APF1034H	1 Form C (AgNi type/Au-plated)	4.5 V DC	APF3034H
	5V DC	APF10305		5V DC	APF30305
	6 V DC	APF10306		6 V DC	APF30306
	9V DC	APF10309		9V DC	APF30309
	12 V DC	APF10312		12 V DC	APF30312
	18 V DC	APF10318		18 V DC	APF30318
	24V DC	APF10324		24 V DC	APF30324
	48 V DC	APF10348		48 V DC	APF30348
	60 V DC	APF10360		60 V DC	APF30360

Standard packing: Tube: 20 pcs.; Case: 1,000 pcs.
RATING

1. Coil data

Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%] \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) }} \end{gathered}$	Coil resistance [$\pm 10 \%$] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating power	Max. allowable voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
4.5 V DC	Max. $70 \% \mathrm{~V}$ nominal voltage (Initial)	Min. 5% Vnominal voltage(Initial) (Initial)	37.8 mA	119Ω	170 mW	$120 \% \mathrm{~V}$ of nominal voltage
5V DC			34.0 mA	147Ω		
6V DC			28.3 mA	212Ω		
9V DC			18.9 mA	476Ω		
12 V DC			14.2 mA	847Ω		
18 V DC			9.4 mA	1,906		
24 V DC			7.1 mA	3,388,		
48 V DC			4.5 mA	10,618 Ω	217 mW	
60 V DC			2.9 mA	20,570	175mW	

PF (APF)
2. Specifications

Characteristic	Item		Specifications	
Contact	Arrangement		1 Form A	1 Form C
	Contact resistance (Initial)		Max. $100 \mathrm{~m} \Omega$ (By voltage drop 6 V DC 1A)	
	Contact material		AgNi type, AgNi type/Au-plated	
Rating	Nominal switching capacity (resistive load)		6 A 250 V AC	
	Max. switching power (resistive load)		1,500 VA	
	Max. switching voltage		250 V AC	
	Max. switching current		6 A (AC)	
	Nominal operating power		170 mW (5 to 24 V DC), 217 mW (48 V DC), 175 mW (60 V DC)	
	Min. switching capacity (Reference value)* ${ }^{4}$		100 mA 5 V DC (without Au-plated), 1 mA 1 V DC (with Au-plated)	
Electrical characteristics	Insulation resistance (Initial)		$\text { Min. } 1,000 \mathrm{M} \Omega \text { (at } 500 \mathrm{~V} \mathrm{DC} \text {) }$ Measurement at same location as "Initial breakdown voltage" section.	
	Breakdown voltage (Initial)	Between open contacts	1,000 Vrms for 1 min . (Detection current: 10 mA)	
		Between contact and coil	4,000 Vrms for 1 min . (Detection current: 10 mA)	
	Surge breakdown voltage (Between contact and coil) ${ }^{2}$		6,000 V (initial)	
	Temperature rise (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)			
	Operate time (at $20^{\circ} \mathrm{C} 68{ }^{\circ} \mathrm{F}$)		Max. 8 ms (Nominal coil voltage applied to the coil, excluding contact bounce time.)	
	Release time (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 4 ms(Nominal coil voltage applied to the coil, excluding contact bounce time.) (without diode)	
Mechanical characteristics	Shock resistance	Functional	Min. 98 m/s ${ }^{2}$ (Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$)	Min. $49 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$)
		Destructive	Min. $980 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 11 ms.$\left.\right)$	
	Vibration resistance	Functional	10 to 55 Hz at double amplitude of 1 mm (Detection time: $10 \mu \mathrm{~s}$.)	
		Destructive	10 to 55 Hz at double amplitude of 1.5 mm	
Expected life	Mechanical		Min. 5×10^{6} (at 180 cpm)	
	Electrical ${ }^{3}$		$\begin{gathered} \text { N.O.: Min. } 5 \times 10^{4} \\ \text { (at resistive load, } \\ 6 \mathrm{cpm} \text { and nominal switching capacity) } \end{gathered}$	$\begin{gathered} \text { N.O.: Min. } 5 \times 10^{4}, \text { N.C.: Min. } 3 \times 10^{4} \\ \text { (at resistive load, } \\ 6 \mathrm{cpm} \text { and nominal switching capacity) } \end{gathered}$
Conditions	Conditions for operation, transport and storage*4		Ambient temperature: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+185^{\circ} \mathrm{F}$; Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature)	
Unit weight			Approx. 5 g .18 oz	

*1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.
*2Wave is standard shock voltage of $\pm 1.2 \times 50 \mu$ s according to JEC-212-1981
*3For cycle lifetime, refer to "Cautions for Use 4)" in NOTES (page 386)
*4The upper operation ambient temperature limit is the maximum temperature that can satisfy the coil temperature rise value. Refer to " 6 . Usage, Storage and Transport Conditions" in AMBIENT ENVIRONMENT (page 599).

REFERENCE DATA

1. Electrical life

Tested sample: APF30224

Load type		Voltage	Current	Ambient temperature	No. of ops.
Resistive load		250 V AC	6 A	$85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$	30,000
Inductive load	AC 15	250 V AC	3 A	$25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$	20,000
	DC 13	24 V DC	2 A	$25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$	6,000

Notes: 1. Switch contacts are all on N.O. side.
2. AC 15 and DC 13 comply with IEC-60947-5-1 testing conditions
2. Max. switching capacity

Load Limit Curve

3. Coil temperature rise

Tested sample: APF30224 Measured portion: Inside the coil Ambient temperature: $28^{\circ} \mathrm{C} 82^{\circ} \mathrm{F}$
4. Ambient temperature characteristics

Tested sample: APF30224, 6 pcs.

DIMENSIONS (mm inch) Interested in CAD data? You can obtain CAD data for all products with a

1. 1 Form A type

CAD Data

External dimensions

PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$
Schematic (Bottom view)
COIL

2. 1 Form C type

CAD Data

External dimensions

General tolerance: $\pm 0.3 \pm .012$

PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$
Schematic (Bottom view)

SAFETY STANDARDS

Certification authority	File No.	Applicable standard	Rating	
UL, C-UL	E120782	UL508, CSA C22.2 No.14 UL1604 (class I, Division 2, Group A, B, C, D)	277V AC 8A, General use, $24 \mathrm{~V} \mathrm{DC} \mathrm{6A} ,\mathrm{General} \mathrm{use}$, B300, R300 (Pilot Duty)	
VDE	40027672	EN/IEC 61810-1	250V AC 6A (cos $=1.0) 85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$ N.O. side, N.C. side 250V AC 8A (cos $\phi=1.0) 25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$ N.O. side	Insulation: Reinforced insulation between contact and coil. Rese 30 (GWT) approved.

NOTES

■ Usage, transport and storage conditions

1) Temperature:
-40 to $+85^{\circ} \mathrm{C}-40$ to $+185^{\circ} \mathrm{F}$
2) Humidity: 5 to 85% RH
(Avoid freezing and condensation.) The humidity range varies with the temperature. Use within the range indicated in the graph below.
3) Atmospheric pressure: 86 to 106 kPa Temperature and humidity range for usage, transport, and storage

4) Condensation

Condensation forms when there is a sudden change in temperature under high temperature and high humidity conditions. Condensation will cause deterioration of the relay insulation.
5) Freezing

Condensation or other moisture may freeze on the relay when the temperatures is lower than $0^{\circ} \mathrm{C} 32^{\circ} \mathrm{F}$. This causes problems such as sticking of movable parts or operational time lags.
6) Low temperature, low humidity environments
The plastic becomes brittle if the relay is exposed to a low temperature, low humidity environment for long periods of time.

Solder and cleaning conditions

1) Please obey the following conditions when soldering automatically.
(1) Preheating: Within $120^{\circ} \mathrm{C} 248^{\circ} \mathrm{F}$ (solder surface terminal portion) and within 120 seconds
(2) Soldering iron: $260^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$
$500^{\circ} \mathrm{F} \pm 41^{\circ} \mathrm{F}$ (solder temperature) and within 6 seconds (soldering time)
2) Please obey the following conditions when soldering manually.
Thoroughly clean the iron tip.
(1) Soldering iron: 30 to 60 W
(2) Soldering iron tip temperature: $350^{\circ} \mathrm{C}$
$662^{\circ} \mathrm{F}$
(3) Soldering time: within approx. 3

seconds

3) Since this is not a sealed type relay, do not clean it as is. Also, be careful not to allow flux to overflow above the PC board or enter the inside of the relay.

■ Cautions for use

1) For precautions regarding use and explanations of technical terminology, please refer to our web site.
(panasonic-electric-works.net/ac)
2) To ensure good operation, please keep the voltage on the coil ends to $\pm 5 \%$ (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$) of the rated coil operation voltage. Also, please be aware that the pick-up voltage and drop-out voltage may change depending on the temperature and conditions of use.
3) Keep the ripple rate of the nominal coil voltage below 5%.
4) The cycle lifetime is defined under the standard test condition specified in the JIS C 5442 standard (temperature 15 to $35^{\circ} \mathrm{C} 59$ to $95^{\circ} \mathrm{F}$, humidity 25 to 75%). Check this with the real device as it is affected by coil driving circuit, load type, activation frequency, activation phase, ambient conditions and other factors. Also, be especially careful of loads such as those listed below.
(1) When used for AC load-operating and the operating phase is synchronous.
Rocking and fusing can easily occur due to contact shifting.
(2) Highly frequent load-operating When highly frequent opening and closing of the relay is performed with a load that causes arcs at the contacts, nitrogen and oxygen in the air is fused by the arc energy and HNO_{3} is formed. This can corrode metal materials.

Three countermeasures for these are listed here.

- Incorporate an arc-extinguishing circuit.
- Lower the operating frequency
- Lower the ambient humidity

5) Minimum switching capacity provides a guideline for low level load switching. This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.
6) Heat, smoke, and even a fire may occur if the relay is used in conditions outside of the allowable ranges for the coil ratings, contact ratings, operating cycle lifetime, and other specifications. Therefore, do not use the relay if these ratings are exceeded.
7) If the relay has been dropped, the appearance and characteristics should always be checked before use.
8) Incorrect wiring may cause
unexpected events or the generation of heat or flames.
9) The amount of relay operation noise will vary depending on the substrate used for mounting. Please use after verifying with the relay mounted on the substrate.

We recommend this extra manufacturers socket. It is only available in Europe.

PF (APF) relay socket

APF1-PS-GD

FEATURES

1. Socket incorporates LED-indication
2. It is equipped with a hold-down clip and an integrated casting mechanism
3. Suitable for PCB-mounting

PIN LAYOUT

(+,-) Polarity of LED
Bottom view
HANDLING

Push down the hold-down clip in order
to cast the relay.

NOTE: The PF relay approvals do not apply to the PF relay socket.

Panasonic ideas for life

HIGH ELECTRICAL \& MECHANICAL NOISE IMMUNITY RELAY

FEATURES

1. Compact and slim
inch (H) slim type
2. Twin contact structure reliability.
$20 \mathrm{~mm}(\mathrm{~L}) \times 10 \mathrm{~mm}(\mathrm{~W}) \times 16 \mathrm{~mm}(\mathrm{H})$
.787 inch $(\mathrm{L}) \times .394$ inch $(\mathrm{W}) \times .630$

Gold-clad twin contacts provide high
3. High capacity and small size

This small package can provide high 5 A capacity.
4. High sensitivity with 200 mW nominal operating power
5. $8,000 \mathrm{~V}$ surge breakdown voltage Despite the compact size, between contact and coil surge resistance of $8,000 \mathrm{~V}$ has been achieved. The relay has low susceptibility to noise.
6. Outstanding shock resistance. Functional shock resistance:
$294 \mathrm{~m} / \mathrm{s}^{2}\{$ Min. 30 G$\}$
7. Most suitable for sequencer output and internal device output relays.
8. Sealed type

TYPICAL APPLICATIONS

1. Programmable controllers
2. Interface relays for Factory Automation and Communication equipment
3. Output relays for measuring equipment, timers, counters and temperature controllers

ORDERING INFORMATION

	PQ $\mathbf{1 a}-\square$
Contact arrangement 1a: 1 Form A (Bifurcated)	
Coil voltage (DC) $3,5,6,9,12,18,24 ~$	

Notes: 1. UL/CSA, VDE, SEMKO approved type is standard.
2. TÜV approved type is available.

TYPES

Contact arrangement	Nominal coil voltage	Part No.
1 Form A (Bifurcated)	3V DC	PQ1a-3V
	5V DC	PQ1a-5V
	6 V DC	PQ1a-6V
	9 V DC	PQ1a-9V
	12 V DC	PQ1a-12V
	18 V DC	PQ1a-18V
	24V DC	PQ1a-24V

[^37]
RATING

1. Coil data

Nominal coil voltage	Pick-up voltage (at $\left.20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)$	Drop-out voltage (at $\left.20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)$	Nominal operating current $[\pm 10 \%]\left(\right.$ at $\left.20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)$	Coil resistance $[\pm 10 \%]\left(\right.$ at $\left.20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)$	Nominal operating power	Max. allowable voltage

2. Specifications

Characteristics	Item		Specifications
Contact	Arrangement		1 Form A (Bifurcated)
	Initial contact resistance, max.		Max. $50 \mathrm{~m} \Omega$ (By voltage drop 6 V DC 1A)
	Contact material		Au-clad AgNi type
Rating	Nominal switching capacity (resistive load)		$5 \mathrm{~A} 250 \mathrm{~V} \mathrm{AC}$,5 A 30 V DC
	Max. switching power (resistive load)		1,250 VA, 150 W
	Max. switching voltage		$250 \mathrm{~V} \mathrm{AC}$,110 V DC (0.3 A)
	Max. switching current		5 A
	Nominal operating power		200 mW
	Min. switching capacity (Reference value) ${ }^{+1}$		$100 \mu \mathrm{~A} 100 \mathrm{mV}$ DC
Electrical characteristics	Insulation resistance (Initial)		Min. $1,000 \mathrm{M} \Omega$ (at 500 V DC) Measurement at same location as "Initial breakdown voltage" section.
	Breakdown voltage (Initial)	Between open contacts	$1,000 \mathrm{Vrms}$ for 1 min . (Detection current: 10 mA .)
		Between contact and coil	$4,000 \mathrm{Vrms}$ for 1 min . (Detection current: 10 mA .)
	Surge breakdown voltage (Initial) ${ }^{2}$	Between contacts and coil	8,000 V
	Temperature rise		Max. $45^{\circ} \mathrm{C}$ (By resistive method, nominal voltage applied to the coil, contact carrying current: 5 A , at $70^{\circ} \mathrm{C}$)
	Operate time (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 20 ms (Nominal voltage applied to the coil, excluding contact bounce time.)
	Release time (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 10 ms (Nominal voltage applied to the coil, excluding contact bounce time.) (without diode)
Mechanical characteristics	Shock resistance	Functional	Min. $294 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$.)
		Destructive	Min. $980 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 6 ms .)
	Vibration resistance	Functional	10 to 55 Hz at double amplitude of 2.0 mm (Detection time: $10 \mu \mathrm{~s}$.)
		Destructive	10 to 55 Hz at double amplitude of 3.5 mm
Expected life	Mechanical		Min. 2×10^{7} (at 180 cpm)
	Electrical (at 20 cpm)		Min. 2×10^{5} (5 A 125 V AC), Min. 10^{5} (5 A 250 V AC), Min. 10^{5} (5 A 30 V DC)
Conditions	Conditions for operation, transport and storage*3		Ambient temperature: $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $158^{\circ} \mathrm{F}$; Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature)
	Max. operating speed (at rated load)		20 cpm
Unit weight			Approx. 7 g .25 oz

*1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load. *2Wave is standard shock voltage of $\pm 1.2 \times 50 \mu$ s according to JEC-212-1981.
*3Refer to "6. Usage, Storage and Transport Conditions" in AMBIENT ENVIRONMENT (page 599).

REFERENCE DATA

1. Max. switching capacity

2. Operate \& release time

Tested sample: PQ1a-24V, 25 pcs.

3. Coil temperature rise

Measured portion: Inside the coil
Contact carrying current: 5 A

4. Ambient temperature characteristics

Tested sample: PQ1a-24V
Contact carrying current: 5 A

DIMENSIONS(mm inch) Interested in CAD data? You can obtain CAD data for all products with a CAD Data mark from your local Panasonic Electric Works representative.

CAD Data

Dimension :

External dimensions

Max. 1 mm .039 inch $\pm 0.2 \pm .008$
1 to 5 mm .039 to .118 inch $\pm 0.3 \pm .012$
Min. 5 mm .118 inch $\pm 0.4 \pm .016$

Schematic (Bottom view)

PC board pattern (Bottom view)

Tolerance: $+0.1+.004$

For Cautions for Use, see Relay Technical Information (page 582).

Panasonic ideas for life

1.0GHz 2 Form C RELAY

RA RELAYS (ARA)

mm inch

FEATURES

1. High frequency characteristics (Impedance $50 \Omega, \sim 1.0 \mathrm{GHz}$)

- Insertion loss; Max. 0.3dB
- Isolation; Min. 20dB
(Between open contacts) Min. 30dB
(Between contact sets)
- V.S.W.R.; Max. 1.2

2. Surface mount terminal

This relay is a surface-mounted model with excellent high-frequency properties. In addition, it can use a microstrip line in the base circuit design which spares the labor of machining the base.

3. Low profile small type

$9.7(\mathrm{~W}) \times 14.7(\mathrm{~L}) \times 5.9(\mathrm{H}) \mathrm{mm}$
.382(W)×.579(L)×.232(H) inch

4. High sensitivity: $\mathbf{1 4 0} \mathbf{m W}$ nominal operating power

5. High contact reliability

Electrical life: Min. 10^{7} (10mA 10V DC)

TYPICAL APPLICATIONS

- Measurement instruments

Oscilloscope attenuator circuit

SPECIFICATIONS

Contact

Arrangement			2 Form C
Contact material		Stationary	AgPd + Au clad
		Movable	AgPd
Initial contact resistance (By voltage 6V DC 1A)			Max. 75 m ¹/4
Rating	Contact rating (resistive)		10 mA 10 V DC 1A 30 V DC
	Contact carrying power		Max. 3W (at 1.0 GHz , impedance $503 / 4$, V.S.W.R. max.1.2)
	Max. switching voltage		30 V DC
	Max. switching current		1A
High frequency characteristics (~1GHz, Impedance 503/4) (Initial)	Isolation	Between open contacts	Min. 20dB
		Between contact sets	Min. 30dB
	Insertion loss		Max. 0.3dB
	V.S.W.R.		Max. 1.2
	Input power		Max. 3W (at 1.0 GHz , impedance $503 / 4$, V.S.W.R. max.1.2)
Nominal operating power	Single side stable		140 mW (1.5 to 12 V) $200 \mathrm{~mW}(24 \mathrm{~V})$ 300 mW (48V)
	1 coil latching		70 mW (1.5 to 12V) $100 \mathrm{~mW}(24 \mathrm{~V})$
	2 coil latching		$\begin{gathered} 140 \mathrm{~mW}(1.5 \text { to } 12 \mathrm{~V}) \\ 200 \mathrm{~mW}(24 \mathrm{~V}) \\ \hline \end{gathered}$
Expected life (min. operation)	Mechanical (at 180 cpm)		10^{8}
	Electrical	10 mA 10 V DC (resistive load)	10^{7}
	(at 20 cpm)	1A 30 V DC (resistive load)	10^{5}

Characteristics

Initial insulation resistance *1			Min. $100 \mathrm{M} \Omega$ (at 500 V DC)
Initial breakdown voltage *2	Between open contacts		750 Vrms for 1 min .
	Between contact sets		1,000 Vrms for 1 min .
	Between contact and coil		1,000 Vrms for 1 min .
	Between contact and earth terminal		1,000 Vrms for 1 min .
Operate time [Set time] *3 (at $20^{\circ} \mathrm{C}$)			Max. 4ms (Approx. 2ms) [Max. 4ms (Approx. 2ms)]
Release time (without diode) [Reset time] *3 (at $20^{\circ} \mathrm{C}$)			Max. 4ms (Approx. 1ms) [Max. 4ms (Approx. 2ms)]
Temperature rise (at $20^{\circ} \mathrm{C}$) ${ }^{*}$			Max. $60^{\circ} \mathrm{C}$
Shock resistance		Functional *5	Min. $500 \mathrm{~m} / \mathrm{s}^{2}$
		Destructive *6	Min. 1,000 m/s ${ }^{2}$
Vibration resistance		Functional *7	10 to 55 Hz at double amplitude of 3 mm
		Destructive	10 to 55 Hz at double amplitude of 5 mm
Conditions for operation, transport and storage *8 (Not freezing and condensing at low temperature)		Ambient temp	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{F} \text { to }+185^{\circ} \mathrm{F} \end{aligned}$
		Humidity	5 to 85\% R.H.
Unit weight			Approx. 2g .07oz

Remarks

* Specifications will vary with foreign standards certification ratings.
*1 Measurement at same location as "Initial breakdown voltage" section.
*2 Detection current: 10 mA
${ }^{* 3}$ Nominal operating voltage applied to the coil, excluding contact bounce time.
${ }^{*}$ By resistive method, nominal voltage applied to the coil: 3W contact carrying
power: at 1.0 GHz , Impedance 50Ω, V.S.W.R. Max.1.2
${ }^{*} 5$ Half-wave pulse of sine wave: 11 ms , detection time: $10 \mu \mathrm{~s}$.
${ }^{*}$ Half-wave pulse of sine wave: 6 ms
${ }^{* 7}$ Detection time: $10 \mu \mathrm{~s}$
${ }^{* 8}$ Refer to 6. Conditions for operation, transport and storage conditions in NOTES (Page 396).

ORDERING INFORMATION

Note: Packing style; Nil: Tube packing 40 pcs. in an inner package, 1,000 pcs. in an outer package
Z: Tape and reel packing 500 pcs. in an inner package, 1,000 pcs. in an outer package

TYPES AND COIL DATA (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)

- Single side stable type

Part No.	Nominal voltage, V DC	Pick-up voltage, V DC (max.) (initial)	Drop-out voltage, V DC (min.)(initial)	Coil resistance, Ω ($\pm 10 \%$)	Nominal operating current, mA $(\pm 10 \%)$	Nominal operating power, mW	Max. allowable voltage, V DC
ARA200A1H(Z)	1.5	1.125	0.15	16	93.8	140	2.25
ARA200A03(Z)	3	2.25	0.3	64.3	46.7	140	4.5
ARA200A4H(Z)	4.5	3.375	0.45	145	31	140	6.75
ARA200A05(Z)	5	3.75	0.5	178	28.1	140	7.5
ARA200A06(Z)	6	4.5	0.6	257	23.3	140	9
ARA200A09(Z)	9	6.75	0.9	579	15.5	140	13.5
ARA200A12(Z)	12	9	1.2	1,028	11.7	140	18
ARA200A24(Z)	24	18	2.4	2,880	8.3	200	36
ARA200A48(Z)	48	36	4.8	7,680	6.3	300	57.6
-1 coil latching type							
Part No.	Nominal voltage, V DC	Set voltage, V DC (max.) (initial)	Reset voltage, V DC (max.) (initial)	Coil resistance, $\Omega(\pm 10 \%)$	Nominal operating current, mA $(\pm 10 \%)$	Nominal operating power, mW	Max. allowable voltage, V DC
ARA210A1H(Z)	1.5	1.125	1.125	32	46.9	70	2.25
ARA210A03(Z)	3	2.25	2.25	128.6	23.3	70	4.5
ARA210A4H(Z)	4.5	3.375	3.375	289.3	15.6	70	6.75
ARA210A05(Z)	5	3.75	3.75	357	14	70	7.5
ARA210A06(Z)	6	4.5	4.5	514	11.7	70	9
ARA210A09(Z)	9	6.75	6.75	1,157	7.8	70	13.5
ARA210A12(Z)	12	9	9	2,057	5.8	70	18
ARA210A24(Z)	24	18	18	5,760	4.2	100	36

- 2 coil latching type

Part No.	Nominal voltage, V DC	Set voltage, V DC (max.) (initial)	Reset voltage, V DC (max.) (initial)	Coil resistance, $\Omega(\pm 10 \%)$	Nominal operating current, mA $\text { (} \pm 10 \%)$	Nominal operating power, mW	Max. allowable voltage, V DC
ARA220A1H(Z)	1.5	1.125	1.125	16	93.8	140	2.25
ARA220A03(Z)	3	2.25	2.25	64.3	46.7	140	4.5
ARA220A4H(Z)	4.5	3.375	3.375	145	31	140	6.75
ARA220A05(Z)	5	3.75	3.75	178	28.1	140	7.5
ARA220A06(Z)	6	4.5	4.5	257	23.3	140	9
ARA220A09(Z)	9	6.75	6.75	579	15.5	140	13.5
ARA220A12(Z)	12	9	9	1,028	11.7	140	18
ARA220A24(Z)	24	18	18	2,880	8.3	200	36

Tolerance: $\pm 0.3 \pm .012$ Suggested Mounting Pads (Top view)

Schematic (Top view)

2 coil latching

Tolerance: $\pm 0.1 \pm .004$

REFERENCE DATA

1-(1). High frequency characteristics (Impedance 50Ω)
Sample: ARA200A12
Measuring method: Measured with HP network analyzer (HP8753C).

- Insertion loss

- Isolation

1-(2). High frequency characteristics (Impedance 75Ω
Sample: ARA200A12
Measuring method: Measured with HP network analyzer (HP8753C).

- Insertion loss

- Isolation

RA (ARA)

NOTES

1. Coil operating power

Pure DC current should be applied to the coil. The wave form should be
rectangular. If it includes ripple, the ripple factor should be less than 5%.
However, check it with the actual circuit since the characteristics may be slightly different. The nominal operating voltage should be applied to the coil for more than 10 ms to set/reset the latching type relay.

2. Coil connection

When connecting coils, refer to the wiring diagram to prevent mis-operation or malfunction.

3. External magnetic field

Since RA relays are highly sensitive polarized relays, their characteristics will be affected by a strong external magnetic field. Avoid using the relay under that condition.

4. Cleaning

For automatic cleaning, the boiling method is recommended. Avoid ultrasonic cleaning which subjects the relays to high frequency vibrations, which may cause the contacts to stick.
It is recommended that alcoholic solvents be used.

5. Soldering

Manual soldering shall be performed under following condition.
Tip temperature: $280^{\circ} \mathrm{C}$ to $300^{\circ} \mathrm{C} 536^{\circ} \mathrm{F}$ to $572^{\circ} \mathrm{F}$.
Wattage: 30 to 60W
Soldering time: within 5 s
In case of automatic soldering, the following conditions should be observed

1) Position of measuring temperature Surface of PC board where relay is mounted.

2) IR (infrared reflow) soldering method

$\mathrm{T}_{1}=150$ to 180 C 302 to 356 F
$\mathrm{t}_{1}=60 \mathrm{to} 120 \mathrm{sec}$.
$\mathrm{T}_{2}=230 \mathrm{C} 446 \mathrm{~F}$ and higher
$\mathrm{t}_{2}=$ Within 30 sec
$\mathrm{T}_{3}=$ Within 250 C 482 F
Temperature rise of relay itself may vary according to the mounting level or the heating method of reflow equipment. Therefore, please set the temperature of soldering portion of relay terminal and the top surface of the relay case not to exceed the above mentioned soldering condition.
It is recommended to check the temperature rise of each portion under actual mounting condition before use. The soldering earth shall be performed by manual soldering.
6. Conditions for operation, transport and storage conditions
1) Ambient temperature, humidity, and atmospheric pressure during usage, transport, and storage of the relay:
(1) Temperature:
-40 to $+70^{\circ} \mathrm{C}-40$ to $+158^{\circ} \mathrm{F}$
(2) Humidity: 5 to 85% RH
(Avoid freezing and condensation.) The humidity range varies with the temperature. Use within the range indicated in the graph below.
(3) Atmospheric pressure: 86 to 106 kPa Temperature and humidity range for usage, transport, and storage:

2) Condensation

Condensation forms when there is a sudden change in temperature under high temperature and high humidity conditions. Condensation will cause deterioration of the relay insulation.

3) Freezing

Condensation or other moisture may freeze on the relay when the temperature is lower than $0^{\circ} \mathrm{C} 32^{\circ} \mathrm{F}$. This causes problems such as sticking of movable parts or operational time lags.
4) Low temperature, low humidity environments
The plastic becomes brittle if the relay is exposed to a low temperature, low humidity environment for long periods of time.

For Cautions for Use, see Relay Technical Information (page 582).

Panasonic ideas for life

Addition of 6GHz High Reliability RD Coaxial Switch (SPDT) for Communications Market
 SWITCHES (ARD)

FEATURES

1. Excellent high frequency characteristics (50Ω, to 26.5 Ghz)
2. SPDT, Transfer and SP6T types are available.

3. High sensitivity

Nominal operating power:
840 mW (SPDT/SP6T, Fail-safe type, with indicator)
$1,540 \mathrm{~mW}$ (Transfer, Fail-safe type, with indicator)
*Without 24V type
4. Long-lasting life: $\min .5 \times 10^{6}$
5. With termination type is added. (SP6T)
Thanks to the addition of termination, steady high frequency characteristics can be maintained when contacts are either open or closed and this contributes to increase system reliability.
6. + COM type is available.

TYPICAL APPLICATIONS

Wireless and mobile communication

- Cellular phone base station
- Amplifier switching

Digital broadcasting

- Broadcasting relay station
- Broadcasting equipment

Measuring instrument
All types of inspection equipment

Please inquire beforehand if you are thinking of using this product in applications that involve low level load or high frequency of switching.

HIGH FREQUENCY CHARACTERISTICS (Impedance 50 2)

Frequency	to 1 GHz	1 to 4 GHz	4 to $8 \mathrm{GHz}^{* 1}$	8 to 12.4 GHz	12.4 to 18 GHz	18 to $26.5 \mathrm{GHz}^{* 2}$
V.S.W.R. (max.)	1.1	1.15	1.25	1.35	1.5	
V.S.W.R. (SP6T With termination) (max.)	1.20			1.40	1.50	-
Insertion loss (dB. max.)	0.2			0.3	0.4	0.5
Isolation (dB. min.)	85	80	70	65	0.8	

Notes:
*1The 6 GHz type only has the above characteristics up to 6 GHz .
*218 to 26.5 GHz characteristics can be applied 26.5 GHz type only (SPDT, Transfer)

ORDERING INFORMATION

Note: Sealed types also available, please consult us (SPDT only)

RD (ARD)

TYPES

1. SPDT

1) Solder terminal

Operating function	Nominal operating voltage, V DC	6GHz type	18GHz type		26.5 GHz type	
		No HF datasheet attached	No HF datasheet attached	HF datasheet attached	No HF datasheet attached	HF datasheet attached
Fail-safe (with indicator)	4.5	ARD7004H	ARD1004H	ARD1004HQ	ARD5004H	ARD5004HQ
	12	ARD70012	ARD10012	ARD10012Q	ARD50012	ARD50012Q
	24	ARD70024	ARD10024	ARD10024Q	ARD50024	ARD50024Q
Latching (with indicator)	4.5	ARD7204H	ARD1204H	ARD1204HQ	ARD5204H	ARD5204HQ
	12	ARD72012	ARD12012	ARD12012Q	ARD52012	ARD52012Q
	24	ARD72024	ARD12024	ARD12024Q	ARD52024	ARD52024Q
Latching with TTL driver (with self cut-off function) (with indicator)	5	ARD75105	ARD15105	ARD15105Q	ARD55105	ARD55105Q
	12	ARD75112	ARD15112	ARD15112Q	ARD55112	ARD55112Q
	24	ARD75124	ARD15124	ARD15124Q	ARD55124	ARD55124Q
Fail-safe (without indicator)	4.5	ARD7024H	-	-	-	-
	12	ARD70212				
	24	ARD70224				
Latching (without indicator)	4.5	ARD7224H	-	-	-	-
	12	ARD72212				
	24	ARD72224				
Latching with TTL driver (with self cut-off function) (without indicator)	5	ARD75305	-	-	-	-
	12	ARD75312				
	24	ARD75324				

Note: Standard packing; Carton: 1 pc. Case: 20 pcs.

2) Connector cable

Operating function	Nominal operating voltage, V DC	18GHz type		26.5 GHz type	
		No HF datasheet attached	HF datasheet attached	No HF datasheet attached	HF datasheet attached
Fail-safe	4.5	ARD1004HC	ARD1004HCQ	ARD5004HC	ARD5004HCQ
	12	ARD10012C	ARD10012CQ	ARD50012C	ARD50012CQ
	24	ARD10024C	ARD10024CQ	ARD50024C	ARD50024CQ
Latching	4.5	ARD1204HC	ARD1204HCQ	ARD5204HC	ARD5204HCQ
	12	ARD12012C	ARD12012CQ	ARD52012C	ARD52012CQ
	24	ARD12024C	ARD12024CQ	ARD52024C	ARD52024CQ
Latching with TTL driver (with self cut-off function)	5	ARD15105C	ARD15105CQ	ARD55105C	ARD55105CQ
	12	ARD15112C	ARD15112CQ	ARD55112C	ARD55112CQ
	24	ARD15124C	ARD15124CQ	ARD55124C	ARD55124CQ

Note: Standard packing; Carton: 1 pc. Case: 10 pcs.

2. Transfer

Operating function	Nominal operating voltage, V DC	18GHz type		26.5 GHz type	
		No HF datasheet attached	HF datasheet attached	No HF datasheet attached	HF datasheet attached
Fail-safe	4.5	ARD2004H	ARD2004HQ	ARD6004H	ARD6004HQ
	12	ARD20012	ARD20012Q	ARD60012	ARD60012Q
	24	ARD20024	ARD20024Q	ARD60024	ARD60024Q
Latching	4.5	ARD2204H	ARD2204HQ	ARD6204H	ARD6204HQ
	12	ARD22012	ARD22012Q	ARD62012	ARD62012Q
	24	ARD22024	ARD22024Q	ARD62024	ARD62024Q
Latching with TTL driver (with self cut-off function)	5	ARD25105	ARD25105Q	ARD65105	ARD65105Q
	12	ARD25112	ARD25112Q	ARD65112	ARD65112Q
	24	ARD25124	ARD25124Q	ARD65124	ARD65124Q

Note: Standard packing; Carton: 1 pc. Case: 10 pcs.
3. SP6T

Operating function	Nominal operating voltage, V DC	13GHz type	
		No HF datasheet attached	HF datasheet attached
Fail-safe	4.5	ARD3004H	ARD3004HQ
	12	ARD30012	ARD30012Q
	24	ARD30024	ARD30024Q
Latching	4.5	ARD3204H	ARD3204HQ
	12	ARD32012	ARD32012Q
	24	ARD32024	ARD32024Q

[^38]
4. SP6T (with termination)

Operating function	Nominal operating voltage, V DC	No HF datasheet attached	13GHz type
		ARD3004HZ	HF datasheet attached
	12	ARD30012Z	ARD3004HZQ
	24	ARD30024Z	ARD30012ZQ
Latching	4.5	ARD3204HZ	ARD30024ZQ
	12	ARD32012Z	ARD3204HZQ
	24	ARD32024Z	ARD32012ZQ

Note: Standard packing; Carton: 1 pc. Case: 5 pcs.

RATING

1. Coil data

(1) SPDT

1) Fail-safe type

Nominal operating voltage, V DC	Nominal operating current, $\mathrm{mA}(+10 \% /-15 \%)\left(\right.$ at $\left.20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)$		Nominal power consumption, mW	
	With indicator	Without indicator	With indicator	Without indicator
4.5	186.7	155.6	840	700
12	70.0	58.3	970	
24	40.4	29.2		

2) Latching type

Nominal operating voltage, V DC	Nominal operating current, mA $(+10 \% /-15 \%)\left(\right.$ at $\left.20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)$		Nominal power consumption, mW	
	With indicator	Without indicator	With indicator	Without indicator
4.5	155.6	111.1	700	
12	62.5	41.7	750	
24	37.5	16.7	900	

3) Latching with TTL driver type

Nominal operating voltage, V DC	TTL logic level (see TTL logic level range)		Electronic self cut-off	Switching frequency
	ON	OFF		
5	2.4 to 5.5V	0 to 0.5 V	Available	$\begin{gathered} \text { Max. } 180 \mathrm{cpm} \\ \text { (ON time : OFF time = } 1: 1 \text {) } \end{gathered}$
12				
24				

(2) Transfer

1) Fail-safe type

Nominal operating voltage, V DC	Nominal operating current, mA $(+10 \% /-15 \%)\left(\right.$ at $\left.20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)$	Nominal power consumption, mW
4.5	342.2	1540
12	128.3	1670
24	69.6	150 c

2) Latching type

Nominal operating voltage, V DC	Nominal operating current, mA $(+10 \% /-15 \%)\left(a t 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)$	Nominal power consumption, mW
4.5	266.7	1200
12	104.2	1250
24	58.3	1400

3) Latching with TTL driver type (with self cut-off function)

Nominal operating voltage V DC	TTL logic level (see TTL logic level range)		Electronic self cut-off	Switching frequency
	ON	OFF		Max. 180 cpm
12	2.4 to 5.5 V		Available	(ON time : OFF time $=1: 1$)
24		0 to 0.5 V		

(3) SP6T and SP6T (with termination type)

1) Fail-safe type

Nominal operating voltage, V DC	Nominal operating current, mA $(+10 \% /-15 \%)\left(\right.$ at $\left.20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)$	Nominal power consumption, mW
4.5	186.7	840
12	70.0	970
24	40.4	2

2) Latching type

Nominal operating voltage, V DC	Nominal operating current, mA $(+10 \% /-15 \%)\left(\right.$ at $\left.20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)$	Nominal power consumption, mW
4.5	SET: $155.6 /$ RESET (ALL): 933.6	SET: $700 /$ RESET (ALL): 4,200
12	SET: $62.5 /$ RESET (ALL): 375.0	SET: $750 /$ RESET (ALL): 4,500
24	SET: $37.5 /$ RESET (ALL): 225.0	SET: $900 /$ RESET (ALL): 5,400

- Operating voltage range

1) Fail-safe type

2) Latching type

3) Latching with TTL driver type (with self cut-off function)

4) TTL Logic level range

Note: Please consult us for use that is outside this range.

2. Specifications

1) SPDT/Transfer

*1Factors such as heating of the connected connector influence the high frequency characteristics; therefore, please verify under actual conditions of use.
*2The 6 GHz type only has the above characteristics up to 6 GHz .
*318 to 26.5 GHz characteristics can be applied 26.5 GHz type only (SPDT, Transfer)
*4The upper operation ambient temperature limit is the maximum temperature that can satisfy the coil temperature rise value. Refer to " 6 . Usage, Storage and Transport Conditions" in AMBIENT ENVIRONMENT (page 599).
2) SP6T

Characteristics		Item	Specifications			
Contact	Arrangement		SP6T			
	Contact material		Gold plating			
	Initial contact resistance		Max. 100m Ω (By voltage drop 6V DC 1A)			
Rating	Contact input power	No termination	120 W (at 3GHz) (V.S.W.R. 1.15 or less, no contact switching, ambient temperature $\left.25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}\right)^{* 1}$			
		With termination	2W (at 3GHz) (V.S.W.R. 1.15 or less, no contact switching, ambient temperature $\left.25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}\right)^{* 1}$			
	Nominal operating power	Fail-safe	840 mW ($4.5 \mathrm{~V}, 12 \mathrm{~V} \mathrm{DC}), 970 \mathrm{~mW}$ (24V DC)			
		Latching	700 mW (4.5 V DC), 750 mW (12 V DC), 900 mW (24 V DC)			
Indicator rating	Contact rating		Max. 30V 100mA			
	Initial contact resistance		Max. 1Ω (Measured by 5V 100mA)			
	Min. switching capacity (Reference value)		3 V DC, $0.1 \mathrm{~mA}\left(5 \times 10^{6}\right.$, Reliability level: $10 \%(3 \mathrm{k} \Omega)$)			
High frequency characteristics (Impedance 50 ${ }^{\text {) }}$	$\begin{aligned} & \text { V.S.W.R. } \\ & \text { (max.) } \end{aligned}$		to 1 GHz	1 to 4 GHz	4 to 8 GHz	8 to 13 GHz
		No termination	1.1	1.15	1.25	1.35
		With termination	1.20		1.40	1.50
	Insertion loss (dB, max.)		0.2		0.3	0.4
	Isolation (dB, min.)		85	80	70	65
Electrical characteristics	Insulation resistance (Initial)		Min. 1,000 M 2 (at 500 V DC) Measurement at same location as "breakdown voltage (Initial)" section.			
	Breakdown voltage (Initial)	Between open contacts	500 Vrms for 1 min . (Detection current: 10 mA)			
		Between contact and coil	500 Vrms for 1 min . (Detection current: 10 mA)			
		Between contact and earth terminal	500 Vrms for 1 min . (Detection current: 10 mA)			
		Between coil and earth terminal	500 Vrms for 1 min . (Detection current: 10 mA)			
Time characteristics (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Operate time		Max. 20 ms (Nominal operating voltage applied to the coil, excluding contact bounce time.)			
Mechanical characteristics	Shock resistance	Functional	Min. $500 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 11 ms , detection time: $10 \mu \mathrm{~s}$.)			
		Destructive	Min. $1,000 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 11 ms .)			
	Vibration resistance	Functional	10 to 55 Hz at double amplitude of 3mm (Detection time: $10 \mu \mathrm{~s}$.)			
		Destructive	10 to 55 Hz at double amplitude of 5 mm			
Expected life	Mechanical		Min. 5×10^{6} (at 180 cpm)			
	Electrical	High frequency contact (Hot switch)	No termination	Min. 5×10^{6} (5 W to 3 GHz , impedance $503 / 4$, V.S.W.R.; max. 1.2) (at 20 cpm)		
			With termination	Min. 5×10^{6} (2 W to 3 GHz , impedance $503 / 4, \mathrm{~V}$. S.W.R.; max. 1.2) (at 20 cpm)		
		Indicator (with indicator type only)	$5 \mathrm{VDC}, 10 \mathrm{~mA}, \mathrm{Min} .10^{6}$ (at 20 cpm)			
Conditions	Conditions for operation, transport and storage*2		Ambient temperature: $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}-67^{\circ} \mathrm{F}$ to $+185^{\circ} \mathrm{F}$ Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature)			
Unit weight			Approx. 320g 11.29oz			

*1Factors such as heating of the connected connector influence the high frequency characteristics; therefore, please verify under actual conditions of use.
*2The upper operation ambient temperature limit is the maximum temperature that can satisfy the coil temperature rise value. Refer to " 6 . Usage, Storage and Transport Conditions" in AMBIENT ENVIRONMENT (page 599).

REFERENCE DATA

1-(1). High frequency characteristics (SPDT) 6GHz type
Sample: ARD70012
Measuring method: Measured with Agilent Technologies network analyzer (E8363B).

- V.S.W.R.

- Insertion loss

- Isolation

1-(2). High frequency characteristics (SPDT) $18,26.5 \mathrm{GHz}$ type
Sample: ARD10012
Measuring method: Measured with Agilent Technologies network analyzer (HP8510).

1-(3). High frequency characteristics (Transfer)
Sample: ARD60012
Measuring method: Measured with Agilent Technologies network analyzer (HP8510).

- V.S.W.R.

- Insertion loss

- Isolation

RD (ARD)

1-(4). High frequency characteristics (SP6T)
Sample: ARD30012
Measuring method: Measured with Agilent Technologies network analyzer (HP8510).

- V.S.W.R.

- Insertion loss

- Isolation

- Termination characteristics

DIMENSIONS (mm inch) Interested in CAD data? You can obtain CAD data for all products with a from your local Panasonic Electric Works representative.

1. SPDT

CAD Data

1) Solder terminal

18 and 26.5 GHz types

Latching

Latching with TTL driver (with self cut-off function)

0 0 0 0

[^39]* The type without indicator terminals will not have the indicator terminals that are marked with the dotted box.

	Indicator									Coil				
Pin No.	1	2	3	4	5	6	7	8	9					
Fail-safe	-	NC	COM	NO	-	-	GND	+	-					
Latching	-	1	COM	2	-	-	GND	1	2					
Latching with TTL driver	-	1	COM	2	-	V	GND	Logic 1	Logic 2					

Fail-safe

Latching

Latching with TTL driver (with self cut-off function)
$\begin{array}{ll}1 & \text { COM } 2 \\ \pi & 1\end{array}$
O O O O Coil terminal

[^40]
2. Transfer

CAD Data

Tolerance: $\pm 0.3 \pm .012$

Fail-safe	NC: J1-J2, J3-J4 NO: J1-J3, J2-J4
Latching	POS1: J1-J2, J3-J4 POS2: J1-J3, J2-J4
Latching with TTL driver	POS1: J1-J2, J3-J4 POS2: J1-J3, J2-J4

Fail-safe

Latching

Latching with TTL driver (with self cut-off function)

3. SP6T

CAD Data

Tolerance: $\pm 0.3 \pm .012$

Fail-safe type

Latching type

COM 123456
Indicator termin Coil terminal

* + COM type is available.

4. SP6T (with termination)

CAD Data

Fail-safe type

Indicator terminal ndicator term Coil terminal

Сом1234.56.

Latching type

Indicator terminal ${ }^{\text {COM 123.5. }}$.

NOTES

1. For general cautions for use, please refer to the "General Application Guidelines".

2. Coil operating power

Pure DC current should be applied to the coil. The wave form should be rectangular. If it includes ripple, the ripple factor should be less than 5%.
However, check it with the actual circuit since the characteristics may be slightly different. The nominal operating voltage should be applied to the coil for more than 50 ms to set/reset the latching type relay.
Please use the latching type for circuits that are continually powered for long periods of time.

3. Coil connection

When connecting coils, refer to the wiring diagram to prevent mis-operation or malfunction.
4. Connection of coil indicator and washing conditions

1) The connection of coil indicator terminal shall be done by soldering. Soldering conditions
Max. $260^{\circ} \mathrm{C} 500^{\circ} \mathrm{F}$ (solder temp) within 10sec (soldering time)
Max. $350^{\circ} \mathrm{C} 662^{\circ} \mathrm{F}$ (solder temp) within 3 sec (soldering time)
2) This product is not sealed type,
therefore washing is not allowed.
5. Conditions for operation, transport and storage conditions
1) Temperature:
-55 to $+85^{\circ} \mathrm{C}-67$ to $+185^{\circ} \mathrm{F}$
2) Humidity: 5 to $85 \% \mathrm{RH}$
(Avoid freezing and condensation.)
The humidity range varies with the temperature. Use within the range indicated in the graph below.
3) Atmospheric pressure: 86 to 106 kPa Temperature and humidity range for usage, transport, and storage:

4) Condensation

Condensation forms when there is a sudden change in temperature under high temperature and high humidity conditions. Condensation will cause deterioration of the relay insulation. 5) Freezing

Condensation or other moisture may freeze on the relay when the temperature is lower than $0^{\circ} \mathrm{C} 32^{\circ}$. This causes problems such as sticking of movable parts or operational time lags.
6) Low temperature, low humidity environments.
The plastic may become brittle if the relay is exposed to a low temperature, low humidity environment for long periods of time.
6. Other handling precautions

1) The relay's on/off service life is based on standard test conditions (temperature: 15 to $35^{\circ} \mathrm{C} 59$ to $95^{\circ} \mathrm{F}$, humidity: 25 to 75%) specified in JIS C5442-1996. Life will depend on many factors of your system: coil drive circuit, type of load, switching intervals, switching phase, ambient conditions, to name a few. 2) Use the relay within specifications such as coil rating, contact rating and on/ off service life. If used beyond limits, the relay may overheat, generate smoke or catch fire.
2) Be careful not to drop the relay. If accidentally dropped, carefully check its appearance and characteristics before use.
3) Be careful to wire the relay correctly. Otherwise, malfunction, overheat, fire or other trouble may occur.
4) The latching type relay is shipped in the reset position. But jolts during transport or impacts during installation can move it to the set position. It is, therefore, advisable to build a circuit in which the relay can be initialized (set and reset) just after turning on the power.
5) If a relay stays on in a circuit for many months or years at a time without being activated, circuit design should be reviewed so that the relay can remain non-excited. A coil that receives current all the time heats, which degrades insulation earlier than expected. A latching type relay is recommended for such circuits.
6) For SMA connectors, we recommend a torque of $0.90 \pm 0.1 \mathrm{~N} \cdot \mathrm{~m}$ for installation, which falls within the prescribed torque of MIL-C-39012. Please be aware that conditions might be different depending on the connector materials and how it interacts with surrounding materials.
7) Please do not use silicon based substances such as silicon rubber, silicon oil, silicon coatings and silicon fillings, in the vicinity of the relay. Doing so may cause volatile silicon gas to form which may lead to contact failure due to the adherence of silicon on the contacts when they open and close in this atmosphere.
8) Please note that when switching contacts (latching type only), you must apply reset (ALL) voltage and release all contacts first. (SP6T type)
9) Do not use multiple contacts simultaneously. (SP6T type)
10) The indicator terminal is the terminal that indicates the operation status of the MAIN contact.
11) For details about the drive method of the latching with TTL driver type, please refer to the RD coaxial switch catalog on the website.

For Cautions for Use, see Relay Technical Information (page 582).

Panasonic ideas for life

mm inch

FEATURES

- Excellent high frequency characteristics (to 2.6 GHz)

Type	Frequency	900 MHz	2.6 GHz
Imped- ance 50Ω	V.S.W.R. (Max.)	1.3	1.7
	Insertion loss (dB, Max.)	0.2	0.7
	Isolation (dB, Min.)	60	30
Imped- ance 75Ω	V.S.W.R. (Max.)	Insertion loss (dB, Max.)	0.2
	Isolation (dB, Min.)	60	30.5

- Compact and slim size

Size: $20.2(\mathrm{~L}) \times 11.2(\mathrm{~W}) \times 8.9(\mathrm{H})^{*} \mathrm{~mm}$ $.795(\mathrm{~L}) \times .441(\mathrm{~W}) \times .350(\mathrm{H})$ inch
*The height of Surface-mount type is
9.6 mm .378 inch size.

TYPICAL APPLICATIONS

1. Broadcasting and video markets.

- Digital broadcasting market
- STB/tuner market, etc.

2. Communications market

- Antennae switching
- All types of wireless devices
-
- Surface-mount type also available

SPECIFICATIONS

Contact

Arrangement			1 Form C
Contact material			Gold plating
Initial contact resistance (By voltage drop 10V DC 10mA)			Max. 100m Ω
Rating	Contact rating		1W (at 2.6 GHz [Impedance 75Ω, V.S.W.R. Max.1.5] [Impedance 50Ω, V.S.W.R. Max.1.7]) 10mA 24V DC (resistive load)
	Contact carrying power		10 W (at 2.6 GHz [Impedance 75Ω, V.S.W.R. Max.1.5] [Impedance 50Ω, V.S.W.R. Max.1.7])
	Max. switching voltage		30 V DC
	Max. switching current		0.5 A DC
High frequency characteristics (Impedance 75 () (Initial)	V.S.W.R.		Max. 1.2 (to 900 MHz) Max. 1.5 (to 2.6 GHz)
	Insertion loss		Max. 0.2dB (to 900 MHz) Max. 0.5 dB (to 2.6 GHz)
	Isolation		Min. 60dB (to 900 MHz) Min. 30 dB (to 2.6 GHz)
High frequency characteristics (Impedance 50 () (Initial)	V.S.W.R.		Max. 1.3 (to 900 MHz) Max. 1.7 (to 2.6 GHz)
	Insertion loss		Max. 0.2 dB (to 900 MHz) Max. 0.7 dB (to 2.6 GHz)
	Isolation		Min. 60dB (to 900 MHz) Min. 30dB (to 2.6 GHz)
Expected life (min. operations)	Mechan	(at 180 cpm)	10^{6}
	Electrical	$1 \mathrm{~W}, 2.6 \mathrm{GHz}$, [Impedance 50Ω, V.S.W.R. \& 1.7] [Impedance 75Ω, V.S.W.R. \& 1.5]	3×10^{5}
		10mA 24V DC (resistive load) (at 20cpm)	3×10^{5}

Coil (at $20^{\circ} \mathrm{C}, 68^{\circ} \mathrm{F}$)			
Nominal operating power			200 mW
Characteristics			
Initial insulation resistance*1			Min. $100 \mathrm{M} \Omega$ (at 500 V DC)
Initial breakdown voltage*2	Between open contacts		500 Vrms
	Between contact and coil		1,000 Vrms
	Between contact and ground terminal		500 Vrms
Operate time ${ }^{* 3}$ (at $20^{\circ} \mathrm{C}$)			Max. 10 ms
Release time (without diode) ${ }^{\star 3}$ (at $20^{\circ} \mathrm{C}$)			Max. 5ms
Temperature rise (at $\left.20^{\circ} \mathrm{C}\right)^{* 4}$			Max. $60^{\circ} \mathrm{C}$
Shock resistance		Functiona**5	Min. $500 \mathrm{~m} / \mathrm{s}^{2}\{50 \mathrm{G}\}$
		Destructive*6	Min. 1,000 m/s ${ }^{2}\{100 \mathrm{G}\}$
Vibration resistance		Functional*7	10 to 55 Hz at double amplitude of 3 mm
		Destructive	10 to 55 Hz at double amplitude of 5 mm
Conditions for operation, transport and storage*8 (Not freezing and condensing at low temperature)		Ambient temp.	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{F} \text { to } 158^{\circ} \mathrm{F} \end{aligned}$
		Humidity	5 to 85\% R.H.
Unit weight			Approx. 5 g .18 oz

Remarks

* Specifications will vary with foreign standards certification ratings.
*1 Measurement at same location as "Initial breakdown voltage" section.
*2 Detection current: 10 mA
${ }^{*}$ N Nominal operating voltage applied to the coil, excluding contact bounce time.
${ }^{* 4}$ By resistive method, nominal voltage applied to the coil: Contact carrying power: 10 W , at 2.6 GHz , [Impedance 75Ω, V.S.W.R. \& 1.5] [Impedance 50 , V.S.W.R. \& 1.7]
${ }^{* 5}$ Half-wave pulse of sine wave: 11 ms , detection time: $10 \mu \mathrm{~s}$.
${ }^{*} 6$ Half-wave pulse of sine wave: 6 ms
${ }^{* 7}$ Detection time: $10 \mu \mathrm{~s}$
${ }^{* 8}$ Refer to 5. Conditions for operation, transport and storage conditions in NOTES (Page 414).

ORDERING INFORMATION

Contact arrangement	Operating function	Terminal shape	Coil voltage (DC)	Packing style
1: 1 Form C	0 : Single side stable type (Impedance 50 $)$ 3: Single side stable type (Impedance 75Ω)	Nil: Standard PC board terminal A: Surface-mount terminal	03: 3 V 4H: 4.5 V 06: 6 V 09: 9 V 12: 12 V 24: 24 V	Nil: Carton packing (Standard PC board terminal only) Tube packing (Surface-mount terminal only) Z: Tape and reel packing (picked from 12/13/14 pin side)

Note: Tape and reel packing symbol "-Z" is not marked on the relay.
" X " type tape and reel packing (picked from 8/9/10/11/12/13/14-pin side) is also available.
Suffix "X" instead of "Z".

TYPES AND COIL DATA (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)

- Single side stable type (Impedance 50Ω)
- Packing of standard PC board terminal: 50 pcs. in an inner package (carton); 500 pcs. in an outer package.
- Packing of surface-mount terminal: 25 pcs. in an inner package (tube); 200 pcs. in an outer package.
- Packing of surface-mount terminal: 400 pcs. in an inner package (tape and reel); 800 pcs. in an outer package.

Standard PC board terminal	Surface-mount terminal	Nominal coil voltage, V DC	Pick-up voltage, V DC (max.) (initial)	$\begin{gathered} \text { Drop-out } \\ \text { voltage, V DC } \\ \text { (min.)(initial) } \end{gathered}$	Coil resistance, Ω ($\pm 10 \%$)	Nominal operating current, $\mathrm{mA}(\pm 10 \%)$	Nominal operating power, mW	Max. allowable voltage, V DC (at $60^{\circ} \mathrm{C} 140^{\circ} \mathrm{F}$)
ARE1003	ARE10A03	3	2.25	0.3	45	66.7	200	3.3
ARE104H	ARE10A4H	4.5	3.375	0.45	101	44.4	200	4.95
ARE1006	ARE10A06	6	4.5	0.6	180	33.3	200	6.6
ARE1009	ARE10A09	9	6.75	0.9	405	22.2	200	9.9
ARE1012	ARE10A12	12	9	1.2	720	16.7	200	13.2
ARE1024	ARE10A24	24	18	2.4	2,880	8.3	200	26.4

- Single side stable type (Impedance 75 2)
- Packing of standard PC board terminal: 50 pcs. in an inner package (carton); 500 pcs. in an outer package.
- Packing of surface-mount terminal: 25 pcs. in an inner package (tube); 200 pcs. in an outer package.
- Packing of surface-mount terminal: 400 pcs. in an inner package (tape and reel); 800 pcs . in an outer package.

Standard PC board terminal	Surface-mount terminal	Nominal coil voltage, V DC	Pick-up voltage, V DC (max.) (initial)	$\begin{gathered} \text { Drop-out } \\ \text { voltage, V DC } \\ \text { (min.)(initial) } \end{gathered}$	Coil resistance, $\Omega(\pm 10 \%)$	Nominal operating current, $\mathrm{mA}(\pm 10 \%)$	Nominal operating power, mW	Max. allowable voltage, V DC (at $60^{\circ} \mathrm{C} 140^{\circ} \mathrm{F}$)
ARE1303	ARE13A03	3	2.25	0.3	45	66.7	200	3.3
ARE134H	ARE13A4H	4.5	3.375	0.45	101	44.4	200	4.95
ARE1306	ARE13A06	6	4.5	0.6	180	33.3	200	6.6
ARE1309	ARE13A09	9	6.75	0.9	405	22.2	200	9.9
ARE1312	ARE13A12	12	9	1.2	720	16.7	200	13.2
ARE1324	ARE13A24	24	18	2.4	2,880	8.3	200	26.4

DIMENSIONS mm inch Interested in CAD data? You can obtain CAD data for all products with a CAD Data mark from your local Panasonic Electric Works representative.

1. Standard PC board terminal ($50 \Omega, 75 \Omega$ type)

CAD Data

General tolerance: $\pm 0.3 \pm .012$

(Deenergized condition)

Schematic（Top view）

（Deenergized condition）
－ 75Ω type

Schematic（Top view）

（Deenergized condition）

REFERENCE DATA

1－（1）．High frequency characteristics（Impedance 75Ω ）（Standard PC board terminal）
－V．S．W．R．characteristics

－Insertion loss characteristics

－Isolation characteristics

1-(2). High frequency characteristics (Impedance 50) (Standard PC board terminal)

V.S.W.R. characteristics

- Insertion loss characteristics

- Isolation characteristics

NOTES

1. Coil operating power

Pure DC current should be applied to the coil. The wave form should be rectangular. If it includes ripple, the ripple factor should be less than 5%.
However, check it with the actual circuit since the characteristics may be slightly different.

2. Cleaning

For automatic cleaning, the boiling method is recommended. Avoid ultrasonic cleaning which subjects the relays to high frequency vibrations, which may cause the contacts to stick.
It is recommended that alcoholic solvents be used.

3. Soldering

1) The manual soldering shall be performed under following condition.
Max. $260^{\circ} \mathrm{C} 500^{\circ} \mathrm{F}$ 10s
Max. $350^{\circ} \mathrm{C} 662^{\circ} \mathrm{F} 3 \mathrm{~s}$
The affect of the PCB on the relay will differ depending on the type of PCB used. Please verify the type of PCB to be used.
Preheat according to the following conditions.

Temperature	$120^{\circ} \mathrm{C} 248^{\circ} \mathrm{F}$ or less
Time	Within 2 minute

Soldering should be done at $260 \pm 5^{\circ} \mathrm{C}$ $500 \pm 9^{\circ} \mathrm{F}$ within 6 s .
2) In case of automatic soldering, the following conditions should be observed
(Surface-mount terminal)
(1) Position of measuring temperature

A: Surface of PC board where relay is mounted B: Above the PC board surface.
(2) IR (infrared reflow) soldering method

Temperature rise of relay itself may vary according to the mounting level or the heating method of reflow equipment. Therefore, please set the temperature of soldering portion of relay terminal and the top surface of the relay case not to exceed the above mentioned soldering condition.
It is recommended to check the temperature rise of each portion under actual mounting condition before use.

4. Packing style

1) Tape dimensions

2) Dimensions of plastic reel

5. Conditions for operation, transport and storage conditions

1) Ambient temperature, humidity, and atmospheric pressure during usage, transport, and storage of the relay:
(1) Temperature:
-40 to $+70^{\circ} \mathrm{C}-40$ to $+158^{\circ} \mathrm{F}$
(2) Humidity: 5 to 85% RH
(Avoid freezing and condensation.) The humidity range varies with the temperature. Use within the range indicated in the graph below.
(3) Atmospheric pressure: 86 to 106 kPa Temperature and humidity range for usage, transport, and storage:

2) Condensation

Condensation forms when there is a sudden change in temperature under high temperature and high humidity conditions. Condensation will cause deterioration of the relay insulation.
3) Freezing

Condensation or other moisture may freeze on the relay when the temperature is lower than $0^{\circ} \mathrm{C} 32^{\circ}$. This causes problems such as sticking of movable parts or operational time lags.
4) Low temperature, low humidity environments
The plastic becomes brittle if the relay is exposed to a low temperature, low humidity environment for long periods of time.

UP TO 8GHz SMALL MICROWAVE RELAYS

FEATURES

- Excellent high frequency characteristics (50Ω, at 5 GHz)
V.S.W.R.: Max. 1.25

Insertion loss: Max. 0.5 dB
Isolation: Min. 35dB
(Between open contacts)
Min. 30dB
(Between contact sets)

- Surface mount terminal

Surface mount terminals are now standard so there is much less work in designing PC boards.

- Small size

Size: $14.00(\mathrm{~L}) \times 9.00(\mathrm{~W}) \times 8.20(\mathrm{H}) \mathrm{mm}$
$.551(\mathrm{~L}) \times .354(\mathrm{~W}) \times .323(\mathrm{H})$ inch

TYPICAL APPLICATIONS

Measuring equipment market
Attenuator circuits, spectrum analyzer, oscilloscope
Mobile telecommunication market
IMT2000, microwave communication
Medical instrument market

SPECIFICATIONS

Contact			
Arrangement			2 Form C
Contact material			Gold plating
Initial contact resistance (By voltage drop 10V DC 10mA)			Max. $150 \mathrm{~m} \Omega$
Rating	Contact rating		1W (at 5 GHz , Impedance 50Ω, V.S.W.R. \&1.25) 10 mA 10 V DC (resistive load)
	Contact carrying power		1W (at 5 GHz , Impedance 50 Ω, V.S.W.R. \&1.25)
	Max. switching voltage		30 V DC
	Max. switching current		0.3 A DC
High frequency characteristics (Initial) (~5GHz, Impedance 50Ω)	V.S.W.R.		Max. 1.25
	Insertion loss (without D.U.T. board's loss)		Max. 0.5dB
	Isolation	Between open contacts	Min. 35dB
		Between contact sets	Min. 30dB
	Input power		1W (at 5 GHz , impedance 50Ω, V.S.W.R. \& 1.25 , at $20^{\circ} \mathrm{C}$)
Expected life (min. operations)	Mechanical (at 180 cpm)		10^{7}
	Electrical	1 W , at 5 GHz , V.S.W.R. \& 1.25	10^{6}
		10mA 10V DC (resistive load)	10^{6}
Coil (at $20^{\circ} \mathrm{C}, 68^{\circ} \mathrm{F}$)			
		Nominal operating power	
Single side stable		200 mW	
2 coil latching		150 mW	

Initial insulation resistance*1			Min. $500 \mathrm{M} \Omega$ (at 500 V DC)
Initial breakdown voltage*2 for 1 min .	Between open contacts		500 Vrms
	Between contact sets		500 Vrms
	Between contact and coil		500 Vrms
	Between coil and earth terminal		500 Vrms
	Between contact and earth terminal		500 Vrms
Operate time [Set time] ${ }^{* 3}$ (at $20^{\circ} \mathrm{C}$)			Max. 5ms [Max. 5 ms]
Release time (without diode)[Reset time]*3 (at $20^{\circ} \mathrm{C}$)			Max. 5ms [Max. 5 ms]
Temperature rise (at $\left.20^{\circ} \mathrm{C}\right)^{* 4}$			Max. $50^{\circ} \mathrm{C}$
Shock resistance		Functiona**5	Min. $500 \mathrm{~m} / \mathrm{s}^{2}$
		Destructive*6	Min. 1,000 m/s ${ }^{2}$
Vibration resistance		Functional*7	10 to 55 Hz at double amplitude of 3 mm
		Destructive	10 to 55 Hz at double amplitude of 5 mm
Conditions for operation, transport and storage*8 (Not freezing and condensing at low temperature)		Ambient temp.	$\begin{aligned} & -30^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & -22^{\circ} \mathrm{F} \text { to } 158^{\circ} \mathrm{F} \end{aligned}$
		Humidity	5 to 85\% R.H.
Unit weight			Approx. 3 g .11 oz

Remarks

* Specifications will vary with foreign standards certification ratings.
${ }^{*}$. Measurement at same location as "Initial breakdown voltage" section.
*2 Detection current: 10 mA
${ }^{*}$ Nominal operating voltage applied to the coil, excluding contact bounce time
${ }^{* 4}$ By resistive method, nominal voltage applied to the coil, 5GHz, V.S.W.R. \& 1.25
${ }^{*_{5}}$ Half-wave pulse of sine wave: 6 ms , detection time: $10 \mu \mathrm{~s}$.
${ }^{* 6}$ Pulse of sine wave: 11 ms .
${ }^{* 7}$ Detection time: $10 \mu \mathrm{~s}$
${ }^{* 8}$ Refer to 6. Conditions for operation, transport and storage conditions in NOTES (Page 418)

ORDERING INFORMATION

Note: Tape and reel packing symbol "-Z" is not marked on the relay. " X " type tape and reel packing (picked from $1 / 2 / 3-$ pin side) is also available. Suffix " X " instead of " Z ".

TYPES AND COIL DATA (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)

1. Standard PC board terminal

- Packing of standard PC board terminal: 50 pcs. in an inner package (carton); 500 pcs. in an outer package

Operating function	Coil Rating, V DC	Part No.	Pick-up voltage, V DC (max.) (initial)	Drop-out voltage, V DC (min.) (initial)	Nominal operating current, mA ($\pm 10 \%$)	Coil resistance, Ω ($\pm 10 \%$)	Nominal operating power, mW	Max. allowable voltage, V DC (at $70^{\circ} \mathrm{C}$ $158^{\circ} \mathrm{F}$)
		Standard PC board terminal						
Single side stable	3	ARJ2003	2.25	0.3	66.6	45	200	3.3
	4.5	ARJ204H	3.375	0.45	44.4	101.2	200	4.95
	12	ARJ2012	9	1.2	16.6	720	200	13.2
	24	ARJ2024	18	2.4	8.3	2,880	200	26.4
Operating function	Coil Rating,V DC	Part No.	Set voltage, V DC (max.) (initial)	Reset voltage, V DC (min.) (initial)	Nominal operating current, mA $(\pm 10 \%)$	Coil resistance, $\Omega(\pm 10 \%)$	Nominal operating power, mW	Max. allowable voltage, V DC (at $70^{\circ} \mathrm{C}$ $158^{\circ} \mathrm{F}$)
		Standard PC board terminal						
2 coil latching	3	ARJ2203	2.25	2.25	50	60	150	3.3
	4.5	ARJ224H	3.375	3.375	33.3	135	150	4.95
	12	ARJ2212	9	9	12.5	960	150	13.2
	24	ARJ2224	18	18	6.3	3,840	150	26.4

2. Surface-mount terminal

- Packing of surface-mount terminal: 50 pcs. in an inner package (carton); 500 pcs. in an outer package
- Packing of surface-mount terminal: 500 pcs . in an inner package (tape and reel); 500 pcs . in an outer package

Operating function	Coil Rating, V DC	Part No.		Pick-up voltage, V DC (max.) (initial)	Drop-out voltage, V DC (min.) (initial)	Nominal operating current, mA ($\pm 10 \%$)	Coil resistance, $\Omega(\pm 10 \%)$	Nominal operating power, mW	Max. allowable voltage, V DC (at $70^{\circ} \mathrm{C}$ $158^{\circ} \mathrm{F}$)
		Carton packing	Tape and reel packing						
Single side stable	3	ARJ20A03	ARJ20A03Z	2.25	0.3	66.6	45	200	3.3
	4.5	ARJ20A4H	ARJ20A4HZ	3.375	0.45	44.4	101.2	200	4.95
	12	ARJ20A12	ARJ20A12Z	9	1.2	16.6	720	200	13.2
	24	ARJ20A24	ARJ20A24Z	18	2.4	8.3	2,880	200	26.4

Operating function	Coil Rating, V DC	Part No.		Set voltage, V DC (max.) (initial)	Reset voltage, V DC (min.) (initial)	Nominal operating current, mA ($\pm 10 \%$)	Coil resistance, $\Omega(\pm 10 \%)$	Nominal operating power, mW	Max. allowable voltage, V DC (at $70^{\circ} \mathrm{C}$ $158^{\circ} \mathrm{F}$)
		Carton packing	Tape and reel packing						
$\begin{gathered} 2 \text { coil } \\ \text { latching } \end{gathered}$	3	ARJ22A03	ARJ22A03Z	2.25	2.25	50	60	150	3.3
	4.5	ARJ22A4H	ARJ22A4HZ	3.375	3.375	33.3	135	150	4.95
	12	ARJ22A12	ARJ22A12Z	9	9	12.5	960	150	13.2
	24	ARJ22A24	ARJ22A24Z	18	18	6.3	3,840	150	26.4

REFERENCE DATA

1. High frequency characteristics

Sample: ARJ20A12
Measuring method: Measured with MEW PC board by HP network analyzer (HP8510C).

- V.S.W.R. characteristics

- Insertion loss characteristics (without D.U.T. board's loss)
- Isolation characteristics

DIMENSIONSmminch

Interested in CAD data? You can obtain CAD data for all products with a CAD Data mark from your local Panasonic Electric Works representative.

1. Standard PC board terminal

General tolerance: $\pm 0.3 \pm .012$

2. Surface mount terminal

CAD Data

Expansion of A:
Coplanarity of terminals

\square All bottom surface of the base should be touched closely or soldered with PC board ground.

General tolerance: $\pm 0.3 \pm .012$

NOTES

1. Coil operating power

Pure DC current should be applied to the coil. The wave form should be rectangular. If it includes ripple, the ripple factor should be less than 5%.
However, check it with the actual circuit since the characteristics may be slightly different. The nominal operating voltage should be applied to the coil for more than 20 ms to set/reset the latching type relay.

2. Coil connection

When connecting coils, refer to the wiring diagram to prevent mis-operation or malfunction.

3. External magnetic field

Since RJ relays are highly sensitive polarized relays, their characteristics will be affected by a strong external magnetic field. Avoid using the relay under that condition.

4. Cleaning

For automatic cleaning, the boiling method is recommended. Avoid ultrasonic cleaning which subjects the relays to high frequency vibrations, which may cause the contacts to stick.
It is recommended that alcoholic solvents be used.

5. Tape and reel packing

1) Tape dimensions

2) Dimensions of plastic reel

6. Conditions for operation, transport and storage conditions

1) Ambient temperature, humidity, and atmospheric pressure during usage, transport, and storage of the relay:
(1) Temperature:
-30 to $+70^{\circ} \mathrm{C}-22$ to $+158^{\circ} \mathrm{F}$
(However, tolerance range is -30 to $+60^{\circ} \mathrm{C}-22$ to $+140^{\circ} \mathrm{F}$ if package is carried as is.)
(2) Humidity: 5 to 85% RH
(Avoid freezing and condensation.) The humidity range varies with the temperature. Use within the range indicated in the graph below.
(3) Atmospheric pressure: 86 to 106 kPa Temperature and humidity range for usage, transport, and storage:

2) Condensation

Condensation forms when there is a sudden change in temperature under high temperature and high humidity conditions. Condensation will cause deterioration of the relay insulation.
3) Freezing

Condensation or other moisture may freeze on the relay when the temperature is lower than $0^{\circ} \mathrm{C} 32^{\circ} \mathrm{F}$. This causes problems such as sticking of movable parts or operational time lags.
4) Low temperature, low humidity environments
The plastic becomes brittle if the relay is exposed to a low temperature, low humidity environment for long periods of time.
5) Storage procedures for surface-mount terminal types
Since the relay is very sensitive to humidity, it is packed in humidity-free, hermetically sealed packaging. When storing the relay, be careful of the following points:
(1) Be sure to use the relay immediately after removing it from its sealed package. (2) When storing the relay for long periods of time after removing it from its sealed package, we recommend using a humidity-free bag with silica gel to prevent subjecting the relay to humidity. Furthermore, if the relay is solder mounted when it has been subjected to excessive humidity, cracks and leaks can
occur. Be sure to mount the relay under the required mounting conditions.

7. Soldering

1) Surface-mount terminal

In case of automatic soldering, the following conditions should be observed
(1) Position of measuring temperature

(2) IR (infrared reflow) soldering method

Temperature rise of relay itself may vary according to the mounting level or the heating method of reflow equipment. Therefore, please set the temperature of soldering portion of relay terminal and the top surface of the relay case not to exceed the above mentioned soldering condition.
It is recommended to check the temperature rise of each portion under actual mounting condition before use.
2) Standard PC board terminal

Please meet the following conditions if this relay is to be automatically soldered.
(1) Preheating: Max. $120^{\circ} \mathrm{C} 248^{\circ} \mathrm{F}$
(terminal solder surface) for max. 120 seconds
(2) Soldering: Max. $260 \pm 5^{\circ} \mathrm{C} 500 \pm 9^{\circ} \mathrm{F}$ for max. 6 seconds
The effect on the relay depends on the actual substrate used. Please verify the substrate to be used.
Moisture-proof packaging enables RJ relay's standard PCB type capable for reflow soldering.
Please contact us in the case of reflow soldering considerations.
3) Hand soldering

Please meet the following conditions if this relay is to be soldered by hand.
(1) Wattage: 30 to 60 W
(2) Tip temperature/time: 280 to $300^{\circ} \mathrm{C}$

536 to $572^{\circ} \mathrm{F}$ for max. 5 seconds
The effect on the relay depends on the actual substrate used. Please verify the substrate to be used.
4) Avoid high frequency cleaning since this may adversely affect relay characteristics. Use alcohol-based cleaning solutions when cleaning relays.

8. Measuring method (Impedance 50Ω)

Connector

No.	Product name	Contents
1	HP 85131-60013	3.5 mm testport, Extension cable
2	HP 83059	3.5 mm coaxial adaptor

(Step 1) Calibrate the test system with HP calibration kit [HP85052B]
(Step 2) After calibration, connect the D.U.T. board and measure Connect 50Ω terminals on connectors other than those for measurement.
Notes)

1. All bottom surface of the base should be touched closely or soldered with PC board ground.
2. 4 ribs should be soldered with PC board ground.

Measuring board

1) Dimensions
<Surface mount terminal>

<Standard PC board terminal>

<Calibration board>

2) Material: Glass PTFE double-sided through hole PC board R-4737
(Matsushita Electric Works)
3) Board thickness: $t=0.8 \mathrm{~mm}$
4) Copper plating: $18 \mu \mathrm{~m}$

- Connector (SMA type receptacle)

Product name: R125 510 (RADIALL)
Insertion loss compensation
The insertion loss of relay itself is given by subtracting the insertion loss of shortcircuit the Com and the NC (or NO).
(signal path and two connectors)

9. Others

1) The switching lifetime is defined under the standard test condition specified in the JIS* C 5442-1996 standard (temperature 15 to $35^{\circ} \mathrm{C} 59$ to $95^{\circ} \mathrm{F}$, humidity 25 to 75%). Check this with the real device as it is affected by coil driving circuit, load type, activation frequency, activation phase, ambient conditions and other factors.
Also, be especially careful of loads such as those listed below.

- When used for AC load-operating and the operating phase is synchronous. Rocking and fusing can easily occur due
to contact shifting.
- High-frequency load-operating When high-frequency opening and closing of the relay is performed with a load that causes arcs at the contacts, nitrogen and oxygen in the air is fused by the arc energy and HNO_{3} is formed. This can corrode metal materials.
Three countermeasures for these are listed here.
(1) Incorporate an arc-extinguishing circuit.
(2) Lower the operating frequency
(3) Lower the ambient humidity

2) Use the relay within specifications such as coil rating, contact rating and on/ off service life. If used beyond limits, the relay may overheat, generate smoke or catch fire.
3) Be careful not to drop the relay. If accidentally dropped, carefully check its appearance and characteristics before use.
4) Be careful to wire the relay correctly. Otherwise, malfunction, overheat, fire or other trouble may occur.
5) If a relay stays on in a circuit for many months or years at a time without being activated, circuit design should be reviewed so that the relay can remain non-excited. A coil that receives current all the time heats, which degrades insulation earlier than expected. A latching type relay is recommended for such circuits.
6) The latching type relay is shipped in the reset position. But jolts during transport or impacts during installation can change the reset position. It is, therefore, advisable to build a circuit in which the relay can be initialized (set and reset) just after turning on the power. 7) If silicone materials (e.g., silicone rubbers, silicone oils, silicone coating agents, silicone sealers) are used in the vicinity of the relay, the gas emitted from the silicone may adhere to the contacts of the relay during opening and closing and lead to improper contact. If this is the case, use a material other than silicone. 8) We recommend latching type when using in applications which involve lengthy duty cycles.

* Japanese Industrial Standards

1.5 GHz MICROWAVE RELAYS

FEATURES

1.Excellent high frequency characteristics

Impedance 50Ω (Initial)	V.S.W.R. (Max.)	Insertion loss (dB. Max.)
	Isolation 900 MHz) (dB. Min.)	0.3 (at 900 MHz)
	V.S.W.R. (Max.)	Insertion loss (dB. Max.)
	Isolation (dB. Min.)	0.2 (at 900 MHz) 900 MHz)

2.High sensitivity in small size

Size: $20.2 \times 11.2 \times 9.7 \mathrm{~mm}$ $.795 \times .441 \times .382$ inch
Nominal power consumption: 200 mW (single side stable type)
3.Sealed construction for automatic cleaning
4.Reversed contact types and latching types are also available

TYPICAL APPLICATIONS

- Audio visual equipment

Broadcast satellite tuners VCRs,
CATVs, TVs

- Communication equipment Automobile telephones, maritime telephones, emergency and disaster prevention communications, PCM switches
- Instrumentation

Testing equipment, measuring equipment

SPECIFICATIONS

Contact

Arrangement			1 Form C
Contact material		Stationary	Gold plating
		Movable	Gold clad
Initial contact resistance, max. (By voltage drop 10V DC 10mA)			$100 \mathrm{~m} \Omega$
Rating	Max. switching power		10 W
	Max. switching voltage		30 V DC
	Max. switching current		0.5 A
	Nominal switching capacity		0.01 A 24 V DC 10 W (at 1.2 GHz , Impedance 50Ω)
High frequency characteristics (Impedance 50Ω) (Initial)	V.S.W.R.		$\begin{gathered} \text { Max. } 1.5 \\ \text { (at } 900 \mathrm{MHz} \text {) } \end{gathered}$
	Insertion loss		$\begin{aligned} & \text { Max. } 0.3 \mathrm{~dB} \\ & \text { (at } 900 \mathrm{MHz} \text {) } \end{aligned}$
	Isolation		Min. 60 dB (at 1.5 GHz)
High frequency characteristics (Impedance 75Ω) (Initial)	V.S.W.R.		$\begin{gathered} \text { Max. } 1.2 \\ \text { (at } 900 \mathrm{MHz} \text {) } \end{gathered}$
	Insertion loss		$\begin{aligned} & \text { Max. } 0.2 \mathrm{~dB} \\ & \text { (at } 900 \mathrm{MHz} \text {) } \end{aligned}$
	Isolation		$\begin{aligned} & \text { Min. } 60 \mathrm{~dB} \\ & \text { (at } 1.5 \mathrm{GHz} \text {) } \end{aligned}$
Expected life (min. operations)	Mechanical		5×10^{6}
	Electrical	0.01 A 24 V DC	3×10^{5}
		10 W 1.2 GHz	10^{5}

Coil (at $25^{\circ} \mathrm{C}, 68^{\circ} \mathrm{F}$)

	Nominal operating power
Single side stable	200 mW
1 coil latching	200 mW
2 coil latching	400 mW

Characteristics

Initial insulation resistance*1			Min. $100 \mathrm{M} \Omega$ at 500 V DC
Initial breakdown voltage*2	Between open contacts		500 Vrms
	Between contact and coil		1,000 Vrms
	Between contact and earth terminal		500 Vrms
Operate time [Set time] ${ }^{* 3}$ (at nominal voltage)			Max. 10 ms (Approx. 6 ms) [Max. 10 ms [Approx. $5 \mathrm{~ms}]$]
Release time (without diode) [Reset time]*3 (at nominal voltage)*2			Max. 6 ms (Approx. 3 ms) [Max. 10 ms [Approx. $5 \mathrm{~ms}]$]
Temperature rise			Max. $60^{\circ} \mathrm{C}$ with nominal coil voltage across coil and at nominal switching capacity
Shock resistance		Functional*4	Min. $196 \mathrm{~m} / \mathrm{s}^{2}\{20 \mathrm{G}\}$
		Destructive*5	Min. $980 \mathrm{~m} / \mathrm{s}^{2}$ \{100 G\}
Vibration resistance		Functional*6	10 to 55 Hz at double amplitude of 3 mm
		Destructive	10 to 55 Hz at double amplitude of 5 mm
Conditions for operation, transport and storage*7 (Not freezing and condensing at low temperature)		Ambient temp.	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{F} \text { to } 158^{\circ} \mathrm{F} \end{aligned}$
		Humidity	5 to 85\% R.H.
Unit weight			Approx. 4.4 g .155 oz

Remarks

* Specifications will vary with foreign standards certification ratings.
${ }^{*} 1$ Measurement at same location as "Initial breakdown voltage" section
*2 Detection current: 10 mA
${ }^{*}$ Excluding contact bounce time
${ }^{*} 4$ Half-wave pulse of sine wave: 11 ms , detection time: $10 \mu \mathrm{~s}$
${ }^{* 5}$ Half-wave pulse of sine wave: 6 ms
${ }^{*} 6$ Detection time: $10 \mu \mathrm{~s}$
${ }^{* 7}$ Refer to 5. Conditions for operation, transport and storage conditions in NOTES (Page 424).

ORDERING INFORMATION

Note: No part number distinguishment on impedance in RK relays.
Standard packing; Carton: 50 pcs. Case 500 pcs.

TYPES AND COIL DATA (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)

- Single side stable type
- 50 pcs. in an inner package (carton); 500 pcs. in an outer package

Part No.		Nominal coil voltage, V DC	Pick-up voltage, V DC (max.) (initial)	Drop-out voltage, V DC (min.) (initial)	Coil resistance, $\Omega(\pm 10 \%)$	Nominal operating current,$\mathrm{mA}(\pm 10 \%)$	Nominal operating power, mW	Maximum. allowable voltage, V DC (at $60^{\circ} \mathrm{C} 140^{\circ} \mathrm{F}$)
Standard type	Reversed type							
RK1-3V	RK1R-3V	3	2.25	0.3	45	66.7	200	3.3
RK1-4.5V	RK1R-4.5V	4.5	3.38	0.45	101	44.4	200	4.95
RK1-5V	RK1R-5V	5	3.75	0.5	125	40.7	200	5.5
RK1-6V	RK1R-6V	6	4.5	0.6	180	33.3	200	6.6
RK1-9V	RK1R-9V	9	6.75	0.9	405	22.2	200	9.9
RK1-12V	RK1R-12V	12	9	1.2	720	16.7	200	13.2
RK1-24V	RK1R-24V	24	18	2.4	2,880	8.3	200	26.4

- 1 coil latching type
- 50 pcs. in an inner package (carton); 500 pcs. in an outer package

Part No.		Nominal coil voltage, V DC	$\begin{aligned} & \text { Set voltage, } \\ & \text { V DC } \\ & \text { (max.) (initial) } \end{aligned}$	Reset voltage, V DC (max.) (initial)	Coil resistance, $\Omega(\pm 10 \%)$	Nominal operating current, $\mathrm{mA}(\pm 10 \%)$	Nominal operating power, mW	Maximum. allowable voltage, V DC (at $60^{\circ} \mathrm{C} 140^{\circ} \mathrm{F}$)
Standard type	Reversed type							
RK1-L-3V	RK1R-L-3V	3	2.25	2.25	45	66.7	200	3.3
RK1-L-4.5V	RK1R-L-4.5V	4.5	3.38	3.38	101	44.4	200	4.95
RK1-L-5V	RK1R-L-5V	5	3.75	3.75	125	40	200	5.5
RK1-L-6V	RK1R-L-6V	6	4.5	4.5	180	33.3	200	6.6
RK1-L-9V	RK1R-L-9V	9	6.75	6.75	405	22.2	200	9.9
RK1-L-12V	RK1R-L-12V	12	9	9	720	16.7	200	13.2
RK1-L-24V	RK1R-L-24V	24	18	18	2,880	8.3	200	26.4

- 2 coil latching type
- 50 pcs. in an inner package (carton); 500 pcs. in an outer package

Part No.		Nominal coil voltage, V DC	$\begin{aligned} & \text { Set voltage, } \\ & \text { V DC } \\ & \text { (max.) (initial) } \end{aligned}$	Reset voltage, V DC (max.) (initial)	Coil resistance, Ω ($\pm 10 \%$)	Nominal operating current,$\mathrm{mA}(\pm 10 \%)$	Nominal operating power, mW	Maximum. allowable voltage, V DC (at $60^{\circ} \mathrm{C} 140^{\circ} \mathrm{F}$)
Standard type	Reversed type							
RK1-L2-3V	RK1R-L2-3V	3	2.25	2.25	22.5	133.3	400	3.3
RK1-L2-4.5V	RK1R-L2-4.5V	4.5	3.38	3.38	50.6	88.9	400	4.95
RK1-L2-5V	RK1R-L2-5V	5	3.75	3.75	62.5	80	400	5.5
RK1-L2-6V	RK1R-L2-6V	6	4.5	4.5	90	66.7	400	6.6
RK1-L2-9V	RK1R-L2-9V	9	6.75	6.75	202.5	44.4	400	9.9
RK1-L2-12V	RK1R-L2-12V	12	9	9	360	33.3	400	13.2
RK1-L2-24V	RK1R-L2-24V	24	18	18	1,440	16.7	400	26.4

PC board pattern (Bottom view)

Single side stable and 1 coil latching

2 coil latching
3-0.6×0.3

Single side stable and
1 coil latching

2 coil latching

Schematic (Bottom view)

(Reset condition)

(Reset condition)

REFERENCE DATA

1.-(1) High frequency characteristics (Impedance 75Ω)

Sample: RK1-12V
Measuring method: Measured with HP network analyzer (HP8753C)

- V.S.W.R. characteristics

- Insertion loss characteristics

- Isolation characteristics

1.-(2) High frequency characteristics (Impedance 50 $)$

Sample: RK1-5V
Measuring method: Measured with HP network analyzer (HP8753C)

- V.S.W.R. characteristics

- Insertion loss characteristics

- Isolation characteristics

2. Coil temperature rise

Sample: RK1-12V, RK1-L-12V, RK1-L2-12V
No. of samples: $\mathrm{n}=6$
Carrying current: 10 mA
Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$

4.-(1) Mechanical life test (Single side stable) Sample: RK1-12V; No. of samples: $\mathrm{n}=12$

3.-(1) Operate/Release time
(Single side stable)
Sample: RK1-12V; No. of samples: $\mathrm{n}=6$

3.-(2) Set/Reset time (Latching)

Sample: RK1-L-12V, RK1-L2-12V
No. of samples: $\mathrm{n}=12$

4.-(2) Mechanical life test (Latching) Sample: RK1-L2-12V No. of samples: $\mathrm{n}=12$

4.-(3) Mechanical life test

Sample: RK1-12V

5. Electrical life test (0.01 A 24 V DC)

Sample: RK1-12V; No. of samples: $\mathrm{n}=6$

8.-(1) Influence of adjacent mounting Sample: RK1-12V; No. of sample: $\mathrm{n}=10$

6. Ambient temperature characteristics

Sample: RK1-12V; No. of samples: $n=6$

7. Contact resistance distribution (initial) Sample: RK1-12V No. of samples: $\mathrm{n}=50$ (50×2 contacts)

8.-(2) Influence of adjacent mounting Sample: RK1-12V; No. of samples: $\mathrm{n}=10$

NOTES

1. Coil operating power

Pure DC current should be applied to the coil. The wave form should be rectangular. If it includes ripple, the ripple factor should be less than 5%.
However, check it with the actual circuit since the characteristics may be slightly different. The nominal operating voltage should be applied to the coil for more than 20 ms to set/reset the latching type relay.

2. Coil connection

When connecting coils, refer to the wiring diagram to prevent mis-operation or malfunction.

3. External magnetic field

Since RK relays are highly sensitive polarized relays, their characteristics will be affected by a strong external magnetic field. Avoid using the relay under that condition.

4. Soldering and cleaning

1) Perform manual soldering under the conditions below.

- Within 10 s at $260^{\circ} \mathrm{C} 500^{\circ} \mathrm{F}$
- Within 3 s at $350^{\circ} \mathrm{C} 662^{\circ} \mathrm{F}$

Preheat according to the following conditions.

Temperature	$120^{\circ} \mathrm{C} 248^{\circ} \mathrm{F}$ or less
Time	Within 2 minute

Soldering should be done at $260 \pm 5^{\circ} \mathrm{C}$ $500 \pm 9^{\circ} \mathrm{F}$ within 6 s .
2) For automatic cleaning, the boiling method is recommended. Avoid ultrasonic cleaning which subjects the relays to high frequency vibrations, which may cause the contacts to stick. It is recommended that alcoholic solvents be used.
5. Conditions for operation, transport and storage conditions

1) Ambient temperature, humidity, and atmospheric pressure during usage, transport, and storage of the relay:
(1) Temperature:
-40 to $+70^{\circ} \mathrm{C}-40$ to $+158^{\circ} \mathrm{F}$
(2) Humidity: 5 to 85% RH
(Avoid freezing and condensation.) The humidity range varies with the temperature. Use within the range indicated in the graph below.
(3) Atmospheric pressure: 86 to 106 kPa Temperature and humidity range for usage, transport, and storage:

2) Condensation

Condensation forms when there is a sudden change in temperature under high temperature and high humidity conditions. Condensation will cause deterioration of the relay insulation.
3) Freezing

Condensation or other moisture may freeze on the relay when the temperature is lower than $0^{\circ} \mathrm{C} 32^{\circ} \mathrm{F}$. This causes problems such as sticking of movable parts or operational time lags.
4) Low temperature, low humidity environments
The plastic becomes brittle if the relay is exposed to a low temperature, low humidity environment for long periods of time.

6. Latching relay

In order to assure proper operating regardless of changes in the ambient usage temperature and usage conditions, nominal operating voltage should be applied to the coil for more than 30 ms to set/reset the latching type relay.

Panasonic ideas for life

mm inch

FEATURES

1. High frequency relay with the low profile of 4 mm .157 inch
2. Excellent high frequency

characteristics

- Isolation: Min. 10 dB (at 1.8 GHz)
- Insertion loss: Max. 1.0dB (at 1.8 GHz)
- V.S.W.R.: Max. 1.3 (at 1.8 GHz)

3. High sensitivity in small size

Size: $10.6 \times 9 \times 4 \mathrm{~mm}$
$.417 \times .354 \times .157$ inch
Nominal operating power: 140 mW
4. Utilizes tube package for automatic mounting.
5. Self-clinching terminal also available

TYPICAL APPLICATIONS

- Antenna switching of mobile phone
- Switching signal of measuring equipment
- All types of compact wireless devices

SPECIFICATIONS

Contact

Arrangement		1 Form C
Contact material	Stationary	$\mathrm{Ag}+\mathrm{Au}$ clad
	Movable	AgPd
Initial contact resistance, max. (By voltage drop 6 V DC 0.1 A)		$50 \mathrm{~m} \Omega$
Rating	Nominal switching capacity	$0.1 \text { A } 30 \text { V DC }$ Contact switching power: 1 W (Max. 1.8 GHz); Contact carrying power: 3 W (Max. 1.2 GHz) 1 W (Max. 1.8 GHz)
High frequency characteristics (Impedance 50』) (Initial)	V.S.W.R.	Max. 1.2 (at 1 GHz) Max. 1.3 (at 1.8 GHz)
	Insertion loss	Max. 0.5 dB (at 1 GHz) Max. 1 dB (at 1.8 GHz)
	Isolation	Min. 15 dB (at 1 GHz) Min. 10 dB (at 1.8 GHz)
Expected life (min. operations)	Mechanical (at 180 cpm)	5×10^{6}
	Electrical (at 20 cpm)	10^{5} (0.1 A 30 V DC resistive load)
		10^{5} (1 W at 1.8 GHz ; V.S.W.R.: max. 1.3)

Coil (at 25C, 68F)

Voltage type	Nominal operating power
1.5 to 12 V DC	140 mW
24 V DC	270 mW

Characteristics

Max. operating speed (at rated load)			20 cpm
Initial insulation resistance*1			Min. 1,000 M 2 at 500 V DC
Initial breakdown voltage*2	Between open contacts		750 Vrms for 1 min.
	Between contacts and coil		1,500 Vrms for 1 min .
Operate time*3 (at nominal voltage)			Max. 3 ms (Approx. 1.5 ms)
Release time(without diode)*3 (at nominal voltage)			Max. 2 ms (Approx. 1 ms)
Temperature rise			Max. 50Cwith nominal coil voltage across coil and at nominal switching capacity
Shock resistance		Functiona** ${ }^{*}$	Min. $500 \mathrm{~m} / \mathrm{s}^{2}\{50 \mathrm{G}\}$
		Destructive*5	Min. 1,000 m/s² $\{100 \mathrm{G}\}$
Vibration resistance		Functional*6	10 to 55 Hz at double amplitude of 3 mm
		Destructive	$10 \text { to } 55 \mathrm{~Hz}$ at double amplitude of 5 mm
Conditions for operation, transport and storage*7 (Not freezing and condensing at low temperature)		Ambient temp.	Đ40C to 70C Đ40F to 158F
		Humidity	5 to 85\% R.H.
Unit weight			Approx. $1 \mathrm{~g} \mathrm{}$.

Remarks

* Specifications will vary with foreign standards certification ratings.
*1 Measurement at same location as Òlnitial breakdown voltageÓ section
${ }^{2}$ Detection current: 10 mA
${ }^{* 3}$ Excluding contact bounce time
${ }^{* 4}$ Half-wave pulse of sine wave: 11 ms , detection time: $10 \mu \mathrm{~s}$
${ }^{* 5}$ Half-wave pulse of sine wave: 6 ms
${ }^{6}{ }^{6}$ Detection time: $10 \mu \mathrm{~s}$
${ }^{* 7}$ Refer to 7. Conditions for operation, transport and storage conditions in NOTES at the back of this data sheet.

ORDERING INFORMATION

| Contact arrangement | Operating function | Terminal shape | Coil voltage (DC) |
| :---: | :---: | :---: | :---: | :---: |
| 1: 1 Form C | Nil: Single side stable | Nil: Standard PC board
 terminal
 H: Self-clinching terminal | $1.5,3,4.5,5,6$,
 $9,12,24 \mathrm{~V}$ |

[^41]RP

TYPES ANE COIL DATA (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)

Part No.		Nominal voltage, V DC	Pick-up voltage, V DC (max.) (initial)	Drop-out voltage, V DC (min.) (initial)	Nominal operating current, $\mathrm{mA}(\pm 10 \%)$	Coil resistance, $\Omega(\pm 10 \%)$	Nominal operating power, mW	Maximum. allowable voltage, V DC
Standard PC board terminal	Self-clinching terminal							
RP1-1.5V	RP1-H-1.5V	1.5	1.125	0.15	93.8	16	140	2.25
RP1-3V	RP1-H-3V	3	2.25	0.3	46.7	64.3	140	4.5
RP1-4.5V	RP1-H-4.5V	4.5	3.375	0.45	31.1	145	140	6.75
RP1-5V	RP1-H-5V	5	3.75	0.5	28	178	140	7.5
RP1-6V	RP1-H-6V	6	4.5	0.6	23.3	257	140	9
RP1-9V	RP1-H-9V	9	6.75	0.9	15.6	579	140	13.5
RP1-12V	RP1-H-12V	12	9	1.2	11.7	1,028	140	18
RP1-24V	RP1-H-24V	24	18	2.4	11.3	2,133	270	28.8

DIMENSIONS mminch
Interested in CAD data? You can obtain CAD data for all products with a CAD Data mark from your local Panasonic Electric Works representative.

REFERENCE DATA

1. High frequency characteristics

Sample: RP1-6V
Measuring method: Impedance 503/4 Measuring tool:

- V.S.W.R

2. Coil temperature rise

Sample: RP1-6V; No. of samples: $\mathrm{n}=5$
Carrying current: 0.1 A
Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$

4. Mechanical life

Sample: RP1-5V; No. of samples: $\mathrm{n}=8$

- Change of pick-up, drop-out voltage

6. Ambient temperature characteristics

Sample: RP1-6V; No. of samples: $\mathrm{n}=5$

- Insertion loss

3. Operate/release time

Sample: RP1-9V; No. of samples: $n=50$

- With diode

5. Electrical life (0.1 A 30 V DC)

Sample: RP1-6V; No. of samples: $\mathrm{n}=6$

- Change of pick-up/drop-out voltage

7. Contact resistance distribution (initial) Sample: RP1-12V; No. of samples: $\mathrm{n}=25$

- Isolation

- Without diode

- Change of contact resistance

8.-(1) Influence of adjacent mounting Sample: RP1-12V; No. of samples: $\mathrm{n}=6$

9. High frequency switching test (1.2 GHz, 1 W)

Sample: RP1-6V; No. of samples: $\mathrm{n}=6$
Ambient temperature: $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$

8.-(2) Influence of adjacent mounting Sample: RP1-12V; No. of samples: $n=6$

8.-(3) Influence of adjacent mounting Sample: RP1-12V; No. of samples: $\mathrm{n}=6$

- Change of pick-up/drop-out voltage

- Change of contact resistance

NOTES

1. Coil operating power

Pure DC current should be applied to the coil. The wave form should be rectangular. If it includes ripple, the ripple factor should be less than 5%.
However, check it with the actual circuit since the characteristics may be slightly different. The nominal operating voltage should be applied to the coil for more than 20 ms to set/reset the latching type relay.

2. Coil connection

When connecting coils, refer to the wiring diagram to prevent mis-operation or malfunction.

3. External magnetic field

Since RP relays are highly sensitive polarized relays, their characteristics will be affected by a strong external magnetic field. Avoid using the relay under that condition.

4. Packing direction

Relays are packed in a tube with the orientation stripe (PIN NO. 1) toward the green stopper.

5. Automatic mounting

To maintain the internal function of the relay, the chucking pressure should not exceed the values below.
Chucking pressure* in the direction A : $4.9 \mathrm{~N}\{500 \mathrm{gf}\}$ or less
Chucking pressure* in the direction B : $9.8 \mathrm{~N}\{1 \mathrm{kgf}\}$ or less
Chucking pressure* in the direction C: $9.8 \mathrm{~N}\{1 \mathrm{kgf}\}$ or less

Please chuck the एकातa portion.
Avoid chucking the center of the relay. In addition, excessive chucking pressure to the pinpoint of the relay should be avoided.

*Value of chucking pressure is shown by the value of weight pressed on the portion (4 mm .157 inch dia.).

6. Soldering

Preheat according to the following conditions.

Temperature	$120^{\circ} \mathrm{C} 248^{\circ} \mathrm{F}$ or less
Time	Within 2 minute

Soldering should be done at $260 \pm 5^{\circ} \mathrm{C}$
$500 \pm 9^{\circ} \mathrm{F}$ within 6 s .

1) Perform manual soldering under the conditions below.

- Within 10 s at $260^{\circ} \mathrm{C} 500^{\circ} \mathrm{F}$
- Within 3 s at $350^{\circ} \mathrm{C} 662^{\circ} \mathrm{F}$

7. Conditions for operation, transport and storage conditions
1) Ambient temperature, humidity, and atmospheric pressure during usage, transport, and storage of the relay:
(1) Temperature:
-40 to $+70^{\circ} \mathrm{C}-40$ to $+158^{\circ} \mathrm{F}$
(2) Humidity: 5 to 85% RH
(Avoid freezing and condensation.)
The humidity range varies with the temperature. Use within the range indicated in the graph below.
(3) Atmospheric pressure: 86 to 106 kPa

Temperature and humidity range for
usage, transport, and storage:

2) Condensation

Condensation forms when there is a sudden change in temperature under high temperature and high humidity conditions. Condensation will cause deterioration of the relay insulation. 3) Freezing

Condensation or other moisture may freeze on the relay when the temperature is lower than $0^{\circ} \mathrm{C} 32^{\circ} \mathrm{F}$. This causes problems such as sticking of movable parts or operational time lags.
4) Low temperature, low humidity environments
The plastic becomes brittle if the relay is exposed to a low temperature, low humidity environment for long periods of time.

Panasonic ideas for life

FEATURES

1. Super miniature design
$14 \times 8.6 \times 7.2 \mathrm{~mm} .551 \times .339 \times .283$ inch (standard PC board terminal)

2. Lineup includes silent type.

(75Ω type only)

Operation noise (Unit: dB)

3 GHz MICROWAVE RELAYS Miniature size
Lineup includes 50/75 Ω type

RS RELAYS (ARS)

3. Excellent high frequency

 characteristics- Impedance: 50Ω
(Standard PC board terminal)

Frequency	to 900 MHz	to 3 GHz
V. S. W. R. (Max.)	1.20	1.40
Insertion loss (dB, Max.)	0.10	0.35
Isolation (dB, Min.)	60	35

- Impedance: 75Ω
(Standard PC board terminal)

Frequency	to 900 MHz	to 3 GHz
V. S. W. R. (Max.)	1.15	1.40
Insertion loss (dB, Max.)	0.10	0.30
Isolation (dB, Min.)	60	30

- Impedance: 50Ω
(Surface-mount terminal)

Frequency	to 900 MHz	to 3 GHz
V. S. W. R. (Max.)	1.20	1.40
Insertion loss (dB, Max.)	0.20	0.40
Isolation (dB, Min.)	55	30

- Impedance: 75Ω
(Surface-mount terminal)

Frequency	to 900 MHz	to 3 GHz
V. S. W. R. (Max.)	1.20	1.50
Insertion loss (dB, Max.)	0.20	0.50
Isolation (dB, Min.)	55	30

4. Lineup includes surface-mount terminal type

E and Y layouts available.
5. Lineup includes reversed contact type
Great design freedom is possible using reversed contact type in which the positions of the N.O. and N.C. contacts are switched.

TYPICAL APPLICATIONS

1. Broadcasting and video equipment

 markets- Digital broadcasting equipment
- STB/tuner, etc.

2. Mobile phone base stations
3. Communications market

- Antenna switching
- All types of wireless devices

4. Measurement equipment market

- Spectrum analyzer and oscilloscope, etc.

ORDERING INFORMATION

TYPES

1. Standard PC board terminal and standard contact type

Impedance	Nominal coil voltage	Part No.			
		Single side stable type	1 coil latching type		2 coil latching type
50Ω	3 V DC	ARS1403	ARS1503		ARS1603
	4.5 V DC	ARS 144 H	ARS154H		ARS164H
	9 V DC	ARS1409	ARS1509		ARS1609
	12 V DC	ARS1412	ARS1512		ARS1612
	24 V DC	ARS1424	ARS1524		ARS1624
Impedance	Nominal coil voltage	Part No.			
		Standard type			Silent type
		Single side stable type	1 coil latching type	2 coil latching type	Single side stable type
75Ω	3 V DC	ARS1003	ARS1103	ARS1203	ARS1303
	4.5 V DC	ARS104H	ARS114H	ARS124H	ARS134H
	9 V DC	ARS1009	ARS1109	ARS1209	ARS1309
	12 V DC	ARS1012	ARS1112	ARS1212	ARS1312
	24 V DC	ARS1024	ARS1124	ARS1224	ARS1324

Standard packing: 50 pcs. in an inner package; 500 pcs . in an outer package

2. Standard PC board terminal and reversed contact type

Impedance	Nominal coil voltage	Part No.			
		Single side stable type	1 coil latching type		2 coil latching type
50Ω	3 V DC	ARS3403	ARS3503		ARS3603
	4.5 V DC	ARS344H	ARS354H		ARS364H
	9 V DC	ARS3409	ARS3509		ARS3609
	12 V DC	ARS3412	ARS3512		ARS3612
	24 V DC	ARS3424	ARS3524		ARS3624
Impedance	Nominal coil voltage	Part No.			
		Standard type			Silent type
		Single side stable type	1 coil latching type	2 coil latching type	Single side stable type
75Ω	3 V DC	ARS3003	ARS3103	ARS3203	ARS3303
	4.5 V DC	ARS304H	ARS314H	ARS324H	ARS334H
	9 V DC	ARS3009	ARS3109	ARS3209	ARS3309
	12 V DC	ARS3012	ARS3112	ARS3212	ARS3312
	24 V DC	ARS3024	ARS3124	ARS3224	ARS3324

Standard packing: 50 pcs. in an inner package; 500 pcs. in an outer package
3. Surface-mount terminal and standard contact type, E layout

Impedance	Nominal coil voltage	Part No.		
		Single side stable type	1 coil latching type	2 coil latching type
50Ω	3 V DC	ARS14A03]	ARS15A03]	ARS16A03]
	4.5 V DC	ARS14A4HD	ARS15A4HD	ARS16A4HD
	9 V DC	ARS14A09]	ARS15A09]	ARS16A09]
	12 V DC	ARS14A12]	ARS15A12]	ARS16A12]
	24 V DC	ARS14A24]	ARS15A24]	ARS16A24]
75Ω	3 V DC	ARS10A03]	ARS11A03]	ARS12A03]
	4.5 V DC	ARS10A4HD	ARS11A4HD	ARS12A4HD
	9 V DC	ARS10A09]	ARS11A09]	ARS12A09]
	12 V DC	ARS10A12]	ARS11A12]	ARS12A12]
	24 V DC	ARS10A24]	ARS11A24]	ARS12A24]

Standard packing: 40 pcs . in an inner package (tube); $1,000 \mathrm{pcs}$. in an outer package
Standard packing: 500 pcs . in an inner package (tape and reel); 500 pcs. in an outer package
Note: The box at the end of a part number shows where packing type is indicated. If there is no indication, tube packing will be used.
If " X " or " Z " is added, tape and reel packing will be used. Example: ARS14A03 (tube packing), ARS14A03X (tape and reel packing)

4. Surface-mount terminal and standard contact type, Y layout

Impedance	Nominal coil voltage	Part No.		
		Single side stable type	1 coil latching type	2 coil latching type
50Ω	3 V DC	ARS14Y03]	ARS15Y03]	ARS16Y03]
	4.5 V DC	ARS14Y4HD	ARS15Y4HD	ARS16Y4HD
	9 V DC	ARS14Y09]	ARS15Y09]	ARS16Y09]
	12 V DC	ARS14Y12]	ARS15Y12]	ARS16Y12]
	24 V DC	ARS14Y24]	ARS15Y24]	ARS16Y24]
75Ω	3 V DC	ARS10Y03]	ARS11Y03]	ARS12Y03]
	4.5 V DC	ARS10Y4HD	ARS11Y4HD	ARS12Y4HD
	9 V DC	ARS10Y09]	ARS11Y09]	ARS12Y09]
	12 V DC	ARS10Y12]	ARS11Y12]	ARS12Y12]
	24 V DC	ARS10Y24]	ARS11Y24]	ARS12Y24]

Standard packing: 40 pcs. in an inner package (tube); 1,000 pcs. in an outer package
Standard packing: 500 pcs . in an inner package (tape and reel); 500 pcs. in an outer package
Note: The box at the end of a part number shows where packing type is indicated. If there is no indication, tube packing will be used.
If " X " or " Z " is added, tape and reel packing will be used. Example: ARS14Y03 (tube packing), ARS14Y03X (tape and reel packing)
5. Surface-mount terminal and reversed contact type, E layout

Impedance	Nominal coil voltage	Part No.		
		Single side stable type	1 coil latching type	2 coil latching type
50Ω	3 V DC	ARS34A03]	ARS35A03]	ARS36A03]
	4.5 V DC	ARS34A4HD	ARS35A4HD	ARS36A4HD
	9 V DC	ARS34A09]	ARS35A09]	ARS36A09]
	12 V DC	ARS34A12]	ARS35A12]	ARS36A12]
	24 V DC	ARS34A24]	ARS35A24]	ARS36A24]
75Ω	3 V DC	ARS30A03]	ARS31A03]	ARS32A03]
	4.5 V DC	ARS30A4HD	ARS31A4HD	ARS32A4HD
	9 V DC	ARS30A09]	ARS31A09]	ARS32A09]
	12 V DC	ARS30A12]	ARS31A12]	ARS32A12]
	24 V DC	ARS30A24]	ARS31A24]	ARS32A24]

Standard packing: 40 pcs. in an inner package (tube); 1,000 pcs. in an outer package
Standard packing: 500 pcs. in an inner package (tape and reel); 500 pcs. in an outer package
Note: The box at the end of a part number shows where packing type is indicated. If there is no indication, tube packing will be used
If " X " or " Z " is added, tape and reel packing will be used. Example: ARS34A03 (tube packing), ARS34A03X (tape and reel packing)
6. Surface-mount terminal and reversed contact type, Y layout

Impedance	Nominal coil voltage	Part No.		
		Single side stable type	1 coil latching type	2 coil latching type
50Ω	3 V DC	ARS34Y03]	ARS35Y03]	ARS36Y03]
	4.5 V DC	ARS34Y4HD	ARS35Y4HD	ARS36Y4HD
	9 V DC	ARS34Y09]	ARS35Y09]	ARS36Y09]
	12 V DC	ARS34Y12]	ARS35Y12]	ARS36Y12]
	24 V DC	ARS34Y24]	ARS35Y24]	ARS36Y24]
75Ω	3 V DC	ARS30Y03]	ARS31Y03]	ARS32Y03]
	4.5 V DC	ARS30Y4HD	ARS31Y4HD	ARS32Y4HD
	9 V DC	ARS30Y09]	ARS31Y09]	ARS32Y09]
	12 V DC	ARS30Y12]	ARS31Y12]	ARS32Y12]
	24 V DC	ARS30Y24]	ARS31Y24]	ARS32Y24]

Standard packing: 40 pcs. in an inner package (tube); 1,000 pcs. in an outer package
Standard packing: 500 pcs . in an inner package (tape and reel); 500 pcs. in an outer package
Note: The box at the end of a part number shows where packing type is indicated. If there is no indication, tube packing will be used. If " X " or " Z " is added, tape and reel packing will be used. Example: ARS34Y03 (tube packing), ARS34Y03X (tape and reel packing)

RATING

1. Coil data

1) Single side stable type

Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$	Coil resistance $[\pm 10 \%] \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) }$	Nominal operating power	Max. allowable voltage (at $60^{\circ} \mathrm{C} 140^{\circ} \mathrm{F}$)
3 V DC	$75 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$10 \% \mathrm{~V}$ or more of nominal voltage (Initial)	66.7 mA	45Ω	200 mW	$110 \% \mathrm{~V}$ or less of nominal voltage
4.5 V DC			44.4 mA	101.3Ω		
9 V DC			22.2 mA	405Ω		
12 V DC			16.7 mA	720Ω		
24 V DC			8.3 mA	2,880 Ω		

2) 1 coil latching type

Nominal coil voltage	$\begin{aligned} & \text { Set voltage } \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating current $[\pm 10 \%]$ (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Coil resistance [$\pm 10 \%$] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating power	Max. allowable voltage (at $60^{\circ} \mathrm{C} 140^{\circ} \mathrm{F}$)
3 V DC	$75 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$75 \% \mathrm{~V}$ or less of nominal voltage (Initial)	66.7 mA	45Ω	200 mW	$110 \% \mathrm{~V}$ or less of nominal voltage
4.5 V DC			44.4 mA	101.3Ω		
9 V DC			22.2 mA	405Ω		
12 V DC			16.7 mA	720Ω		
24 V DC			8.3 mA	2,880 Ω		

3) 2 coil latching type

Nominal coil voltage	$\begin{aligned} & \text { Set voltage } \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%] \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) }} \end{gathered}$	Coil resistance $[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)$	Nominal operating power	Max. allowable voltage (at $60^{\circ} \mathrm{C} 140^{\circ} \mathrm{F}$)
3 V DC	$75 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$75 \% \mathrm{~V}$ or less of nominal voltage (Initial)	133.3 mA	22.5Ω	400 mW	$110 \% \mathrm{~V}$ or less of nominal voltage
4.5 V DC			88.9 mA	50.6Ω		
9 V DC			44.4 mA	202.5Ω		
12 V DC			33.3 mA	360Ω		
24 V DC			16.7 mA	1,440 Ω		

2. Specifications

Item			Specifications
Contact	Arrangement		1 Form C
	Contact material		Gold plating
	Contact resistance (Initial)		Max. $100 \mathrm{~m} \Omega$ (By voltage drop 10 V AC 10mA)
Rating	Nominal switching capacity		1W (at 3 GHz , Impedance: $50 / 75 \Omega$, V.S.W.R.: Max. 1.4), 10 mA 24 V DC (resistive load)
	Contact carrying power		Max. 10W (at 3GHz, Impedance: 50/75 , V.S.W.R.: Max. 1.4)
	Max. switching voltage		30 V DC
	Max. switching current		0.5 A DC
	Nominal operating power	Single side stable type	200 mW
		1 coil latching type	200 mW
		2 coil latching type	400 mW
High frequency characteristics, Impedance: 50Ω (Initial)	V.S.W.R.		Max. $1.20 / 900 \mathrm{MHz}$, Max. $1.40 / 3 \mathrm{GHz}$ (Standard PC board terminal) Max. $1.20 / 900 \mathrm{MHz}$, Max. $1.40 / 3 \mathrm{GHz}$ (Surface-mount terminal)
	Insertion loss (without D.U.T. board's loss)		Max. $0.10 \mathrm{~dB} / 900 \mathrm{MHz}$, Max. $0.35 \mathrm{~dB} / 3 \mathrm{GHz}$ (Standard PC board terminal) Max. $0.20 \mathrm{~dB} / 900 \mathrm{MHz}$, Max. $0.40 \mathrm{~dB} / 3 \mathrm{GHz}$ (Surface-mount terminal)
	Isolation		Min. $60 \mathrm{~dB} / 900 \mathrm{MHz}$, Min. $35 \mathrm{~dB} / 3 \mathrm{GHz}$ (Standard PC board terminal) Min. $55 \mathrm{~dB} / 900 \mathrm{MHz}$, Min. $30 \mathrm{~dB} / 3 \mathrm{GHz}$ (Surface-mount terminal)
High frequency characteristics, Impedance: 75Ω (Initial)	V.S.W.R.		Max. 1.15/900MHz, Max. 1.40/3GHz (Standard PC board terminal) Max. $1.20 / 900 \mathrm{MHz}$, Max. $1.50 / 3 \mathrm{GHz}$ (Surface-mount terminal)
	Insertion loss (without D.U.T. board's loss)		Max. $0.10 \mathrm{~dB} / 900 \mathrm{MHz}$, Max. $0.30 \mathrm{~dB} / 3 \mathrm{GHz}$ (Standard PC board terminal) Max. $0.20 \mathrm{~dB} / 900 \mathrm{MHz}$, Max. $0.50 \mathrm{~dB} / 3 \mathrm{GHz}$ (Surface-mount terminal)
	Isolation		Min. $60 \mathrm{~dB} / 900 \mathrm{MHz}$, Min. 30dB/3GHz (Standard PC board terminal) Min. $55 \mathrm{~dB} / 900 \mathrm{MHz}$, Min. 30dB/3GHz (Surface-mount terminal)
Electrical characteristics	Insulation resistance (Initial)		Min. $100 \mathrm{M} \Omega$ (at 500 V DC, Measurement at same location as "Breakdown voltage" section.)
	Breakdown voltage (Initial)	Between open contacts	500 Vrms for 1 min . (Detection current: 10 mA)
		Between contact and earth terminal	500 Vrms for 1 min . (Detection current: 10 mA)
		Between contact and coil	$1,000 \mathrm{Vrms}$ for 1 min . (Detection current: 10 mA)
	Temperature rise (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. $60^{\circ} \mathrm{C} 140^{\circ} \mathrm{F}$ (By resistive method, nominal voltage applied to the coil, contact carrying current: 10 mA)
	Operate time (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 10 ms (Nominal voltage applied to the coil, excluding contact bounce time)
	Release time (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 6 ms (Nominal voltage applied to the coil, excluding contact bounce time) (without diode)
	Set time and Reset time (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 10 ms (Nominal voltage applied to the coil, excluding contact bounce time)
Mechanical characteristics	Shock resistance	Functional	Min. $196 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 11 ms , detection time: $10 \mu \mathrm{~s}$)
		Destructive	Min. $980 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 6 ms)
	Vibration resistance	Functional	10 to 55 Hz at double amplitude of 3 mm (Detection time: $10 \mu \mathrm{~s}$)
		Destructive	10 to 55 Hz at double amplitude of 5 mm
Operation noise*	Standard type		Approx. 40dB
	Silent type (75Ω, PC board terminal type only)		Approx. 30dB
Expected life	Mechanical life	Single side stable standard type	Min. 5×10^{6} (at 180 cpm)
		Single side stable silent type	Min. 10^{6} (at 180 cpm)
		Latching type	Min. 10^{6} (at 180 cpm)
	Electrical life	50Ω type	Min. 10^{6} (Standard PC board terminal), Min. 3×10^{5} (Surface-mount terminal) (10V DC 10 mA resistive load)/Min. 3×10^{5} (24 V DC 10 mA resistive load) Min. 10^{6} (Standard PC board terminal), Min. 3×10^{5} (Surface-mount terminal) (1W, at 3GHz, Impedance: 50Ω, V.S.W.R: Max. 1.4) (at 20 cpm)
		75Ω type	Min. 3×10^{5} (10 mA 24 V DC resistive load) Min. 3×10^{5} (1W, at 3GHz, Impedance: 75Ω, V.S.W.R: Max. 1.4) (at 20 cpm)
Conditions	Conditions for	operation, transport and storage	Ambient temperature: -40 to $70^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $158^{\circ} \mathrm{F}$ (Single side stable standard and Latching type) Ambient temperature: -40 to $60^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $140^{\circ} \mathrm{F}$ (Single side stable silent type) Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature)
Unit weight			Approx. 2 g .071 oz

* Measured the operation noise of the relay alone (with diodes at both ends of the coil) 30 cm away from top side, by the A-weighted, FAST method while applying the rated voltage.
(Reference) Operation noise of RK relay (existing model): Approx. 50dB

REFERENCE DATA

1.-(1) High frequency characteristics (Impedance: 50Ω, Standard PC board terminal)

Sample: ARS144H; Measuring method: Measured with Agilent Technologies network analyzer (E8363B). *For details see No. 7 under "NOTES"

- V.S.W.R. characteristics

\longrightarrow Frequency
- Insertion loss characteristics
(without D.U.T. board's loss)
- Isolation characteristics

1.-(2) High frequency characteristics (Impedance: 75Ω, Standard PC board terminal)

Sample: ARS104H; Measuring method: Measured with Agilent Technologies network analyzer (E8363B). *For details see No. 7 under "NOTES"

- V.S.W.R. characteristics

- Insertion loss characteristics
(without D.U.T. board's loss)

- Isolation characteristics

1.-(3) High frequency characteristics (Impedance: 50Ω, Surface-mount terminal)

Sample: ARS14A4H; Measuring method: Measured with Agilent Technologies network analyzer (E8363B). *For details see No. 7 under "NOTES".

- V.S.W.R. characteristics

- Insertion loss characteristics (without D.U.T. board's loss)

- Isolation characteristics

1.-(4) High frequency characteristics (Impedance: 75Ω, Surface-mount terminal)

Sample: ARS10A4H; Measuring method: Measured with Agilent Technologies network analyzer (E8363B). *For details see No. 7 under "NOTES".

- V.S.W.R. characteristics

- Insertion loss characteristics (without D.U.T. board's loss)

- Isolation characteristics

2.-(1) Operation noise distribution

Sample: ARS134H (single side stable silent type),
50 pcs.
Coil voltage: rated voltage applied (with diode)
Equipment setting: A weighted sound pressure level,
FAST.
Background noise: approx. 20 dB
Method of measurement: See figure below.

2.-(2) Operation noise distribution

Sample: ARS104H (single side stable standard type), 50 pcs.
Coil voltage: rated voltage applied (with diode)
Equipment setting: A weighted sound pressure level, FAST.
Background noise: approx. 20 dB
Method of measurement: See figure below.

2.-(3) Operation noise distribution

Sample: ARS114H (latching type), 50 pcs.
Coil voltage: rated voltage applied (with diode)
Equipment setting: A weighted sound pressure level,
FAST.
Background noise: approx. 20 dB
Method of measurement: See figure below.

Interested in CAD data? You can obtain CAD data for all products with a CAD Data mark from your local Panasonic Electric Works representative.
<Standard PC board terminal>

PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$
2. 75Ω type CAD Data

External dimensions

Tolerance: $\pm 0.3 \pm .012$

PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$

Schematic (Bottom view)

1. Standard contact type
Single side stable type
1 coil latching type
(Deenergized condition)
(Reset condition) \quad (Reset condition)
(Reset condition) (Reset condition)
2. Reversed contact type

Single side stable type	1 coil latching type
(Deenergized condition)	(Reset condition) latching type
(Reset condition)	

<Surface-mount terminal>

1. Impedance: 50 2 type
1) E layout

CAD Data

External dimensions

Tolerance: $\pm 0.3 \pm .012$

Schematic (Top view)
<Standard contact type>

<Reversed contact type>

2-coil latching type (Reset condition)

2. Impedance: 75Ω type

1) E layout

External dimensions

Schematic (Top view)
<Standard contact type>

2-coil latching type (Reset condition)

$$
1 \text { coil latching type }
$$ (Reset condition)

2-coil latching type (Reset condition)

2-coil latching type (Reset condition)

2-coil latching type (Reset condition)

2) Y layout

External dimensions

<Standard contact type>
(Deenergized condition)

<Reversed contact type>
Single side stable type (Deenergized condition)

coil latching type (Reset condition)

1 coil latching type (Reset condition)

<Reversed contact type>
Single side stable type (Deenergized condition)
Single side stable type

NOTES

1. Coil operating power

Pure DC current should be applied to the coil. The wave form should be rectangular. If it includes ripple, the ripple factor should be less than 5%.
However, check it with the actual circuit since the characteristics may be slightly different. The nominal operating voltage should be applied to the coil for more than 30 ms to set/reset the latching type relay.

2. Coil connection

When connecting coils, refer to the wiring diagram to prevent mis-operation or malfunction.

3. External magnetic field

Since RS relays are highly sensitive polarized relays, their characteristics will be affected by a strong external magnetic field. Avoid using the relay under that condition.

4. Cleaning

For automatic cleaning, the boiling method is recommended. Avoid ultrasonic cleaning which subjects the relays to high frequency vibrations, which may cause the contacts to stick.
It is recommended that alcoholic solvents be used.

5. Conditions for operation, transport and storage conditions

1) Temperature

- Single side stable standard and latching type: -40 to $70^{\circ} \mathrm{C}-40$ to $158^{\circ} \mathrm{F}$
- Single side stable silent type:
-40 to $60^{\circ} \mathrm{C}-40$ to $140^{\circ} \mathrm{F}$

2) Humidity: 5 to 85% RH
(Avoid freezing and condensation.)
The humidity range varies with the temperature. Use within the range indicated in the graph below.
3) Atmospheric pressure: 86 to 106 kPa Temperature and humidity range for usage, transport, and storage: Single side stable standard and latching type

Single side stable silent type

4) Condensation

Condensation forms when there is a sudden change in temperature under high temperature and high humidity conditions. Condensation will cause deterioration of the relay insulation.

5) Freezing

Condensation or other moisture may freeze on the relay when the temperature is lower than $0^{\circ} \mathrm{C} 32^{\circ}$. This causes problems such as sticking of movable parts or operational time lags.
6) Low temperature, low humidity environments
The plastic becomes brittle if the relay is exposed to a low temperature, low humidity environment for long periods of time.

7) Storage requirements

Since the relay is sensitive to humidity, the surface-mount type is packaged with tightly sealed anti-humidity packaging. However, when storing, please be careful of the following.
(1) Please use promptly once the antihumidity pack is opened.
If relays are left as is after unpacking, they will absorb moisture which will result in loss of air tightness as a result of case expansion due to thermal stress when reflow soldering during the mounting process. (within one day, $30^{\circ} \mathrm{C}$ and 60% R.H or less)
(2) When storing for a log period after opening the anti-humidity pack, storage in anti-humidity packaging with an antihumidity bag to which silica gel has been added, is recommended.
*Furthermore, if the relay is solder mounted when it has been subjected to excessive humidity, cracks and leaks can occur. Be sure to mount the relay under the required mounting conditions.

6. Soldering

1) Please meet the following conditions if this relay is to be automatically soldered.
(1) Preheating: Max. $120^{\circ} \mathrm{C} 248^{\circ} \mathrm{F}$ (terminal solder surface) for max. 120 seconds
(2) Soldering: Max. $260 \pm 5^{\circ} \mathrm{C} 500 \pm 9^{\circ} \mathrm{F}$ for max. 6 seconds
*Relays are influenced by the type of PC board used. Please confirm with the actual PC board you plan to use.
*Please avoid reflow soldering.
2) Surface-mount terminal

In case of automatic soldering, the
following conditions should be observed
(1) Position of measuring temperature

A: Surface of PC board where relay is mounted.
(2) IR (infrared reflow) soldering method

- Mounting cautions

Rise in relay temperature depends greatly on the component mix on a given PC board and the heating method of the reflow equipment. Therefore, please test beforehand using actual equipment to ensure that the temperature where the relay terminals are soldered and the temperature at the top of the relay case are within the conditions given above.
3) Please meet the following conditions if this relay is to be soldered by hand.
(1) $260^{\circ} \mathrm{C} 500^{\circ} \mathrm{F}$ for max. 10 seconds
(2) $350^{\circ} \mathrm{C} 662^{\circ} \mathrm{F}$ for max. 3 seconds

The effect on the relay depends on the actual substrate used. Please verify the substrate to be used.
(3) Avoid ultrasonic cleaning. Doing so will adversely affect relay characteristics. Please use alcohol-based cleaning solvents when cleaning relays.

7. Tape and reel packing

1) Tape dimensions

2) Dimensions of plastic reel

8. Measuring method

1) 50Ω type

Connect connectors 1 and 2 respectively to PORT 1 and PORT 2. Perform calibration using the 3.5 mm calibration kit (HP85052B).

No.	Product name	Contents		
1	Agilent			
$85130-60011$				Adapter
:---:				
2.4mm-3.5mm female				
.095 inch-.138inch female				

After calibration, connect the D.U.T. board and measure. However, connectors other than those for measurement should be connected with a $503 / 4$ termination resistor.

<Standard PC board terminal>

PC board
Dimensions (mm inch)

<Surface-mount terminal and
 E layout>

PC board
Dimensions (mm inch)

<Surface-mount terminal and

Y layout>
PC board
Dimensions (mm inch)

PC board for correction
Dimensions (mm inch)

Material: Glass PTFE double-sided through hole PC board R-4737 (Matsushita Electric Works)
Board thickness: $\mathrm{t}=0.8 \mathrm{~mm} .031$ inch
Copper plating: $18 \mu \mathrm{~m}$
Connector (SMA type receptacle)
Product name: 01K1808-00 (Waka
Manufacturing Co., Ltd.)
Insertion loss compensation
The insertion loss of relay itself is given by subtracting the insertion loss of shortcircuit the Com and the NC (or NO).
(signal path and two connectors)
2) 75Ω type

Connect connectors 1 and 2 respectively to PORT 1 and PORT 2, and then perform calibration using the $75 \Omega \mathrm{~F}$ type.

No.	Product name	Contents
1	$85134-60003$	Test port cable
2	11852 B	Conversion adapter; $50 \Omega \mathrm{~N}$ type (female) to $75 \Omega \mathrm{~N}$ type (ade)
2	$85039-60011$	Conversion adapter; $75 \Omega \mathrm{~N}$ type (female) to $75 \Omega \mathrm{~F}$ type (male)

After calibration, connect the D.U.T. board and measure. However, connectors other than those for measurement should be connected with a 75Ω termination resistor.

<Standard PC board terminal>

PC board
Dimensions (mm inch)

<Surface-mount terminal and

E layout>
PC board
Dimensions (mm inch)

<Surface-mount terminal and

Y layout>
PC board
Dimensions (mm inch)

PC board for correction
Dimensions (mm inch)

Material: Glass PTFE double-sided through hole PC board R-4737 (Matsushita Electric Works) Board thickness: $\mathrm{t}=0.8 \mathrm{~mm} .031$ inch
Copper plating: $18 \mu \mathrm{~m}$
Connector (F type receptacle)
Product name: C05-0236 (Komine Musen Electric Corporation)

Insertion loss compensation
The insertion loss of relay itself is given by subtracting the insertion loss of shortcircuit the COM and the NC (or NO). (signal path and two connectors)

9. Others

1) The switching lifetime is defined under the standard test condition specified in the JIS* C 5442 standard (temperature 15 to $35^{\circ} \mathrm{C} 59$ to $95^{\circ} \mathrm{F}$, humidity 25 to $75 \%)$. Check this with the real device as it is affected by coil driving circuit, load type, activation frequency, activation phase, ambient conditions and other factors.
Also, be especially careful of loads such as those listed below.

- When used for AC load-operating and the operating phase is synchronous, rocking and fusing can easily occur due to contact shifting.
- When high-frequency opening and closing of the relay is performed with a load that causes arcs at the contacts, nitrogen and oxygen in the air is fused by the arc energy and HNO_{3} is formed. This can corrode metal materials.

Three countermeasures for these are listed here.
(1) Incorporate an arc-extinguishing circuit.
(2) Lower the operating frequency
(3) Lower the ambient humidity
2) Use the relay within specifications such as coil rating, contact rating and on/ off service life. If used beyond limits, the relay may overheat, generate smoke or catch fire.
3) Be careful not to drop the relay. If accidentally dropped, carefully check its appearance and characteristics before use.
4) Be careful to wire the relay correctly. Otherwise, malfunction, overheat, fire or other trouble may occur.
5) If a relay stays on in a circuit for many months or years at a time without being activated, circuit design should be reviewed so that the relay can remain non-excited. A coil that receives current all the time heats, which degrades insulation earlier than expected. A latching type relay is recommended for such circuits.
6) To ensure accurate operation of the latching type amidst surrounding temperature changes and other factors that might affect the set and reset pulse times, we recommend a coil impress set and reset pulse width of at least 30 ms at the rated operation voltage.
7) The latching type relay is shipped in the reset position. But jolts during transport or impacts during installation can change the reset position. It is, therefore, advisable to build a circuit in which the relay can be initialized (set and reset) just after turning on the power. 8) If silicone materials (e.g., silicone rubbers, silicone oils, silicone coating agents, silicone sealers) are used in the vicinity of the relay, the gas emitted from the silicone may adhere to the contacts of the relay during opening and closing and lead to improper contact. If this is the case, use a material other than silicone.

For Cautions for Use, see Relay Technical Information (page 582).

Panasonic ideas for life

PIN type

SMA type

FEATURES

1. Compact size (Approx. 85% less volume compared to previous product.*)
PIN type size: L $15.9 \times$ W $15.9 \times$ H 11.2
mm L . $626 \times$ W $.626 \times$ H .441 inch
2. Excellent high frequency
characteristics (to $8,18,26.5 \mathrm{GHz}, 50 \Omega$)
3. Terminal shape options available (PIN and SMA)**
4. Contact arrangement: SPDT
5. Failsafe type and latching type
(2-coil latching type) that reduces operating power are now available.
*Compared to previous product (RD coaxial switch) and PIN type RV coaxial switch.
**For SMP connector type, please contact us.

8, 18 and 26.5 GHz , Compact size COAXIAL SWITCH

RV COAXIAL SWITCHES (ARV)

TYPICAL APPLICATIONS

Compact wireless devices Compact measuring instrument All types of inspection equipment Digital broadcasting

- Broadcasting relay station
- Broadcasting equipment

Mobile communication

- Cellular phone base station

1) If you consider using applications requiring frequent switching or high number of operations, please contact us. 2) If you consider using applications with low level load, please contact us.

HIGH FREQUENCY CHARACTERISTICS (Impedance 50 2 , Initial)

1. PIN type

Frequency	to 4 GHz	4 to 8 GHz	8 to $12.4 \mathrm{GHz}^{*}$	
V.S.W.R. (max.)	1.3	1.4	1.5	
Insertion loss (dB. max.)	0.3	0.4	0.5	
Isolation (dB. min.)	70	60	18 GHz	

Note: *8 to 18 GHz characteristics can be applied 18GHz type only.
2. SMA type

Frequency	to 8 GHz	8 to $12.4 \mathrm{GHz}^{*}$	12.4 to $18 \mathrm{GHz}^{*}$	18 to $26.5 \mathrm{GHz}^{* *}$
V.S.W.R. (max.)	1.35	1.6	1.7	1.8
Insertion loss (dB. max.)	0.3	0.5	0.7	0.8
Isolation (dB. min.)	70	60	60	50

Note: *8 to 18 GHz characteristics can be applied 18 GHz type and 26.5 GHz type only.
**18 to 26.5 GHz characteristics can be applied 26.5 GHz type only.

ORDERING INFORMATION

*Please inquire regarding use with nominal operating voltage of 28 V DC.

RV (ARV)

TYPES

SPDT

Operating function	Contact terminal shape	Nominal operating voltage	to 8 GHz type		to 18 GHz type		to 26.5 GHz type	
			No HF datasheet attached	HF datasheet attached	No HF datasheet attached	HF datasheet attached	No HF datasheet attached	HF datasheet attached
Failsafe type/ Standard contact	PIN type	4.5 V DC	ARV10N4H	ARV10N4HQ	ARV20N4H	ARV20N4HQ	-	-
		12 V DC	ARV10N12	ARV10N12Q	ARV20N12	ARV20N12Q	-	-
		24 V DC	ARV10N24	ARV10N24Q	ARV20N24	ARV20N24Q	-	-
	SMA type	4.5 V DC	ARV10A4H	ARV10A4HQ	ARV20A4H	ARV20A4HQ	ARV30A4H	ARV30A4HQ
		12 V DC	ARV10A12	ARV10A12Q	ARV20A12	ARV20A12Q	ARV30A12	ARV30A12Q
		24 V DC	ARV10A24	ARV10A24Q	ARV20A24	ARV20A24Q	ARV30A24	ARV30A24Q
Latching type/ Standard contact	PIN type	4.5 V DC	ARV12N4H	ARV12N4HQ	ARV22N4H	ARV22N4HQ	-	-
		12 V DC	ARV12N12	ARV12N12Q	ARV22N12	ARV22N12Q	-	-
		24 V DC	ARV12N24	ARV12N24Q	ARV22N24	ARV22N24Q	-	-
	SMA type	4.5 V DC	ARV12A4H	ARV12A4HQ	ARV22A4H	ARV22A4HQ	ARV32A4H	ARV32A4HQ
		12 V DC	ARV12A12	ARV12A12Q	ARV22A12	ARV22A12Q	ARV32A12	ARV32A12Q
		24 V DC	ARV12A24	ARV12A24Q	ARV22A24	ARV22A24Q	ARV32A24	ARV32A24Q
Failsafe type/ Reverse contact	PIN type	4.5 V DC	ARV13N4H	ARV13N4HQ	ARV23N4H	ARV23N4HQ	-	-
		12 V DC	ARV13N12	ARV13N12Q	ARV23N12	ARV23N12Q	-	-
		24 V DC	ARV13N24	ARV13N24Q	ARV23N24	ARV23N24Q	-	-
	SMA type	4.5 V DC	ARV13A4H	ARV13A4HQ	ARV23A4H	ARV23A4HQ	ARV33A4H	ARV33A4HQ
		12 V DC	ARV13A12	ARV13A12Q	ARV23A12	ARV23A12Q	ARV33A12	ARV33A12Q
		24 V DC	ARV13A24	ARV13A24Q	ARV23A24	ARV23A24Q	ARV33A24	ARV33A24Q

Standard packing: Carton: 5 pcs. Case: 50 pcs.

RATING

1. Coil data

1) Failsafe type (Standard contact and Reverse contact)

Nominal operating voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$	Coil resistance $[\pm 10 \%] \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) }$	Nominal operating power	Max. applied voltage (at $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$)
4.5 V DC	$75 \% \mathrm{~V}$ or less of nominal voltage*1 (Initial)	$10 \% \mathrm{~V}$ or more of nominal voltage ${ }^{* 1}$ (Initial)	155.7 mA	28.9Ω	700mW	$110 \% \mathrm{~V}$ of nominal voltage
12 V DC			58.3 mA	205.7Ω		
24 V DC			29.2 mA	822.9Ω		

2) Latching type (Standard contact)

Nominal operating voltage	$\begin{aligned} & \text { Set voltage } \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%] \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) }} \end{gathered}$	$\begin{gathered} \text { Coil resistance } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$	Nominal operating power	Max. applied voltage (at $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$)
4.5 V DC	$75 \% \mathrm{~V}$ or less of nominal voltage ${ }^{* 1}$ (Initial)	$75 \% \mathrm{~V}$ or less of nominal voltage ${ }^{* 1}$ (Initial)	155.7 mA	28.9Ω	700mW	$110 \% \mathrm{~V}$ of nominal voltage
12 V DC			58.3 mA	205.7Ω		
24 V DC			29.2 mA	822.9Ω		

Notes: *1. Pulse drive (JIS C5442)
*2. Please inquire regarding use with nominal operating voltage of 28 V DC.

2. Specifications

Characteristics		Item	Specifications							
Contact	Arrangement		SPDT							
	Contact material		Gold plating							
	Contact resistance (Initial)		Max. $100 \mathrm{~m} \Omega$ (By voltage drop 10V AC 10mA)							
Rating	Contact input power (CW)		Max. 50W (at 3GHz) (V.S.W.R. 1.3 or less, no contact switching, ambient temperature $\left.20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)^{\star 1}$							
	Nominal operating power		700 mW							
High frequency characteristics (Impedance 50 ${ }^{\text {) }}$			PIN type*2				SMA type			
	Frequency		to 4 GHz	4 to 8 GHz	8 to 12.4 GHz*3	$\begin{gathered} 12.4 \text { to } 18 \\ \mathrm{GHz}^{\star 3} \end{gathered}$	to 8 GHz	$\begin{gathered} 8 \text { to } 12.4 \\ \mathrm{GHz}^{* 4} \end{gathered}$	$\begin{gathered} 12.4 \text { to } 18 \\ \mathrm{GHz}^{* 4} \end{gathered}$	$\begin{gathered} 18 \text { to } 26.5 \\ \mathrm{GHz}^{* 5} \end{gathered}$
	V.S.W.R. (max.)		1.3	1.4	1.5	1.7	1.35	1.6	1.7	1.8
	Insertion loss (dB, max.)		0.3	0.4	0.5	0.7	0.3	0.5	0.7	0.8
	Isolation (dB, min.)		70	60	50	40	70	60	60	50
Electrical characteristics	Insulation resistance (Initial)		Min. 1,000 M (at 500 V DC) Measurement at same location as "breakdown voltage (Initial)" section.							
	Breakdown voltage (Initial)	Between open contacts	500 Vrms for 1 min . (Detection current: 10 mA)							
		Between contact and earth terminal	500 Vrms for 1 min . (Detection current: 10 mA)							
		Between contact and coil	500 Vrms for 1 min . (Detection current: 10 mA)							
		Between coil and earth terminal	500 Vrms for 1 min . (Detection current: 10 mA)							
Time characteristics (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Operate time (Set time)		Max. 15 ms (approx. 5ms) (Nominal operating voltage applied to the coil, excluding contact bounce time.)							
	Release time (Reset time)		Max. 15 ms (approx. 5 ms) (Nominal operating voltage applied to the coil, excluding contact bounce time.) (without diode, only for Release time)							
Mechanical characteristics	Shock resistance	Functional	Min. $500 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 11 ms , detection time: $10 \mu \mathrm{~s}$.)							
		Destructive	Min. 1,000 m/s² (Half-wave pulse of sine wave: 6 ms .)							
	Vibration resistance	Functional	10 to 55 Hz at double amplitude of 3 mm (Detection time: $10 \mu \mathrm{~s}$.)							
		Destructive	10 to 55 Hz at double amplitude of $5 \mathrm{~mm} / 15$ to $2,000 \mathrm{~Hz}\left[\mathrm{~W} 0=2.94\left(\mathrm{~m} / \mathrm{s}^{2}\right)^{2} / \mathrm{Hz}\right]$							
Expected life	Mechanical		Min. 10^{6} (at 180 cpm)							
	Electrical (Hot switch)		Min. 3×10^{5} (1W High frequency load, at 3 GHz , impedance 50Ω, V.S.W.R.; max. 1.3) (at 20 cpm)							
Conditions	Conditions for operation, transport and storage* ${ }^{* 6}$		Ambient temperature: $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}-67^{\circ} \mathrm{F}$ to $+185^{\circ} \mathrm{F}$ Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature) Air pressure: 86 to 106 kPa							
Unit weight			PIN type: Approx. 12g.42oz				SMA type: Approx. 20g . 71 oz			

Notes: *1. Factors such as heating of the connected terminal influence the high frequency characteristics; therefore, please verify under actual conditions of use
*2. Measuring method: After installing on dedicated inspection equipment
*3. 8 to 18 GHz characteristics can be applied 18 GHz type only.
*4. 8 to 18 GHz characteristics can be applied 18 GHz and 26.5 GHz types only.
*5. 18 to 26.5 GHz characteristics can be applied 26.5 GHz type only.
*6. The upper operation ambient temperature limit is the maximum temperature that can satisfy the coil temperature rise value. Refer to "NOTES" on page 446 .

RV (ARV)

REFERENCE DATA

1-(1). High frequency characteristics (PIN type)
Sample: ARV22N12
Measuring method: Measured with Agilent Technologies network analyzer (E8363B) after installing on dedicated inspection equipment.

- V.S.W.R.

- Insertion loss

- Isolation

1-(2). High frequency characteristics (SMA type)
Sample: ARV32A12
Measuring method: Measured with Agilent Technologies network analyzer (E8363B).

- V.S.W.R.

- Insertion loss

- Isolation

Tolerance: $\pm 0.3 \pm .012$
2. SMA type

CAD Data

Schematic (Top view) <Standard contact> Failsafe type (Deenergized condition)

Latching type (Reset condition)

<Reverse contact> Failsafe type (Deenergized condition)

Tolerance: $\pm 0.3 \pm .012$

NOTES

1. For general cautions for use, please refer to the "Cautions for Use" in the "Relay Technical Information".
2. Coil operating power

Pure DC current should be applied to the coil. The wave form should be rectangular. If it includes ripple, the ripple factor should be less than 5%.
However, check it with the actual circuit since the characteristics may be slightly different. The nominal operating voltage should be applied to the coil for more than 50 ms to set/reset the latching type. Please use the latching type for circuits that are continually powered for long periods of time.

3. Coil connection

Since this product is polarized, please be aware of the plus/minus polarity of the coil.
4. Connection and washing conditions for coil and PIN type contact terminals

1) The connection of coil and PIN type contact terminals shall be done by soldering.
Soldering conditions
Max. $260^{\circ} \mathrm{C} 500^{\circ} \mathrm{F}$ (solder temp) within 10sec (soldering time)
Max. $350^{\circ} \mathrm{C} 662^{\circ} \mathrm{F}$ (solder temp) within 3 sec (soldering time)
2) This product is not sealed type,
therefore washing is not allowed.
5. Conditions for operation, transport and storage conditions
1) Temperature:
-55 to $+85^{\circ} \mathrm{C}-67$ to $+185^{\circ} \mathrm{F}$
2) Humidity: 5 to $85 \% \mathrm{RH}$
(Avoid freezing and condensation.)
The humidity range varies with the temperature. Use within the range indicated in the graph below.
3) Atmospheric pressure: 86 to 106 kPa Temperature and humidity range for usage, transport, and storage:

4) Condensation

Condensation forms when there is a sudden change in temperature under high temperature and high humidity conditions. Condensation will cause deterioration of coaxial switch insulation.
5) Freezing

Condensation or other moisture may freeze on coaxial switch when the temperature is lower than $0^{\circ} \mathrm{C} 32^{\circ} \mathrm{F}$. This causes problems such as sticking of movable parts or operational time lags. 6) Low temperature, low humidity environments.
The plastic may become brittle if coaxial switch is exposed to a low temperature, low humidity environment for long periods of time.
6. Other handling precautions.

1) Coaxial switch's on/off service life is based on standard test conditions (temperature: 15 to $35^{\circ} \mathrm{C} 59$ to $95^{\circ} \mathrm{F}$, humidity: 25 to 75%) specified in JIS C5442-1996. Life will depend on many factors of your system: coil drive circuit, type of load, switching intervals, switching phase, ambient conditions, to name a few.
2) Use coaxial switch within specifications such as coil rating, contact rating and on/off service life. If used beyond limits, coaxial switch may overheat, generate smoke or catch fire.
3) Be careful not to drop coaxial switch. If accidentally dropped, carefully check its appearance and characteristics before use.
4) Be careful to wire coaxial switch correctly. Otherwise, malfunction, overheat, fire or other trouble may occur. 5) The latching type product is shipped in the reset position. But jolts during transport or impacts during installation can move it to the set position. It is, therefore, advisable to build a circuit in which coaxial switch can be initialized (set and reset) just after turning on the power.
5) If coaxial switch stays on in a circuit for many months or years at a time without being activated, circuit design should be reviewed so that the coaxial switch can remain deenergized. A coil that receives current all the time heats, which degrades insulation earlier than expected. A latching type is recommended for such circuits.
6) For SMA connectors (SMA type only), we recommend a torque of $0.90 \pm 0.1 \mathrm{~N} \cdot \mathrm{~m}$ for installation, which falls within the prescribed torque of MIL-C-39012. Please be aware that conditions might be different depending on the connector materials and how it interacts with surrounding materials.
7) Please do not use silicon based substances such as silicon rubber, silicon oil, silicon coatings and silicon fillings, in the vicinity of the coaxial switch. Doing so may cause volatile silicon gas to form which may lead to contact failure due to the adherence of silicon on the contacts when they open and close in this atmosphere.
8) In order to ensure stable signal communication on contact, it is recommended that the monitoring of contact signal should be started from Min. 100 ms after coil rated voltage is applied.

For Cautions for Use, see Relay Technical Information (page 582).

3 GHz SMALL MICROWAVE RELAY

RX RELAYS (ARX)

FEATURES

mm inch

1. Excellent high frequency characteristics ($\sim 2.5 \mathrm{GHz}$, Impedance 50Ω)

Frequency	to 2.5 GHz
V.S.W.R. (Max.)	1.2
Insertion loss (dB, Max.)	0.2
Isolation (dB, Min.)	60

2. Small size

- Size: $20.5(\mathrm{~L}) \times 12.4(\mathrm{~W}) \times 9.4(\mathrm{H}) \mathrm{mm}$ $.807(\mathrm{~L}) \times .488(\mathrm{~W}) \times .370(\mathrm{H})$ inch

3. High sensitivity

- Nominal operating power: 200 mW
*Also available for unit support (contact us for more details).

TYPICAL APPLICATIONS

- Cellular phone base station (W-CDMA, FPLMTS, IMT-2000, PCS, DCS)
- Cellular phone-related measurement devices (SP3T/SP4T switches, etc)
- Wireless LAN
- Wireless Local Loop

SPECIFICATIONS

Contact

Arrangement			1 Form C
Contact material		Stationary	Gold plating
		Movable	Gold clad
Initial contact resistance (By voltage drop 10 V DC 10 mA)			Max. $100 \mathrm{~m} \Omega$
Rating	Contact rating		$\begin{gathered} \text { 10W (2.5 GHz, } \\ \text { Impedance } 50 \Omega \text {, } \\ \text { V.S.W.R.\&1.2) } \\ \text { 10mA 24V DC } \\ \text { (resistive load) } \\ \hline \end{gathered}$
	Contact carrying power		Max. 20W (at $40^{\circ} \mathrm{C}$, V.S.W.R.\&1.2, Average)
	Max. switching voltage		30 V DC
	Max. switching current		0.5 A DC
High frequency characteristics (Initial) ($\sim 2.5 \mathrm{GHz}$, Impedance $503 / 4$)	V.S.W.R. (Return loss)		Max. 1.2 (Min. 20.8dB)
	Insertion loss		Max. 0.2 dB
	Isolation		Min. 60 dB
	Input power		Max. 20W (at $40^{\circ} \mathrm{C}$, V.S.W.R.\&1.2, Average)
Expected life (min. operations)	Mechanical (at 180 cpm)		5×10^{6}
		10 mA 24 V DC (resistive load)	3×10^{5}
	Electrical	10W 2.5 GHz , Impedance 50Ω, V.S.W.R.\&1.2	10^{5}
Coil (at $2 \mathbf{0}^{\circ} \mathrm{C}, 68^{\circ} \mathrm{F}$)			
		Nominal operating power	
Single side stable		200 mW	
1 coil latching		200 mW	
2 coil latching		400 mW	

Characteristics

Initial insulation resistance*1			Min. $100 \mathrm{M} \Omega$ (at 500 V DC)
Initial breakdown voltage*2	Between open contacts		500 Vrms for 1 min .
	Between contact and coil		1,000 Vrms for 1 min.
	Between contact and earth terminal		500 Vrms for 1 min.
Operate time [Set time] ${ }^{* 3}$ (at $20^{\circ} \mathrm{C}$)			Max. 10ms (Approx. 6ms) [Max. 10ms (Approx. 5ms)]
Release time (without diode) [Reset time] ${ }^{* 3}$			Max. 6ms (Approx. 3ms) [Max. 10ms (Approx. 5ms)]
Temperature rise (at $\left.20^{\circ} \mathrm{C}\right)^{* 4}$			Max. $60^{\circ} \mathrm{C}$
Shock resistance		Functiona\|*5	Min. $200 \mathrm{~m} / \mathrm{s}^{2}\{20 \mathrm{G}\}$
		Destructive*6	Min. 1,000 m/s ${ }^{2}$ \{100 G\}
Vibration resistance		Functional*7	10 to 55 Hz at double amplitude of 3 mm
		Destructive	$10 \text { to } 55 \mathrm{~Hz}$ at double amplitude of 5 mm
Conditions for operation, transport and storage*8 (Not freezing and condensing at low temperature)		Ambient temp.	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{F} \text { to } 158^{\circ} \mathrm{F} \end{aligned}$
		Humidity	5 to 85\% R.H.
Unit weight			Approx. 5 g .18 oz

Remarks

*1 Measurement at same location as "Initial breakdown voltage" section.
*2 Detection current: 10 mA
${ }^{*}$ Nominal operating voltage applied to the coil, excluding contact bounce time
${ }^{*} 4$ By resistive method, nominal voltage applied to the coil: Contact carrying power: 20 W , at 2.5 GHz , Impedance 50Ω, V.S.W.R. \& 1.2
${ }^{* 5}$ Half-wave pulse of sine wave: 11 ms , detection time: $10 \mu \mathrm{~s}$.
${ }^{*}$ Half-wave pulse of sine wave: 6 ms
${ }^{*}$ Detection time: $10 \mu \mathrm{~s}$
${ }^{* 8}$ Refer to 6. Conditions for operation, transport and storage conditions in NOTES (Page 450).

RX (ARX)

ORDERING INFORMATION

Note: Standard packing; Carton: 50 pcs. Case 500 pcs.

TYPES AND COIL DATA (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)

- Single side stable type

Part No.	Nominal voltage, V DC	Pick-up voltage, V DC (max.)(initial)	Drop-out voltage, (min.)(initial)	Coil resistance, $\Omega(\pm 10 \%)$	Nominal operating current, $m A(\pm 10 \%)$	Nominal operating power, mWW	Max. allowable voltage, V DC $\left(\right.$ at $\left.60^{\circ} \mathrm{C} 140^{\circ} \mathrm{F}\right)$
ARX1003	3	2.25	0.3	45	66.7	200	
ARX104H	4.5	3.375	0.45	101	44.4	2.3	
ARX1006	6	4.5	0.6	180	33.3	200	
ARX1009	9	6.75	0.9	405	22.2	200	
ARX1012	12	9	1.2	720	16.7	200	
ARX1024	24	18	2.4	2,880	8.3	200	

- 1 coil latching type

Part No.	Nominal voltage, V DC	$\begin{aligned} & \text { Set voltage, } \\ & \text { V DC } \\ & \text { (max.)(initial) } \end{aligned}$	$\begin{gathered} \text { Reset voltage, } \\ \text { V DC } \\ \text { (max.)(initial) } \end{gathered}$	Coil resistance, $\Omega(\pm 10 \%)$	Nominal operating current, $\mathrm{mA}(\pm 10 \%)$	Nominal operating power, mW	Max. allowable voltage, V DC (at $60^{\circ} \mathrm{C} 140^{\circ} \mathrm{F}$)
ARX1103	3	2.25	2.25	45	66.7	200	3.3
ARX114H	4.5	3.375	3.375	101	44.4	200	4.95
ARX1106	6	4.5	4.5	180	33.3	200	6.6
ARX1109	9	6.75	6.75	405	22.2	200	9.9
ARX1112	12	9	9	720	16.7	200	13.2
ARX1124	24	18	18	2,880	8.3	200	26.4

- 2 coil latching type

Part No.	Nominal voltage, V DC	$\begin{gathered} \text { Set voltage, } \\ \text { V DC } \\ \text { (max.)(initial) } \end{gathered}$	Reset voltage, V DC (max.)(initial)	Coil resistance, $\Omega(\pm 10 \%)$	Nominal operating current, $\mathrm{mA}(\pm 10 \%)$	Nominal operating power, mW	Max. allowable voltage, V DC (at $60^{\circ} \mathrm{C} 140^{\circ} \mathrm{F}$)
ARX1203	3	2.25	2.25	22.5	133.3	400	3.3
ARX124H	4.5	3.375	3.375	50.6	88.9	400	4.95
ARX1206	6	4.5	4.5	90	66.7	400	6.6
ARX1209	9	6.75	6.75	202.5	44.4	400	9.9
ARX1212	12	9	9	360	33.3	400	13.2
ARX1224	24	18	18	1,440	16.7	400	26.4

PC board pattern (Bottom view)

Tolerance: 0.1 . 004
General tolerance: 0.3 . 012
Schematic (Bottom view)

REFERENCE DATA

1. High frequency characteristics

Sample: ARX1012
Measuring method: Measured with HP network analyzer (HP8753C).
The details for the high frequency characteristics and the measurement procedures and conditions are listed in the RX relay test report.

- V.S.W.R. (Return loss)

- Insertion loss

- Isolation

RX (ARX)

NOTES

1. Coil operating power

Pure DC current should be applied to the coil. The wave form should be
rectangular. If it includes ripple, the ripple factor should be less than 5%.
However, check it with the actual circuit since the characteristics may be slightly different. The nominal operating voltage should be applied to the coil for more than 30 ms to set/reset the latching type relay.

2. Coil connection

When connecting coils, refer to the wiring diagram to prevent mis-operation or malfunction.

3. External magnetic field

Since RX relays are highly sensitive polarized relays, their characteristics will be affected by a strong external magnetic field. Avoid using the relay under that condition.

4. Cleaning

For automatic cleaning, the boiling method is recommended. Avoid ultrasonic cleaning which subjects the relays to high frequency vibrations, which may cause the contacts to stick. It is recommended that a fluorinated hydrocarbon or other alcoholic solvents be used.

5. Soldering

The manual soldering shall be performed under following condition.
Max. $260^{\circ} \mathrm{C} 500^{\circ} \mathrm{F} 10 \mathrm{~s}$
Max. $350^{\circ} \mathrm{C} 662^{\circ} \mathrm{F}$ 3s
In addition, when soldering the case to the PC board, the plating may swell depending on the soldering conditions.

6. Conditions for operation, transport and storage conditions

1) Ambient temperature, humidity, and atmospheric pressure during usage, transport, and storage of the relay:
(1) Temperature:
-40 to $+70^{\circ} \mathrm{C}-40$ to $+158^{\circ} \mathrm{F}$
(2) Humidity: 5 to 85% RH
(Avoid freezing and condensation.) The humidity range varies with the temperature. Use within the range indicated in the graph below.
(3) Atmospheric pressure: 86 to 106 kPa Temperature and humidity range for usage, transport, and storage:

2) Condensation

Condensation forms when there is a sudden change in temperature under high temperature and high humidity conditions. Condensation will cause deterioration of the relay insulation.
3) Freezing

Condensation or other moisture may freeze on the relay when the temperature is lower than $0^{\circ} \mathrm{C} 32^{\circ} \mathrm{F}$. This causes problems such as sticking of movable parts or operational time lags.
4) Low temperature, low humidity environments
The plastic becomes brittle if the relay is exposed to a low temperature, low humidity environment for long periods of time.

7. Latching relay

In order to assure proper operating regardless of changes in the ambient usage temperature and usage conditions, nominal operating voltage should be applied to the coil for more than 30 ms to set/reset the latching type relay.

Panasonic ideas for life

2.5 GHz
 MICROWAVE RELAY WITH 60 W CARRYING POWER

RX-P RELAYS (ARXP)

FEATURES

 realized relay.

1. 60 W contact carrying power

- Three times the contact carrying power achieved compared to previous 20 W RX
- Nominal switching capacity (when switching) also improved to 40W.

2. Excellent high frequency characteristics

- High frequency characteristics
(to 2.5 GHz , Impedance: 50Ω, Initial)

Insertion loss (Max.)	0.2 dB
Isolation (Min.)	60 dB
V. S. W. R. (Max.) (Return loss) (Min.)	1.2 or less $(20.8 \mathrm{~dB})$
Contact carrying power	Max. 60 W (at 20 $0^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$, V.S.W.R. $\leqq 1.2$, Average)

3. Small size

L: 20.5, W: 12.4, H: 9.4 mm
L: .807, W: .488, H: . 370 inch
4. High sensitivity

Nominal operating power: 200mW
(Single side stable type and 1 coil latching type)

TYPICAL APPLICATIONS

1. Base stations (mobile phones, terrestrial digital, etc.)
Used for redundant circuit construction in transmitter section.

2. Other applications

High-frequency amp switching in wireless devices, etc.

ORDERING INFORMATION

TYPES

Nominal coil voltage	Single side stable type	Part No.	
	ARXP1003 coil latching type	2 coil latching type	
3 V DC	ARXP104H	ARXP1103	ARXP1203
4.5 V DC	ARXP1006	ARXP114H	ARXP124H
6 V DC	ARXP1009	ARXP1106	ARXP1206
9 V DC	ARXP1012	ARXP1109	ARXP1209
12 V DC	ARXP1024	ARXP1112	ARXP1212
24 V DC	ARXP1124	ARXP1224	

[^42]
RATING

1. Coil data

1) Single side stable type

Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right. \text {) }} \end{gathered}$	Coil resistance [$\pm 10 \%$] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating power	Max. allowable voltage
3 V DC	$75 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$10 \% \mathrm{~V}$ or more of nominal voltage (Initial)	66.7 mA	45Ω	200 mW	$110 \% \mathrm{~V}$ or less of nominal voltage (at $60^{\circ} \mathrm{C} 140^{\circ} \mathrm{F}$) $150 \% \mathrm{~V}$ or less of nominal voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
4.5 V DC			44.4 mA	101Ω		
6 V DC			33.3 mA	180Ω		
9 V DC			22.2 mA	405Ω		
12 V DC			16.7 mA	720Ω		
24 V DC			8.3 mA	2,880 Ω		

2) 1 coil latching type

Nominal coil voltage	Set voltage $\left(\right.$ at $\left.20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)$	Reset voltage $\left(\right.$ at $\left.20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)$	Nominal operating current $[\pm 10 \%]\left(\right.$ at $\left.20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)$	Coil resistance $[\pm 10 \%]\left(\right.$ at $\left.20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)$	Nominal operating power	Max. allowable voltage

3) 2 coil latching type

Nominal coil voltage	Set voltage $\left(\right.$ at $\left.20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)$	Reset voltage (at $\left.20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)$	Nominal operating current ($\pm 10 \%]\left(\right.$ at $\left.20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)$	Coil resistance [$\pm 10 \%]\left(\right.$ at $\left.20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)$	Nominal operating power	Max. allowable voltage

2. Specifications

Item			Specifications
Contact	Arrangement		1 Form C
	Contact material		Fixed: Au plating Movable: Au clad
	Contact resistance (Initial)		Max. $100 \mathrm{~m} \Omega$ (By voltage drop 10 V AC 10mA)
Rating	Nominal switching capacity		40W (at 2.5 GHz , Impedance: 50Ω, V.S.W.R.: Max. 1.2)
	Contact carrying power		Max. 60W (at 2.5 GHz , Impedance: 50Ω, V.S.W.R.: Max. 1.2)
	Max. switching voltage		30 V DC
	Max. switching current		0.5 A DC
	Nominal operating power	Single side stable type	200 mW
		1 coil latching type	200 mW
		2 coil latching type	400 mW
High frequency characteristics, Impedance: 50Ω (to 2.5 GHz) (Initial)	V.S.W.R. (Return loss)		Max. 1.2 (Min. 20.8dB)
	Insertion loss		Max. 0.2dB
	Isolation		Min. 60dB
	Contact carrying power		Max. 60W (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}, \mathrm{V}$ S.W.R.R. $\leqq 1.2$, Average)
Electrical characteristics	Insulation resistance (Initial)		Min. 100M Ω (at 500 V DC, Measurement at same location as "Breakdown voltage" section.)
	Breakdown voltage (Initial)	Between open contacts	500 Vrms for 1 min . (Detection current: 10 mA)
		Between contact and coil	$1,000 \mathrm{Vrms}$ for 1 min . (Detection current: 10 mA)
		Between contact and earth terminal	500 Vrms for 1 min . (Detection current: 10 mA)
	Temperature rise (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. $60^{\circ} \mathrm{C} 140^{\circ} \mathrm{F}$ (By resistive method, nominal voltage applied to the coil, contact carrying power: 20 W at $2.5 \mathrm{GHz}, 50 \Omega$, V.S.W.R. $\leqq 1.2$)
	Operate time (at nominal voltage, at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Single side stable type	Max. 10 ms (Approx. 6 ms) (Nominal voltage applied to the coil, excluding contact bounce time)
		1 coil latching type	Max. 10 ms (Approx. 5 ms)
		2 coil latching type	(Nominal voltage applied to the coil, excluding contact bounce time)
	Release time (at nominal voltage, at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Single side stable type*1	Max. 6 ms (Approx. 3 ms) (Nominal voltage applied to the coil, excluding contact bounce time) (without diode)
		1 coil latching type	Max. 10 ms (Approx. 5 ms)
		2 coil latching type	(Nominal voltage applied to the coil, excluding contact bounce time)
Mechanical characteristics	Shock resistance	Functional	Min. $200 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 11 ms , detection time: $10 \mu \mathrm{~s}$)
		Destructive	Min. $1,000 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 6 ms)
	Vibration resistance	Functional	10 to 55 Hz at double amplitude of 3 mm (Detection time: $10 \mu \mathrm{~s}$)
		Destructive	10 to 55 Hz at double amplitude of 5 mm
Expected life	Mechanical life		Min. 10^{4} (at 180 cpm)
	Electrical life		Min. 10^{4} (40W, at 2.5 GHz , Impedance: 50Ω, V.S.W.R: Max. 1.2) (at 20 cpm)
Conditions	Conditions for operation, transport and storage*2		Ambient temperature: -40 to $70^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $158^{\circ} \mathrm{F}$ Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature)
Unit weight			Approx. 5 g .18 oz

Notes:*
*1 Release time will lengthen if a diode, etc., is connected in parallel to the coil. Be sure to verify operation under actual conditions.
*2The upper operation ambient temperature limit is the maximum temperature that can satisfy the coil temperature rise value. Refer to " 6 . Usage, Storage and Transport Conditions" in AMBIENT ENVIRONMENT (page 599).

REFERENCE DATA

1. High frequency characteristics

Sample: ARXP1012; Measuring method: Measured with Agilent Technologies network analyzer (E8363B). *For details see No. 8 under "NOTES".

- V.S.W.R. characteristics

- Insertion loss characteristics (without D.U.T. board's loss)

- Isolation characteristics

NOTES

1. Coil operating power

Pure DC current should be applied to the coil. The wave form should be rectangular. If it includes ripple, the ripple factor should be less than 5%.
However, check it with the actual circuit since the characteristics may be slightly different.

2. Coil connection

When connecting coils, refer to the wiring diagram to prevent mis-operation or malfunction.
To ensure accurate operation, the voltage on both sides of the coil should be $\pm 5 \%$ (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$) of the nominal coil voltage.
Also, please note that the pick-up and dropout voltages (set and reset voltages) will change depending on operation temperature and conditions of use.
Keep the coil allowable voltage ripple ratio to no more than 5%.

3. External magnetic field

Since RX-P relays are highly sensitive polarized relays, their characteristics will be affected by a strong external magnetic field. Avoid using the relay under that condition.

4. Cleaning

For automatic cleaning, the boiling method is recommended. Avoid ultrasonic cleaning which subjects the relays to high frequency vibrations, which may cause the contacts to stick.
It is recommended that alcoholic solvents be used.

5. Soldering

1) Please meet the following conditions if this relay is to be automatically soldered.
(1) Preheating: Max. $120^{\circ} \mathrm{C} 248^{\circ} \mathrm{F}$ (terminal solder surface) for max. 120 seconds
(2) Soldering: Max. $260 \pm 5^{\circ} \mathrm{C} 500 \pm 41^{\circ} \mathrm{F}$ for max. 6 seconds
2) Please meet the following conditions if this relay is to be soldered by hand.
(1) $260^{\circ} \mathrm{C} 500^{\circ} \mathrm{F}$ for max. 10 seconds
(2) $350^{\circ} \mathrm{C} 662^{\circ} \mathrm{F}$ for max. 3 seconds
*In addition, when soldering the case to the PC board, the plating may swell depending on the soldering conditions.
6. Conditions for operation, transport and storage conditions
1) Ambient temperature, humidity, and atmospheric pressure during usage, transport, and storage of the relay:
(1) Temperature:
-40 to $+70^{\circ} \mathrm{C}-40$ to $+158^{\circ} \mathrm{F}$ (However, when 60 to $70^{\circ} \mathrm{C} 140$ to $158^{\circ} \mathrm{F}$, the pulse time is 1 second maximum and ON time is 10% maximum.)
(2) Humidity: 5 to 85% RH
(Avoid freezing and condensation.) The humidity range varies with the temperature. Use within the range indicated in the graph below.
(3) Atmospheric pressure: 86 to 106 kPa Temperature and humidity range for usage, transport, and storage:

2) Condensation

Condensation forms when there is a sudden change in temperature under high temperature and high humidity conditions. Condensation will cause deterioration of the relay insulation.
3) Freezing

Condensation or other moisture may freeze on the relay when the temperature is lower than $0^{\circ} \mathrm{C} 32^{\circ} \mathrm{F}$. This causes problems such as sticking of movable parts or operational time lags.
4) Low temperature, low humidity environments
The plastic becomes brittle if the relay is exposed to a low temperature, low humidity environment for long periods of time.

7. Latching relay

1) To ensure accurate operation of the latching type amidst surrounding temperature changes and other factors that might affect the set and reset pulse times, we recommend a coil impress set and reset pulse width of at least 30 ms at the rated operation voltage.
2) The latching type relay is shipped in the reset position. But jolts during transport or impacts during installation can change the reset position. It is, therefore, advisable to build a circuit in which the relay can be initialized (set and reset) just after turning on the power.

8. Measuring method

50Ω type

Connect connectors 1 and 2 respectively to PORT 1 and PORT 2. Perform calibration using the 3.5 mm calibration kit (HP85052B).

No.	Product name	Contents
1	Agilent $85130-60011$	Adapter 2.4mm-3.5mm female .095inch-.138inch female
2	SUHNER	Cable
SUCOFLEX104	3.5mm-3.5mm male .138 inch-.138inch male	

After calibration, connect the D.U.T. board and measure. However, connectors other than those for measurement should be connected with a $503 / 4$ termination resistor.

PC board
Dimensions (mm inch)

PC board for correction
Dimensions (mm inch)

Material: Glass PTFE double-sided through hole PC board R-4737
(Matsushita Electric Works)
Board thickness: $\mathrm{t}=0.8 \mathrm{~mm} .031$ inch
Copper plating: $18 \mu \mathrm{~m}$
Connector (SMA type receptacle)
Product name: 01K1808-00 (Waka
Manufacturing Co., Ltd.)
Value has compensation PC board subtracted only for insertion loss. (Eliminate loss of connector and PC board.)

9. Others

1) The switching lifetime is defined under the standard test condition specified in the JIS C 5442 standard (temperature 15 to $35^{\circ} \mathrm{C} 59$ to $95^{\circ} \mathrm{F}$, humidity 25 to 85% R.H.). Check this with the real device as it is affected by coil driving circuit, load type, activation frequency, activation phase, ambient conditions and other factors.
Also, be especially careful of loads such as those listed below.

- When used for AC load-operating and the operating phase is synchronous, rocking and fusing can easily occur due to contact shifting.
- When high-frequency opening and closing of the relay is performed with a load that causes arcs at the contacts, nitrogen and oxygen in the air is fused by the arc energy and HNO_{3} is formed. This can corrode metal materials.
Three countermeasures for these are listed here.
(1) Incorporate an arc-extinguishing circuit.
(2) Lower the operating frequency
(3) Lower the ambient humidity

2) Use the relay within specifications such as coil rating, contact rating and on/ off service life. If used beyond limits, the relay may overheat, generate smoke or catch fire.
3) Be careful not to drop the relay. If accidentally dropped, carefully check its appearance and characteristics before use.
4) Be careful to wire the relay correctly. Otherwise, malfunction, overheat, fire or other trouble may occur.
5) If a relay stays on in a circuit for many months or years at a time without being activated, circuit design should be reviewed so that the relay can remain non-excited. A coil that receives current all the time heats, which degrades insulation earlier than expected. A latching type relay is recommended for such circuits.
6) If silicone materials (e.g., silicone rubbers, silicone oils, silicone coating agents, silicone sealers) are used in the vicinity of the relay, the gas emitted from the silicone may adhere to the contacts of the relay during opening and closing and lead to improper contact. If this is the case, use a material other than silicone.

For Cautions for Use, see Relay Technical Information (page 582).

RX-P (ARXP)
$\overline{\text { Automotive Relays }}$

AUTOMOTIVE POWER
RELAYS - SMALL SIZE, LIGHT WEIGHT

FEATURES

1. Small size and light weight

For space saving, the outside dimensions of the main body are reduced to be 21.5 mm (length) $\times 14.4 \mathrm{~mm}$ (width) $\times 37 \mathrm{~mm}$ (height) (. $846 \times .567 \times 1.457 \mathrm{inch})$ and the weight is also reduced to be approx. 19 g .67 oz (direct coupling 1 Form A, 1 Form B type)
2. Low operating power (1.4 W) type is available (1 Form A, 1 Form B)
3. Since the terminal arrangement complies with JIS D5011 B4-M1, commercial connectors are available for these types of relays.

SPECIFICATIONS

Contact

Type			12 V DC			24 V DC
Arrangement			1 Form A	1 Form B	1 Form C	1 Form C
Initial contact resistance (By voltage drop 6 V DC 1A)			Max. $50 \mathrm{~m} \Omega$			
Contact material			AgSnO_{2} type			
Contact voltage drop			Max. 0.3 V After electrical life test, by voltage drop 12 V DC 20 A (1.4 W type), 12 V DC 30 A (1.8 W type)	Max. 0.3 V After electrical life test, by voltage drop 12 V DC 20 A	Max. 0.4 V After electrical life test, by voltage drop 12 V DC 20 A	Max. 0.4 V After electrical life test, by voltage drop 24 V DC 10 A
Rating	Nominal switching capacity (resistive load)		20 A 12 V DC (1.4 W type) 30 A 12 V DC (1.8 W type)	20 A 12 V DC		$\begin{gathered} 10 \mathrm{~A} 24 \mathrm{~V} \text { DC } \\ (\mathrm{ON}: 2 \mathrm{~s}, \mathrm{OFF}: 2 \mathrm{~s}) \end{gathered}$
	Max. switching voltage		16 V		15 V	30 V
	Max. switching current		120 A (1.4 W type) 150 A (1.8 W type)	120 A	100 A	50 A (Inrush current)
	Max. carrying current		20 A continuous (1.4 W type) 30 A for 1 min (1.8 W type)	20 A continuous	20 A continuous	10 A continuous
	Min. switching capacity\#1		1 A 12 V DC			1 A 24 V DC
Nominal operating power			1.4 W / 1.8 W		1.8 W	
Expected life (min. operations)	Mechanical (at 120 cpm)		10^{6}		5×10^{5}	
	Electrical	$\begin{array}{\|l\|} \hline 20 \mathrm{~A} \\ (1.4 \mathrm{~W}, 1.8 \mathrm{~W} \text { type }) \end{array}$	$\begin{gathered} 10^{5} \\ (\mathrm{ON}: 2 \mathrm{~s}, \mathrm{OFF}: 2 \mathrm{~s}) \end{gathered}$	10^{5} (ON 2s, OFF 2s)		10^{5} (ON 2s, OFF 2s)
		$\begin{aligned} & 30 \mathrm{~A} \\ & (1.8 \mathrm{~W} \text { type) } \end{aligned}$	(ON: 2×10^{4}, OFF: 15 s)			

[^43]Characteristics (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)

Type			12 V DC		24 V DC
Max. operating speed			$15 \mathrm{cpm}\binom{$ 1.4 W type: at nominal load }{1.8 W type: at 20 A}	15 cpm (at nominal load)	
Initial insulation resistance			Min. $10 \mathrm{M} \Omega$ at 500 V DC		
Initial breakdown voltage*1	Between open contacts		500 V rms for 1 min .		
	Between contacts and coil		500 V rms for 1 min .		
Operate time*2 (at nominal voltage)			Max. 10 ms at $20^{\circ} \mathrm{C}$ (initial)		Max. 10 ms (initial)
Release time (without diode)*2 (at nominal voltage)			Max. 10 ms at $20^{\circ} \mathrm{C}$ (initial)		Max. 10 ms (initial)
Shock resistance		Functiona**3	Min. $200 \mathrm{~m} / \mathrm{s}^{2}\{20 \mathrm{G}\}$	Min. $100 \mathrm{~m} / \mathrm{s}^{2}\{10 \mathrm{G}\}$	Min. $100 \mathrm{~m} / \mathrm{s}^{2}\{10 \mathrm{G}\}$
		Destructive*4	Min. $1,000 \mathrm{~m} / \mathrm{s}^{2}\{100 \mathrm{G}\}$		
Vibration resistance		Functiona\|*5	Rubber bracket A type: Min. $100 \mathrm{~m} / \mathrm{s}^{2}\{10 \mathrm{G}\}, 50 \mathrm{~Hz}$ to 500 Hz Direct coupling type or Screw-mounting type: Min. $44.1 \mathrm{~m} / \mathrm{s}^{2}\{4.5 \mathrm{G}\}, 33 \mathrm{~Hz}$		$\begin{gathered} \text { Min. } 44.1 \mathrm{~m} / \mathrm{s}^{2}\{4.5 \mathrm{G}\}, \\ 33 \mathrm{~Hz} \\ \hline \end{gathered}$
		Destructive*6	Rubber bracket A type: Min. 100m/s² \{10 G\}, 50 Hz to 500 Hz Direct coupling type or Screw-mounting type: Min. $44.1 \mathrm{~m} / \mathrm{s}^{2}\{4.5 \mathrm{G}\}, 33 \mathrm{~Hz}$		$\begin{gathered} \hline \text { Min. } 44.1 \mathrm{~m} / \mathrm{s}^{2}\{4.5 \mathrm{G}\}, \\ 33 \mathrm{~Hz} \end{gathered}$
Conditions for operation, transport and storage*7 (Not freezing and condensing low temperature)		Ambient temp.	$-30^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}-22^{\circ} \mathrm{F}$ to $+176^{\circ} \mathrm{F}$		
		Humidity	5\% R.H. to 85\% R.H.		
Water-proof standard			Plastic sealed type: JIS DO203S2, Dust cover type: JIS DO203R2		JIS DO203S2
Mass			Rubber bracket A type: 23 g .81 oz Direct coupling type or Screw-mounting type: 19 g .67 oz	31 g 1.09 oz	

Electrical life (min. operation)

	Nominal coil voltage, V DC	Motor load (operating frequency ON: 2 s, OFF: 2 s)	Halogen lamp load (operating frequency ON: $1 \mathrm{~s}, \mathrm{OFF}: 14 \mathrm{~s})$
1 Form A, 1 Form B	12	$10^{5}, 20 \mathrm{~A} \mathrm{12} \mathrm{V} \mathrm{DC}$	$10^{5}, 20 \mathrm{~A} \mathrm{12} \mathrm{V} \mathrm{DC}$
1 Form C	12	$10^{5}, 20 \mathrm{~A} \mathrm{12} \mathrm{V} \mathrm{DC}$	$10^{5}, 20 \mathrm{~A} \mathrm{12} \mathrm{V} \mathrm{DC}$

Remarks

*1 Detection current: 10 mA
${ }^{* 5}$ Detection time: $10 \mu \mathrm{~s}$
${ }^{*}$ Excluding contact bounce time
${ }^{* 6}$ Time of vibration for each direction; X, Y, direction: 2 hours, Z direction: 4 hours
${ }^{* 3}$ Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$
${ }^{* 7}$ Refer to " 6 . Usage, Storage and Transport Conditions" in AMBIENT
${ }^{*}$ Half-wave pulse of sine wave: 6 ms

ORDERING INFORMATION

Notes: 1. Type with resistor/diode inside are available as options. Please consult our sales office.
2. Standard packing: Carton: 20 pcs. Case: 200 pcs.

COIL DATA

1) Standard type

Contact arrangement	Mounting type	Plastic sealed type	Dust cover type	Nominal voltage, V DC	Pick-up voltage, VDC (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage, V DC (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating current, mA (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Coil resistance, } \\ \Omega \\ \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{gathered}$	Nominal operating power, W (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Usable voltage range, V DC
1 Form A	Rubber bracket A	CA1a-12V-A-5	CA1aF-12V-A-5	12	Max. 8	Min. 0.6 to 6	150 $\pm 10 \%$	$80 \pm 10 \%$	1.8	10 to 16
	Screw-mounting	CA1a-12V-N-5	CA1aF-12V-N-5	12	Max. 8	Min. 0.6 to 6	150 $\pm 10 \%$	$80 \pm 10 \%$	1.8	10 to 16
	Direct coupling	CA1a-12V-C-5	CA1aF-12V-C-5	12	Max. 8	Min. 0.6 to 6	150 $\pm 10 \%$	$80 \pm 10 \%$	1.8	10 to 16
1 Form B	Rubber bracket A	CA1b-12V-A-5	CA1bF-12V-A-5	12	Max. 8	Min. 0.6 to 6	150 $\pm 10 \%$	$80 \pm 10 \%$	1.8	10 to 16
	Screw-mounting	CA1b-12V-N-5	CA1bF-12V-N-5	12	Max. 8	Min. 0.6 to 6	150 $\pm 10 \%$	$80 \pm 10 \%$	1.8	10 to 16
	Direct coupling	CA1b-12V-C-5	CA1bF-12V-C-5	12	Max. 8	Min. 0.6 to 6	150 $\pm 10 \%$	$80 \pm 10 \%$	1.8	10 to 16
1 Form C	Screw-mounting	CA1-DC12V-N	-	12	Max. 8	Min. 0.6	150 $\pm 10 \%$	$80 \pm 10 \%$	1.8	10 to 15
	Direct coupling	CA1-DC12V-C	-	12	Max. 8	Min. 0.6	150 $\pm 10 \%$	$80 \pm 10 \%$	1.8	10 to 15
	Screw-mounting	CA1-DC24V-N	-	24	Max. 16	Min. 1.2	$75 \pm 10 \%$	$320 \pm 10 \%$	1.8	20 to 30
	Direct coupling	CA1-DC24V-C	-	24	Max. 16	Min. 1.2	$75 \pm 10 \%$	320 $\pm 10 \%$	1.8	20 to 30

CA

2) Low operating power type

Contact arrangement	Mounting type	Plastic sealed type	Dust cover type	Nominal voltage, V DC	Pick-up voltage, V DC (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage, V DC (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating current, mA (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Coil resistance, } \\ \Omega \\ \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{gathered}$	Nominal operating power, W (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Usable voltage range, V DC
1 Form A	Rubber bracket A	CA1aS-12V-A-5	CA1aFS-12V-A-5	12	Max. 8	Min. 0.6 to 6	120 $\pm 10 \%$	100 $\pm 10 \%$	1.4	10 to 16
	Screw-mounting	CA1aS-12V-N-5	CA1aFS-12V-N-5	12	Max. 8	Min. 0.6 to 6	120 $\pm 10 \%$	100 $\pm 10 \%$	1.4	10 to 16
	Direct coupling	CA1aS-12V-C-5	CA1aFS-12V-C-5	12	Max. 8	Min. 0.6 to 6	120 $\pm 10 \%$	100 $\pm 10 \%$	1.4	10 to 16
1 Form B	Rubber bracket A	CA1bS-12V-A-5	CA1bFS-12V-A-5	12	Max. 8	Min. 0.6 to 6	120 $\pm 10 \%$	100 $\pm 10 \%$	1.4	10 to 16
	Screw-mounting	CA1bS-12V-N-5	CA1bFS-12V-N-5	12	Max. 8	Min. 0.6 to 6	120 $\pm 10 \%$	100 $\pm 10 \%$	1.4	10 to 16
	Direct coupling	CA1bS-12V-C-5	CA1bFS-12V-C-5	12	Max. 8	Min. 0.6 to 6	120 $\pm 10 \%$	100 $\pm 10 \%$	1.4	10 to 16

DIMENSIONS $(m m$ inch) Interested in CAD data? You can obtain CAD data for all products with a CAD Data mark from your local Panasonic Electric Works representative.

1. 1 Form $\mathrm{A} / 1$ Form B

2. 1 Form A/1 Form B

Screw-mounting type

CAD Data

Dimension:
Max. 1 mm .039 inch: $\quad \pm 0.1 \pm .004$
1 to 3 mm .039 to .118 inch: $\pm 0.2 \pm .008$
Min. 3 mm .118 inch: $\quad \pm 0.3 \pm .012$
Min. 3mm . 118 inch: $\quad \pm 0.3 \pm .012$

SCHEMATIC (Bottom View)

1 Form A
1 Form B

Including diode type, including load type also available.

Including load (1 Form A)

Including diode (1 Form C)

Dimension:
Max. 1 mm .039 inch:
$\pm 0.1 \pm .004$
1 to 3 mm .039 to .118 inch: $\pm 0.2 \pm .008$
Min. 3 mm .118 inch: $\pm 0.3 \pm .012$

Direct coupling type

CAD Data

SCHEMATIC (Bottom View)

1 Form A 1 Form B

Including diode type, including load type also available.

Including diode (1 Form C)

Including load (1 Form A)

General tolerance
$\begin{array}{lr}\text { Max. } 1 \mathrm{~mm} .039 \text { inch: } & \pm 0.1 \pm .004 \\ 1 \text { to } 3 \mathrm{~mm} .039 \text { to } .118 \text { inch: } \pm 0.2 \pm .008\end{array}$
Min. 3mm . 118 inch: $\quad \pm 0.3 \pm .012$
4. 1 Form C

Screw-mounting type

Dimension:
Max. 1mm . 039 inch:
inch: $\pm 0.2 \pm .008$
Min. 3mm . 118 inch: $\pm 0.3 \pm .012$

SCHEMATIC (Bottom View)

Including diode type, including load type also available.

Including load (1 Form C)

Including diode (1 Form A)
5. 1 Form C

Direct coupling type

CAD Data

(28.41.118

SCHEMATIC (Bottom View)

1 Form C

Including diode type, including load type also available.

Dimension:	General tolerance
Max. 1 mm .039 inch:	$\pm 0.1 \pm .004$
1 to 3 mm .039 to .118 inch: $\pm 0.2 \pm .008$	
Min. 3 mm .118 inch:	$\pm 0.3 \pm .012$

REFERENCE DATA

1. Coil temperature rise

Samples: CA1aS-12V-N-5, 5pcs.
Measured portion: Inside the coil
Contact carrying current: 20A
Ambient temperature: Room temperature, $85^{\circ} \mathrm{C}$ $185^{\circ} \mathrm{F}$

4. Ambient temperature characteristics
(Cold start)
Samples: CA1bS-12V-N-5

7-(1). Electrical life test (Motor load)
Sample: CA1a-12V-C, 3pcs.
Load: Inrush current: 63A, steady current: 23A
Blower fan motor actual load (motor free)
Switching frequency: ($\mathrm{ON}: \mathrm{OFF}=2 \mathrm{~s}: 2 \mathrm{~s}$)
Ambient temperature: Room temperature

Load current waveform
Load: Inrush current: 63A, steady current: 23A,

2. Max. switching capability (Resistive load)

5. Distribution of pick-up and drop-out voltage Quantity: 50pcs.

3. Ambient temperature and operating temperature range

6. Distribution of operate and release time Sample: CA1a-12V-N-5, 10pcs.

Change of pick-up and drop-out voltage

Change of contact resistance

7-(2). Electrical life test (Lamp load)
Sample: CA1a-12V-C, 3pcs.
Load: $60 \mathrm{~W} \times 4$, Inrush current: 110A, steady current: 20A
Halogen lamp actual load
Switching frequency: (ON:OFF = 1s:14s)
Ambient temperature: Room temperature

Load current waveform
Load: Inrush current: 110A, steady current: 20A,

Change of contact resistance

Cautions regarding the protection element

1. Part numbers without protection elements

1) 12 V models

When connecting a coil surge protection circuit to these relays, we recommend a Zener diode with a Zener voltage of 24 V or higher, or a resistor (680Ω to $1,000 \Omega$). When a diode is connected to the coil in parallel, the release time will slow down and working life may shorten. Before use, please check the circuit and verify that the diode is not connected in parallel to the coil drive circuit.
2) 24 V models

When connecting a coil surge protection circuit to these relays, we recommend a Zener diode with a Zener voltage of 48 V or higher, or a resistor $(2,800 \Omega$ to $4,700 \Omega$).
When a diode is connected to the coil in parallel, the release time will slow down and working life may shorten. Before use, please check the circuit and verify that the diode is not connected in parallel to the coil drive circuit.

2. Part numbers with diodes

These relays use a diode in the coil surge protection element. Therefore, the release time is slower and the working life might be shorter compared to part numbers without protection elements and part numbers with resistors. Be sure to use only after evaluating under actual load conditions.

3. Part numbers with resistors

This part number employs a resistor in the coil surge protection circuit; therefore, an external surge protection element is not required. In particular, when a diode is connected in parallel with a coil, the revert time becomes slower which could adversely affect working life. Please check the circuit and make sure that a diode is not connected in parallel with the coil drive circuit.

For Cautions for Use, see Relay Technical Information (page 582).

Panasonic ideas for life

AUTOMOTIVE RELAY WITH ISO TERMINAL ARRANGEMENT

FEATURES

1. This relay has an ISO (International Organization for Standardization) terminal arrangement.
Terminals are all solder plated.
*35 A type: Terminal is the plug-in type (no plating).
2. Relay is compact and high capacity (40 A).
Compact form factor realized with space saving $22 \times 26 \mathrm{~mm} .866 \times 1.024$ inch small base area thanks to integrated bobbin and base construction. Features high switching capacity of 40 A
3. Features high thermal resistance of $125^{\circ} \mathrm{C} 257^{\circ} \mathrm{F}$ (heat resistant type). Heat resistant type is available that can withstand use near engines. (40 A switching capacity)
4. Sealed type available for resisting adverse environments.
5. Surge absorbing built-in diode type that works when the relay coil is off and an internal resistor type are available. (Please inquire.)
6. Protective element type is also available.
7. For only plug-in types, types with nominal switching capacities of 35 A (12 V) and $15 \mathrm{~A}(24 \mathrm{~V})$ are available.

TYPICAL APPLICATIONS

1. Automobiles

Headlights, Cell motors, Air conditioners, ABS, EPS, etc.
2. Construction equipment
3. Agricultural equipment, Conveyor, etc.

ORDERING INFORMATION

TYPES

1. Standard type

Contact arrangement	Mounting classification	Nominal coil voltage	Sealed type	Flux-resistant type
			Part No.	Part No.
1 Form A	PC board type	12V DC	CB1a-P-12V	CB1aF-P-12V
		24V DC	CB1a-P-24V	CB1aF-P-24V
	Plug-in type	12 V DC	CB1a-12V	CB1aF-12V
		24V DC	CB1a-24V	CB1aF-24V
	Bracket type	12 V DC	CB1a-M-12V	CB1aF-M-12V
		24 V DC	CB1a-M-24V	CB1aF-M-24V
1 Form C	PC board type	12 V DC	CB1-P-12V	CB1F-P-12V
		24V DC	CB1-P-24V	CB1F-P-24V
	Plug-in type	12 V DC	CB1-12V	CB1F-12V
		24V DC	CB1-24V	CB1F-24V
	Bracket type	12 V DC	CB1-M-12V	CB1F-M-12V
		24 V DC	CB1-M-24V	CB1F-M-24V
High contact capacity (1 Form A)	PC board type*	12 V DC	CB1aH-P-12V	CB1aHF-P-12V
		24V DC	CB1aH-P-24V	CB1aHF-P-24V
	Plug-in type	12 V DC	CB1aH-12V	CB1aHF-12V
		24V DC	CB1aH-24V	CB1aHF-24V
	Bracket type	12 V DC	CB1aH-M-12V	CB1aHF-M-12V
		24 V DC	CB1aH-M-24V	CB1aHF-M-24V

Packing quantity; Carton: 50 pcs. Case: 200 pcs.
Notes: 1. Please use "CB***R**" to order built-in resistor type and "CB***D**" to order built-in diode type. (Asterisks "*" should be filled in from parts table.)
2. *Regarding solder, this product is not MIL (Military Standard) compliant. Please evaluate solder mounting by the actual equipment before using.
2. Heat resistant type

Contact arrangement	Mounting classification	Nominal coil voltage	Sealed type	Flux-resistant type
			Part No.	Part No.
1 Form A	PC board type	12V DC	CB1a-T-P-12V	CB1aF-T-P-12V
		24 V DC	CB1a-T-P-24V	CB1aF-T-P-24V
	Plug-in type	12 V DC	CB1a-T-12V	CB1aF-T-12V
		24V DC	CB1a-T-24V	CB1aF-T-24V
	Bracket type	12 V DC	CB1a-T-M-12V	CB1aF-T-M-12V
		24 V DC	CB1a-T-M-24V	CB1aF-T-M-24V
1 Form C	PC board type	12 V DC	CB1-T-P-12V	CB1F-T-P-12V
		24 V DC	CB1-T-P-24V	CB1F-T-P-24V
	Plug-in type	12 V DC	CB1-T-12V	CB1F-T-12V
		24V DC	CB1-T-24V	CB1F-T-24V
	Bracket type	12 V DC	CB1-T-M-12V	CB1F-T-M-12V
		24V DC	CB1-T-M-24V	CB1F-T-M-24V
High contact capacity (1 Form A)	PC board type*	12 V DC	CB1aH-T-P-12V	CB1aHF-T-P-12V
		24V DC	CB1aH-T-P-24V	CB1aHF-T-P-24V
	Plug-in type	12 V DC	CB1aH-T-12V	CB1aHF-T-12V
		24V DC	CB1aH-T-24V	CB1aHF-T-24V
	Bracket type	12 V DC	CB1aH-T-M-12V	CB1aHF-T-M-12V
		24V DC	CB1aH-T-M-24V	CB1aHF-T-M-24V

Packing quantity; Carton: 50 pcs. Case: 200 pcs.
Notes: 1. Please use "CB***R**" to order built-in resistor type and "CB***D**" to order built-in diode type. (Asterisks " $*$ " should be filled in from parts table.)
2. *Regarding solder, this product is not MIL (Military Standard) compliant. Please evaluate solder mounting by the actual equipment before using.
3. 35 A type (*Terminals are all of the plug-in type.)

Contact arrangement	Nominal coil voltage	Sealed type	Flux-resistant type
		Part No.	Part No.
1 Form A	12V DC	CB1aV-12V	CB1aVF-12V
	24 V DC	CB1aV-24V	CB1aVF-24V
1 Form C	12 V DC	CB1V-12V	CB1VF-12V
	24 V DC	CB1V-24V	CB1VF-24V
1 Form A with resistor inside	12 V DC	CB1aV-R-12V	CB1aVF-R-12V
	24V DC	CB1aV-R-24V	CB1aVF-R-24V
1 Form C with resistor inside	12 V DC	CB1V-R-12V	CB1VF-R-12V
	24V DC	CB1V-R-24V	CB1VF-R-24V
1 Form A with diode inside	12 V DC	CB1aV-D-12V	CB1aVF-D-12V
	24 V DC	CB1aV-D-24V	CB1aVF-D-24V
1 Form C with diode inside	12 V DC	CB1V-D-12V	CB1VF-D-12V
	24 V DC	CB1V-D-24V	CB1VF-D-24V

[^44]
RATING

1. Coil data

1) 2. No protective element and with diode inside

Contact arrangement	Nominal coil voltage	Pick-up voltage (Initial, at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (Initial, at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating current (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{aligned} & \text { Coil resistance } \\ & (\pm 10 \%) \\ & \text { (at } \left.20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right) \end{aligned}$	Nominal operating power (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Usable voltage range
$\begin{aligned} & 1 \text { Form A, } \\ & 1 \text { Form C } \end{aligned}$	12V DC	3 to 7V DC	1.2 to 4.2V DC	117 mA	103Ω	1.4 W	10 to 16V DC
	24 V DC	6 to 14 V DC	2.4 to 8.4V DC	75 mA	320Ω	1.8W	20 to 32V DC
High contact capacity (1 Form A)	12 V DC	3 to 7V DC	1.2 to 4.2 V DC	117 mA	103Ω	1.4W (PC board type)	10 to 16V DC
				150 mA	80Ω	1.8 W	
	24V DC	6 to 14V DC	2.4 to 8.4 V DC	58 mA	411Ω	1.4W (PC board type)	20 to 32V DC
				75 mA	320Ω	1.8 W	

Note: Other pick-up voltage types are also available. Please contact us for details.
2) With resistor inside

Contact arrangement	Nominal coil voltage	Pick-up voltage (Initial, at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (Initial, at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating current (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Combined resistance $(\pm 10 \%)$ $\left(\right.$ at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating power (at $\left.20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)$	Usable voltage range
1 Form A,	12 V DC	3 to 7 V DC	1.2 to 4.2 V DC	134 mA	89.5Ω	1.6 W	
1 Form C	24 V DC	6 to 14 V DC	2.4 to 8.4 V DC	84 mA	287.2Ω	10 to 16 V DC	

2. Specifications

1) Standard type (12 V coil voltage)

Characteristics	Item		Specifications		
Contact	Arrangement		1 Form A	1 Form C	High contact capacity (1 Form A)
	Contact resistance (Initial)		Typ2m (By voltage drop 6 V DC 1 A)		
	Contact material		Ag alloy (Cadmium free)		
Rating	Nominal switching capacity (Initial)		40A 14V DC	N.O.: 40A 14V DC N.C.: 30A 14V DC	70 A 14 V DC (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$) 50 A 14 V DC (at $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$)
	Max. carrying current (Initial) (14V DC, at $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$, continuous)		N.O.: 40A	N.O.: 40A, N.C.: 30A	N.O.: 40A
	Nominal operating power		1.4W	1.4W	1.8W (1.4W: PC board type)
	Min. switching capacity ${ }^{*}{ }^{1}$		1A 12V DC (12V DC), 1A 24V DC (24V DC)		
Electrical characteristics	Initial insulation resistance		Min. $20 \mathrm{M} \Omega$ (at 500 V DC)		
	Initial breakdown voltage	Between open contacts	500 Vrms for 1 min . (Detection current: 10 mA)		
		Between contacts and coil	500 Vrms for 1 min . (Detection current: 10 mA)		
	Operate time (at nominal voltage) (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 15 ms (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$, excluding contact bounce time) (Initial)		
	Release time (at nominal voltage) (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 15 ms (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$, excluding contact bounce time, without diode) (Initial)		
Mechanical characteristics	Shock resistance	Functional	Min. $200 \mathrm{~m} / \mathrm{s}^{2}$ \{20G\}		
		Destructive	Min. $1,000 \mathrm{~m} / \mathrm{s}^{2}\{100 \mathrm{G}\}$		
	Vibration resistance	Functional	10 Hz to 500 Hz , Min. $44.1 \mathrm{~m} / \mathrm{s}^{2}$ \{4.5G\}		
		Destructive	10 Hz to $2,000 \mathrm{~Hz}$, Min. $44.1 \mathrm{~m} / \mathrm{s}^{2}\{4.5 \mathrm{G}\}$ Time of vibration for each direction; X. Y. Z direction: 4 hours		
Expected life	Electrical (at nominal switching capacity)		Flux-resistant type: Min. 10^{5}, Sealed type: Min. 5×10^{4} (Operating frequency: 2 s ON, 2s OFF)		
	Mechanical		Min. 10^{6} (at 120 cpm)		
Conditions	Conditions for operation, transport and storage" ${ }^{2}$		Standard type; Ambient temp: -40 to $+85^{\circ} \mathrm{C}-40$ to $+185^{\circ} \mathrm{F}$, Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature)		
			Heat resistant type; Ambient temp: -40 to $+125^{\circ} \mathrm{C}-40$ to $+257^{\circ} \mathrm{F}$,Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature)		
	Max. operating speed		15 cpm (At nominal switching capacity)		
Unit weight			Approx. 33 g 1.16 oz		
Notes:					

*1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.
*2The upper operation ambient temperature limit is the maximum temperature that can satisfy the coil temperature rise value. Refer to " 6 . Usage, Storage and Transport Conditions" in AMBIENT ENVIRONMENT (page 599).
2) Standard type (24 V coil voltage)

Characteristics	Item	Specifications		
	Arrangement	1 Form A	1 Form C	High contact capacity (1 Form A)
Contact	Contact resistance (Initial)	Max. 15m (By voltage drop 6 V DC 1 A)		
	Contact material	Ag alloy (Cadmium free)		
Rating	Nominal switching capacity (Initial)	20A 28V DC	N.O.: 20A 28V DC N.C.: 10A 28V DC	20A 28V DC
	Max. carrying current (Initial) (28V DC, at $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$, continuous)	20A	N.O.: 20A, N.C.: 10 A	20A
	Nominal operating power	1.8W	1.8W	1.8W, 1.4W (PC board type)

Note: All other specifications are the same as those of standard type (12 V coil voltage)

3) Heat resistant type (12 V and 24 V coil voltage)

Characteristics	Item	Specifications						
		12V				24V		
Contact	Arrangement	1 Form A	1 Form C	$\begin{gathered} \hline \text { High c } \\ \text { cap } \\ (1 \mathrm{Fo} \end{gathered}$	ontact acity A)	1 Form A	1 Form C	High contact capacity (1 Form A)
	Contact resistance (Initial)	Max. $15 \mathrm{~m} \Omega$ (By voltage drop 6 V DC 1 A)						
	Contact material	Ag alloy (Cadmium free)						
Rating	Nominal switching capacity (Initial)	40A 14V DC	$\begin{aligned} & \text { N.O.: 40A 14V DC } \\ & \text { N.C.: } 30 \mathrm{~A} 14 \mathrm{~V} \text { DC } \\ & \hline \end{aligned}$	40A 14V DC		20A 28V DC	$\begin{aligned} & \text { N.O.: 20A 28V DC } \\ & \text { N.C.: 10A 28V DC } \end{aligned}$	20A 28V DC
	Max. carrying current (Initial) (at $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$, continuous)*	50A 14V DC	N.O.: 50A 14V DC N.C.: 30A 14V DC	$\begin{gathered} 45 \mathrm{~A} \\ 14 \mathrm{~V} \mathrm{DC} \end{gathered}$	$\begin{gathered} 50 \mathrm{~A} \\ 14 \mathrm{~V} \mathrm{DC} \end{gathered}$	25A 28V DC	$\begin{aligned} & \text { N.O.: } 25 \mathrm{~A} 28 \mathrm{~V} \text { DC } \\ & \text { N.C.: } 10 \mathrm{~A} 28 \mathrm{~V} \text { DC } \\ & \hline \end{aligned}$	25A 28V DC
	Nominal operating power	1.4 W	1.4W	1.8 W	$\begin{gathered} 1.4 \mathrm{~W} \\ \text { (PCboard } \\ \text { type) } \\ \hline \end{gathered}$	1.8 W	1.8 W	1.8 W 1.4 W (PC board type)

Notes: 1. All other specifications are the same as those of standard type (12 V coil voltage)
2. *Current value in which carry current is possible when the coil temperature is $180^{\circ} \mathrm{C} 356^{\circ} \mathrm{F}$
4) 35 A type (12 V coil voltage)

Characteristics		Item	Specifications	
Contact	Arrangement		1 Form A	1 Form C
	Contact resistance (Initial)		Typ2m Ω (By voltage drop 6 V DC 1 A)	
	Contact material		Ag alloy (Cadmium free)	
Rating	Nominal switching capacity (Resistive load)		35A 14V DC	N.O.: 35A 14V DC, N.C.: 25A 14V DC
	Max. carrying current (Initial) (14V DC, at $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$, continuous)		N.O.: 35A	N.O.: 35A, N.C.: 25A
	Nominal operating power		1.4W, 1.6W (with resistor inside)	
	Min. switching capacity (Reference value)*		1A 12V DC (12V DC), 1A 24V DC (24V DC)	
Electrical characteristics	Initial insulation resistance		Min. $20 \mathrm{M} \Omega$ (at 500 V DC)	
	Initial breakdown voltage	Between open contacts	500 Vrms for 1 min . (Detection current: 10 mA)	
		Between contacts and coil	500 Vrms for 1 min . (Detection current: 10 mA)	
	Operate time (at nominal voltage)		Max. 15ms (excluding contact bounce time) (Initial)	
	Release time (at nominal voltage)		Max. 15ms (excluding contact bounce time, without diode) (Initial)	
Mechanical characteristics	Shock resistance	Functional	Min. $100 \mathrm{~m} / \mathrm{s}^{2}\{10 \mathrm{G}\}$ (Half-wave pulse of sine wave: 11 ms ; detection: $10 \mu \mathrm{~s}$)	
		Destructive	Min. 1,000 m/s ${ }^{2}\{100 \mathrm{G}\}$ (Half-wave pulse of sine wave: 6 ms)	
	Vibration resistance	Functional	10 Hz to 100 Hz , Min. $44.1 \mathrm{~m} / \mathrm{s}^{2}\{4.5 \mathrm{G}\}$ (Detection time: $10 \mu \mathrm{~s}$)	
		Destructive	10 Hz to $2,000 \mathrm{~Hz}, \mathrm{Min} .44 .1 \mathrm{~m} / \mathrm{s}^{2}\{4.5 \mathrm{G}\}$ Time of vibration for each direction; X. Y. Z direction: 4 hours	
Expected life	Electrical (at nominal switching capacity)		Flux-resistant type: Min. 10^{5}, Sealed type: Min. 5×10^{4} (Operating frequency: 2 s ON, 2s OFF) With diode inside: Min. 5×10^{4} (Operating frequency: $2 \mathrm{~s} \mathrm{ON}, 2 \mathrm{~s} \mathrm{OFF}$)	
	Mechanical		Min. 10^{6} (at 120 cpm)	
Conditions	Conditions for operation, transport and storage		Ambient temp: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+185^{\circ} \mathrm{F}$ Humidity: 5\% R.H. to 85% R.H. (Not freezing and condensing at low temperature)	
	Max. operating speed		15 cpm (At nominal switching capacity)	
Unit weight			Approx. 26 g .92 oz , Approx. 28 g .99 oz (with diode inside)	

Note: * This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.

5) 35 A type (24 V coil voltage)

Characteristics	Item	Specifications	
Contact	Arrangement	1 Form A	1Form C
Rating	Nominal switching capacity (Resistive load)	$15 \mathrm{~A} \mathrm{28V} \mathrm{DC}$	N.O.: 15A 28V DC, N.C.: 8A 28V DC
	Max. carrying current (14V DC, at 85		
	Nominal operating power	N.O.: 15A	N.O.: 15A, N.C.: 8A

Note: All other specifications are the same as those of 35 A type (12 V coil voltage).

REFERENCE DATA

CB RELAYS (Standard type)

1. Allowable ambient temperature

2. Max. switching capability (Resistive load) (Standard type)

3. Ambient temperature and operating voltage range
(Standard type)

Asssumption:

- Maximum mean coil temperature: $180^{\circ} \mathrm{C}$
- Curves are based on 1.4 W (Nominal power consumption of the unsupprressed coil at nominal voltage)

4. Distribution of pick-up and drop-out voltage Sample: CB1-P-12V, 42pcs.

6-(1). Electrical life test (Motor free)
Sample: CB1F-12V, 5pcs.
Load: 25A 14V DC, motor free actual load
Switching frequency: (ON:OFF = 1s:9s)
Ambient temperature: Room temperature Circuit

Load current waveform
Inrush current: 80A, Steady current: 25A
$20 A^{4}$
200 ms

5. Distribution of operate and release time Sample: CB1-P-24V, 42pcs.

* Without diode

Change of contact resistance

6-(2). Electrical life test (Lamp load)
Sample: CB1F-12V, 5pcs.
Load: $45 / 65 \mathrm{~W} \times 5$ parallel, 14 V DC, halogen lamp
actual load
Switching frequency: (ON:OFF = 1s:8s)
Ambient temperature: Room temperature
Circuit

Load current waveform
Inrush current: 100A, Steady current: 20A

$$
20.5 A^{\dagger}
$$

Change of pick-up and drop-out voltage

Change of contact resistance

CB RELAYS (High contact capacity type)

1. Allowable ambient temperature

2. Max. switching capability (High contact capacity type)

Asssumption:

- Maximum mean coil temperature: $180^{\circ} \mathrm{C}$
- Curves are based on 1.4 W (Nominal power consumption of the unsupprressed coil at nominal voltage)

4. Distribution of pick-up and drop-out voltage Sample: CB1aHF-12V, 53pcs.

5. Distribution of operate and release time Sample: CB1aHF-12V, 53pcs.

6. Ambient temperature and operating voltage range
(High contact capacity type)

7-(1). Electrical life test (Motor free)
Sample: CB1aH-12V, 3pcs.
Load: Inrush current: 64A/Steady current: 35A
Fan motor actual load (motor free) 12V DC
Switching frequency: (ON:OFF = 3s:7s)
Ambient temperature: Room temperature
Circuit

Load current waveform Inrush current: 64A, Steady current: 35A

7-(2). Electrical life test (Motor lock)
Sample: CB1aH-12V, 5pcs.
Load: 100A 14V DC
Magnet clutch actual load (lock condition)
Switching frequency: (ON:OFF = 1s:9s)
Ambient temperature: Room temperature
Circuit

Change of pick-up and drop-out voltage

Change of contact resistance

Load current waveform
100A 14V DC

CB RELAY (35 A type)

1-(1). Distribution of pick-up and drop-out voltage
Sample: CB1aV-12V, 30pcs.

2.-(1) Contact resistance Sample: CB1aV-12V, 30pcs. (By voltage drop 12 V DC 1A)

3. Electrical life test (Blower fan)

Sample: CB1aV-D-24V, 3pcs.
Load: Blower fan load 28 V DC
Inrush current: $30 \mathrm{~A} /$ Steady current: 10 A
Switching frequency: (ON:OFF $=3 \mathrm{~s}: 3 \mathrm{~s}$)
Switching cycle: 10^{5}
Ambient temperature: $85^{\circ} \mathrm{C}$
Coil protective element: Diode
Circuit

Load current waveform
Inrush current: 30 A, Steady current: 10 A

1-(2). Distribution of pick-up and drop-out voltage
Sample: CB1aV-24V, 30pcs.

2.-(2) Contact resistance Sample: CB1aV-24V, 30pcs.
(By voltage drop 24 V DC 1A)

Change of pick-up and drop-out voltage

1-(3). Distribution of pick-up and drop-out voltage
Sample: CB1V-24V, 30pcs.

2.-(3) Contact resistance

Sample: CB1V-24V, 30pcs.
(By voltage drop 24 V DC 1 A)

DIMENSIONS $(m m$ inch) Interested in CAD data? You can obtain CAD data for all products with a CAD Data mark from your local Panasonic Electric Works representative.

1. PC board type

CAD Data

Dimension:
Max. 1mm . 039 inch:
1 to 3 mm 039 to
Min. 3mm . 118 inch:
General tolerance
$\pm 0.1 \pm .004$
$\pm 0.3 \pm .012$

Schematic (Bottom view)

PC board pattern (Bottom view)

2. Plug-in type * The dimensions are the same as those of 35A type.

CAD Data

External dimensions

General tolerance
Dimension:
Max. 1mm . 039 inch:
$\pm 0.1 \pm .004$
1 to 3 mm .039 to .118 inch: $\pm 0.2 \pm .008$
Min. 3mm . 118 inch:
$\pm 0.3 \pm .012$
3. Bracket type

External dimensions

Dimension:	$\underline{\text { General tolerance }}$
Max. 1 mm .039 inch:	$\pm 0.1 \pm .004$
1 to 3 mm .039 to .118 inch: $\pm 0.2 \pm .008$	
Min. 3 mm .118 inch:	$\pm 0.3 \pm .012$

1 to 3 mm .039 to .118 inch: $\pm 0.2 \pm .008$
Min. 3 mm .118 inch: $\pm 0.3 \pm .012$

Schematic (Bottom view)

4. High contact capacity (1 Form A) (Plug-in type)

External dimensions

Dimension:	$\underline{\text { General tolerance }}$
Max. 1 mm .039 inch:	$\pm 0.1 \pm .004$
1 to 3 mm .039 to .118 inch: $\pm 0.2 \pm .008$	
Min. 3 mm .118 inch:	$\pm 0.3 \pm .012$

Schematic (Bottom view)

CAD Data

External dimensions

* Intervals between terminals is measured at A surface level.

Schematic (Bottom view)

PC board pattern (Bottom view)

Dimension: General tolerance
Max. 1 mm .039 inch: $\quad \pm 0.1 \pm .004$
1 to 3 mm .039 to .118 inch: $\pm 0.2 \pm .008$
Min. 3 mm .118 inch: $\quad \pm 0.3 \pm .012$

Cautions regarding the protection element

1. Part numbers without protection elements

1) 12 V models

When connecting a coil surge protection circuit to these relays, we recommend a zener diode with a zener voltage of 24 V or higher, or a resistor (680Ω to $1,000 \Omega$). When a diode is connected to the coil in parallel, the release time will slow down and working life may shorten. Before use, please check the circuit and verify that the diode is not connected in parallel to the coil drive circuit.

2) 24 V models

When connecting a coil surge protection circuit to these relays, we recommend a zener diode with a zener voltage of 48 V or higher, or a resistor $(2,800 \Omega$ to $4,700 \Omega$).
When a diode is connected to the coil in parallel, the release time will slow down and working life may shorten. Before use, please check the circuit and verify that the diode is not connected in parallel to the coil drive circuit.

2. Part numbers with diodes

These relays use a diode in the coil surge protection element. Therefore, the release time is slower and the working life might be shorter compared to part numbers without protection elements and part numbers with resistors.
Be sure to use only after evaluating under actual load conditions.

3. Part numbers with resistors

 This part number employs a resistor in the coil surge protection circuit; therefore, an external surge protection element is not required. In particular, when a diode is connected in parallel with a coil, the release time becomes slower which could adversely affect working life. Please check the circuit and make sure that a diode is not connected in parallel with the coil drive circuit.For Cautions for Use, see Relay Technical Information (page 582).

Panasonic ideas for life

SUPER MINIATURE PC BOARD TYPE AUTOMOTIVE RELAY

FEATURES

 previous products.

1. Smallest in its class, it is extremely compact at approx. $2 / 3$ the size of

Compared to our previous miniature type CT relay, the 1 Form C as well as the 10pin and 8-pin twin types take up approx. two-thirds the space and volume.
2. High-capacity 25 A load switching High capacity control capable of motor lock load switching at $25 \mathrm{~A}, 14 \mathrm{~V}$ DC is possible despite contact size.
3. Pin in Paste (PiP)* compatible model added
Models compatible with the recently increasingly popular PiP technique (reflow solder mounting) have been added.
PiP compatible models are the flux tight type.

* The PiP method may sometimes be referred to as THR (Through-Hole Reflow).

4. Environmental protection specifications
Cadmium-free contacts and use of leadfree solder are standard. Environmental pollutants are not used.

TYPICAL APPLICATIONS

- Power windows
- Automatic door locks
- Power mirrors
- Power sunroofs
- Power seats
- Lift gates
- Smart junction box related products, etc.

ORDERING INFORMATION

Standard packing: 1 Form C:
1 Form $\mathrm{C} \times 2,8$
1 Form $\mathrm{C} \times 2,10$ terminal
Tube: 35 pcs.; Outer carton: 1,400 pcs.

TYPES

Contact arrangement	Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Part No.	
			Standard type	Pin in Paste type
1 Form C	12 V DC	Max.6.5 V DC (Initial)	ACJ1112	ACJ1112P
		Max.7.2 V DC (Initial)	ACJ1212	ACJ1212P
1 Form $\mathrm{C} \times 2$ (8 terminal)		Max.6.5 V DC (Initial)	ACJ2112	ACJ2112P
		Max.7.2 V DC (Initial)	ACJ2212	ACJ2212P
1 Form C $\times 2$ (10 terminal)		Max.6.5V DC (Initial)	ACJ5112	ACJ5112P
		Max.7.2 V DC (Initial)	ACJ5212	ACJ5212P

RATING

1. Coil data

Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating current $[\pm 10 \%]$ (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{aligned} & \text { Coil resistance } \\ & \quad[\pm 10 \%] \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Nominal operating power (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Max. continuous voltage*
12 V DC	Max. 7.2 V DC (Initial)	Min. 1.0 V DC (Initial)	53.3 mA	225Ω	640 mW	10 to 16 V DC
	Max. 6.5 V DC (Initial)	Min. 0.8 V DC (Initial)	66.7 mA	180Ω	800 mW	9 to 16 V DC

[^45]
CJ (ACJ)

2. Specifications

Characteristics	Item		Specifications
Contact	Arrangement		1 Form C, 1 Form C×2
	Initial contact resistance (Initial)		N.O.: Typ7m , N.C.: Typ10m (By voltage drop 6 V DC 1 A)
	Contact material		Ag alloy (Cadmium free)
Protective construction			Standard type: Sealed type Pin in Paste type: Flux tight type
Rating	Nominal switching capacity		N.O.: 20A 14V DC, N.C.: 10A 14V DC
	Max. carrying current (14V DC)		N.O.: 20 A for 1 hour, 30 A for 2 minutes (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
	Nominal operating power		640 mW (for pick-up voltage max. 7.2 V DC), 800 mW (for pick-up voltage max. 6.5 V DC)
	Min. switching capacity ${ }^{\text {-1 }}$		1A 12V DC
Electrical characteristics	Initial insulation resistance		Min. $100 \mathrm{M} \Omega$ (at 500 V DC)
	Initial breakdown voltage	Between open contacts	500 Vrms for 1 min . (Detection current: 10 mA)
		Between contacts and coil	500 Vrms for 1 min . (Detection current: 10 mA)
	Operate time (at nominal voltage)		Max. $10 \mathrm{~ms} \mathrm{(at} 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$, excluding contact bounce time) (Initial)
	Release time (at nominal voltage)		Max. 10 ms (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$, excluding contact bounce time) (Initial)
Mechanical characteristics	Shock resistance	Functional	Min. $100 \mathrm{~m} / \mathrm{s}^{2}\{10 \mathrm{G}\}$ (Half-wave pulse of sine wave: 11 ms ; detection: $10 \mu \mathrm{~s}$)
		Destructive	Min. $1,000 \mathrm{~m} / \mathrm{s}^{2}\{100 \mathrm{G}\}$ (Half-wave pulse of sine wave: 6 ms)
	Vibration resistance	Functional	10 Hz to $100 \mathrm{~Hz}, \mathrm{Min} .44 .1 \mathrm{~m} / \mathrm{s}^{2}\{4.5 \mathrm{G}\}$ (Detection time: $10 \mu \mathrm{~s}$)
		Destructive	10 Hz to $500 \mathrm{~Hz}, \mathrm{Min} .44 .1 \mathrm{~m} / \mathrm{s}^{2}\{4.5 \mathrm{G}\}$ Time of vibration for each direction; X, Y direction: 2 hours, Z direction: 4 hours
	Mechanical		Min. 10^{7} (at 120 cpm)
Expected life	Electrical		[Standard type] <Resistive load> Min. 10^{5} (At nominal switching capacity, operating frequency: 1s ON, 9s OFF) <Motor load> N.O. side: Min. 2×10^{5} : at 25 A (inrush), 5 A (steady), 14 V DC; Min. 105: at 25 A 14 V DC (Motor lock) N.C. side: Min. 2×10^{5} : at 20 A 14 V DC (brake) (Operating frequency: 0.5 s ON, 9.5 s OFF) [Pin in Paste type] <Resistive load> Min. 10^{5} (At nominal switching capacity, operating frequency: 1s ON, 9s OFF) <Motor load> N.O. side: Min. 105: at 25 A (inrush), 5 A (steady), 14 V DC; Min. 5×10^{4} : at 25 A 14 V DC (Motor lock) N.C. side: Min. 105: at 20 A 14 V DC (brake) (Operating frequency: 0.5 s ON, 9.5 s OFF)
Conditions	Conditions for operation, transport and storage*2		Ambient temp: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+185^{\circ} \mathrm{F}$ Humidity: 5% R.H. to 85% R.H. (Not freezing and condensing at low temperature)
	Max. operating speed		6 cpm (At nominal switching capacity)
Unit weight			1 Form C type: approx. 3.5 g .12 oz Twin type: approx. 6.5 g .23 oz

*1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load. *2Please inquire if you will be using the relay in a high temperature atmosphere $\left(110^{\circ} \mathrm{C} 230^{\circ} \mathrm{F}\right)$.
Refer to "6. Usage, Storage and Transport Conditions" in AMBIENT ENVIRONMENT (page 599).

REFERENCE DATA

1-(1). Coil temperature rise (at room temperature)
Sample: ACJ1212, 3pcs
Measured portion: Inside the coil
Contact carrying current: 10A, 15A, 20A
Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$

1-(2). Coil temperature rise (at $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$) Sample: ACJ1212, 3pcs
Measured portion: Inside the coil
Contact carrying current: 10A, 15A, 20A
Ambient temperature: $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$

1-(3). Coil temperature rise (at room temperature)
Sample: ACJ2212, 3pcs
Measured portion: Inside the coil
Contact carrying current: 10A, 15A, 20A
Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$

1-(4). Coil temperature rise (at $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$)
Sample: ACJ2212, 3pcs
Measured portion: Inside the coil
Contact carrying current: 10A, 15A, 20A
Ambient temperature: $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$

2-(1). Electrical life test (Motor free)
Sample: ACJ2212, 3pcs; Load: Inrush current: 25A/ Steady current: 5A, Power window motor actual load (free condition); Tested voltage: 14V DC; Switching frequency: (ON:OFF $=0.5 \mathrm{~s}: 9.5 \mathrm{~s})$; Switching cycle: 2×10^{5}; Ambient temperature: Room temperature Circuit

Load current waveform
Inrush current: 25A, Steady current: 6A,
Brake current: 13A

CJ (ACJ)
2-(2). Electrical life test (Motor lock)
Sample: ACJ2212, 3pcs; Load: Steady current: 25A,
Power window motor actual load (lock condition);
Tested voltage: 14V DC; Switching frequency:
(ON:OFF = 0.5s:9.5s); Switching cycle: 10^{5};
Ambient temperature: Room temperature
Circuit

Change of pick-up and drop-out voltage

Change of contact resistance

Load current waveform
Current value: 25A

DIMENSIONS (mm inch) Interested in CAD data? You can obtain CAD data for all products with a CAD Data mark from your local Panasonic Electric Works representative.

2. Twin type (8-pin)

Pin in Paste type
CAD Data

External dimensions

Dimension:
Max. 1 mm .039 inch:

1 to 3 mm .039 to .118 inch: $\pm 0.2 \pm .008$
Min. 3mm . 118 inch: $\quad \pm 0.3 \pm .012$

PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$
Schematic (Bottom view)

Tolerance
Tolerance
$+0.1+.004$

PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$
Schematic (Bottom view)

$\begin{array}{ll}\text { Dimension: } & \text { Tolerance } \\ \text { Max. } 1 \mathrm{~mm} .039 \text { inch: } & \pm 0.1 \pm .004\end{array}$
1 to 3 mm .039 to .118 inch: $\pm 0.2 \pm .008$
$\pm 0.3 \pm .012$

PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$
Schematic (Bottom view)

5. Slim 1 Form C Standard type CAD Data Tra

External dimensions

6. Slim 1 Form C

Pin in Paste type
CAD Data

External dimensions
Dimension:
Max. 1 mm .039 inch
1 to 3 mm .039 to 118 inch.
Min. 3 mm .118 inch: $\quad \pm 0.3 \pm .012$

Tolerance $\pm 0.1 \pm .004$

PC board pattern (Bottom view)

Schematic (Bottom view)

\qquad

mm inch
$\&$ Products to be discontinued.

FEATURES

- Micro-ISO type terminals
- Small size:
$20 \mathrm{~mm}(\mathrm{~L}) \times 15 \mathrm{~mm}(\mathrm{~W}) \times 22 \mathrm{~mm}(\mathrm{H})$
.787 inch(L) $\times .591$ inch(L) $\times .866$ inch(H)
- Wide line-up

PC board and Plug-in type, Resistor and diode inside type.
24 V DC type is also available.

- Compact and high-capacity 35A load switching
N.O.: 35A 14V DC, N.C.: 20A 14V DC
(Sealed type)
Min. 5×10^{4}
N.O.: 35A 14V DC, N.C.: 20A 14V DC
(Flux-resistant type)
Min. 10^{5} *12V DC type
- Uses international standard ISO terminal arrangement.
The ISO international standard terminal arrangement is used.

TYPICAL APPLICATIONS

- Fan motor
- Heater
- Head lamp
- Air Compressor
- EPS
- ABS
- Blower fan
- Defogger, etc.

SPECIFICATIONS

Contact			
Type		12 V coil voltage	24 V coil voltage
Arrangement		1 Form A, 1 Form C	
Contact material		Ag alloy (Cadmium free)	
Initial contact resistance (Initial) (By voltage drop 6 V DC 1 A)		Typ. $2 \mathrm{~m} \Omega$	
Contact voltage drop		Max. N.O.: 0.5 V (at 35 A 14 V DC) Max. N.C.: 0.3 V (at 20 A 14 V DC)	Max. N.O.: 0.3 V (at 15 A 28 V DC) Max. N.C.: 0.2 V (at 8 A 28 V DC)
Rating (resistive load)	Nominal switching capacity	$\begin{aligned} & \text { N.O.: } 35 \text { A } 14 \mathrm{~V} \\ & \text { DC } \\ & \text { N.C.: } 20 \text { A } 14 \mathrm{~V} \\ & \text { DC } \end{aligned}$	$\begin{gathered} \text { N.O.: } 15 \text { A } 28 \mathrm{~V} \\ \text { DC } \\ \text { N.C.: } 8 \text { A } 28 \mathrm{~V} \text { DC } \end{gathered}$
	Max. carrying current	N.O.: 20 A $(14 \mathrm{~V} \mathrm{DC}$, at $\left.85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}\right)$ N.C.: 10 A $(14 \mathrm{VDC}$, at $\left.85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}\right)$	N.O.: 15 A $(28 \vee \mathrm{DC}$, at $\left.85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}\right)$ N.C.: 8 A $(28 \vee \mathrm{DC}$, at $\left.85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}\right)$
	Min. switching capacity\#1	1 A 12 V DC	1 A 24 V DC
Expected life	Mechanical (at 120 cpm)	Min. 10^{6}	
	Electrical (at rated load)	Flux-resistant type: Min. 10 ${ }^{5^{* 1}}$ Sealed type: Min. 5×10^{4}	
Coil			
Nominal operating power		1.5 W 1.7 W (with resistor inside type)	1.8 W 2.0 W (with resistor inside type)

\#1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.

Characteristics

Type		24 V coil type	12V coil type
Max. operating speed (at nominal switching capacity)		15 cpm	
Initial insulation resistance*2		Min. $20 \mathrm{M} \Omega$ (at 500 V DC)	
Initial breakdown voltage*3	Between open contacts	500 Vrms for 1 min.	
	Between contacts and coil	500 Vrms for 1 min.	
Operate time*4 (at nominal voltage) (at $20^{\circ} \mathrm{C} 85^{\circ} \mathrm{F}$)		Max. 10 ms (initial)	
Release time*4 (at nominal voltage) (at $20^{\circ} \mathrm{C} 85^{\circ} \mathrm{F}$)		Max. 10 msMax. 15 ms (with diode) (initial)	
Shock resistance	Functional* ${ }^{\text {\% }}$	Min. $200 \mathrm{~m} / \mathrm{s}^{2}\{20 \mathrm{G}\}$	
	Destructive*6	Min. 1,000m/s² $\left.{ }^{\text {a }} 100 \mathrm{G}\right\}$	
Vibration resistance	Functional	10 Hz to 500 Hz , Min. $44.1 \mathrm{~m} / \mathrm{s}^{2}\{4.5 \mathrm{G}\}$	
	Destructive*7	10 Hz to $2,000 \mathrm{~Hz}$, Min. $44.1 \mathrm{~m} / \mathrm{s}^{2}\{4.5 \mathrm{G}\}$	
Conditions for operation, transport and storage*8 (Not freezing and condensing at low temperature)	Ambient temp.	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{F} \text { to }+185^{\circ} \mathrm{F} \end{aligned}$	
	Humidity	5\% R.H. to 85\% R.H.	
Mass		Approx. 20g .71oz	

Remarks

*1 At nominal switching capacity, operating frequency: 2s ON, 2s OFF
${ }^{*}$ 2 Measurement at same location as "Initial breakdown voltage" section.
${ }^{*} 3$ Detection current: 10 mA
${ }^{*}$ Excluding contact bounce time.
${ }^{* 5}$ Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$
${ }^{*} 6$ Half-wave pulse of sine wave: 6 ms
${ }^{* 7}$ Time of vibration for each direction; X, Y, Z direction: 4 hours

*8 Refer to "6. Usage, Storage and Transport Conditions" in AMBIENT ENVIRONMENT (page 599).
Please inquire if you will be using the relay in a high temperature atmosphere

ORDERING INFORMATION

Note: Bulk package: 50 pcs.; Case: 200 pcs.

TYPES

Packing quantity: Inner 50pcs, Outer 200pcs.

Contact arrangement	Part No.	Coil voltage	Mounting classification	Protective construction
1 Form A	CM1a-12V	12 V DC	Plug-in type	Sealed type
	CM1aF-12V			Flux-resistant type
	BCM1a-P-12V		PC board type	Sealed type
	CM1aF-P-12V			Flux-resistant type
1 Form C	CM1-12V		Plug-in type	Sealed type
	CM1F-12V			Flux-resistant type
	3 CM1-P-12V		PC board type	Sealed type
	B CM1F-P-12V			Flux-resistant type
Contact arrangement	Part No.	Coil voltage	Mounting classification	Protective construction
1 Form A	CM1a-24V	24 V DC	Plug-in type	Sealed type
	CM1aF-24V			Flux-resistant type
	B CM1a-P-24V		PC board type	Sealed type
	3 CM1aF-P-24V			Flux-resistant type
1 Form C	CM1-24V		Plug-in type	Sealed type
	CM1F-24V			Flux-resistant type
	3 CM1-P-24V		PC board type	Sealed type
	S CM1F-P-24V			Flux-resistant type

COIL DATA (at $\mathbf{2 0}^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)

Nominal voltage, V DC	Pick-up voltage, V DC	Drop-out voltage, V DC	Nominal current, mA	Coil resistance, ohm	Nominal operating power, W	Usable voltage range, V DC
12	3 to 7	1.2 to 4.2	$125 \pm 10 \%$	$96 \pm 10 \%$	1.5	10 to 16
24	6 to 14	2.4 to 8.4	$75 \pm 10 \%$	$320 \pm 10 \%$	1.8	20 to 32

DIMENSIONS (mm inch) Interested in CAD data? You can obtain CAD data for all products with a CAD Data mark from your local Panasonic Electric Works representative.

1. Micro-ISO Plug-in type (1 Form C)

$$
\begin{array}{lr}
\frac{\text { Dimension: }}{\text { Max. } 1 \mathrm{~mm} .039 \text { inch: }} & \frac{\text { General tolerance }}{ \pm 0.1 \pm .004} \\
1 \text { to } 3 \mathrm{~mm} .039 \text { to } .118 \text { inch: } \pm 0.2 \pm .008 \\
\text { Min. } 3 \mathrm{~mm} .118 \text { inch: } & \pm 0.3 \pm .012
\end{array}
$$

* Intervals between terminals is measured at A surface level.

2. Micro-ISO Plug-in type (1 Form A)

CAD Data

Schematic (Bottom view)

including resistor type also available

* Intervals between terminals is measured at A surface level.

3. Micro-ISO PC board type (1 Form C)
: CAD Data

Dimensions (thickness and width) of terminal specified in this catalog is measured before pre-soldering. Intervals between terminals is measured at A surface level.

Schematic (Bottom view)

, aluang resistor type available

PC board pattern (Bottom view)

4. Micro-ISO PC board type (1 Form A)

\because CAD Data

Schematic (Bottom view)

including resistor type also available

* Dimensions (thickness and width) of terminal specified in this catalog is measured before pre-soldering. Intervals between terminals is measured at A surface level.

CM

REFERENCE DATA

1-(1). Coil temperature rise (12V type)
Sample: CM1F-12V, 3 pcs.
Measured portion: Inside the coil
Contact carrying current: 20A, 35A
Ambient temperature: $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$

3. Ambient temperature and operating temperature range (12V type)

6. Distribution of operate time

Sample: CM1F-12V, 30pcs.

* Max. 10ms standard (excluding contact bounce)

1-(2). Coil temperature rise (24 V type) Sample: CM1F-24V, 4 pcs
Measured portion: Inside the coi
Contact carrying current: 0A, 15A
Ambient temperature: $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$

4. Ambient temperature characteristics (Cold/initial)

2. Max. switching capability (Resistive load,
initial)

5. Distribution of pick-up and drop-out voltage Sample: CM1F-12V, 100pcs.

7. Distribution of release time

Sample: CM1F-12V, 30pcs.

* Max. 10ms standard (excluding contact bounce) Without diode

8-(1). Electrical life test (Motor free)
Sample: CM1aF-R-12V, 6pcs.
Load: 16 A 13.5 V DC
Cooling fan motor actual load (free condition)
Switching frequency: (ON:OFF = 2s:6s)
Ambient temperature: Room temperature

Circuit

Load current waveform Inrush current: 85A, Steady current: 18A,

Change of contact resistance

8-(2). Electrical life test (Halogen lamp load) Sample: CM1aF-R-12V, 6pcs.
Load: 20A 13.5V DC
Switching frequency: (ON:OFF = 1s:14s)
Ambient temperature: Room temperature

Change of pick-up and drop-out voltage

\longrightarrow No. of operations, $\times 10^{4}$

Change of contact resistance

Cautions regarding the protection element

1. Part numbers without protection

 elements1) 12 V models

When connecting a coil surge protection circuit to these relays, we recommend a Zener diode with a Zener voltage of 24 V or higher, or a resistor (680Ω to $1,000 \Omega$). When a diode is connected to the coil in parallel, the release time will slow down and working life may shorten. Before use, please check the circuit and verify that the diode is not connected in parallel to the coil drive circuit.
2) 24 V models

When connecting a coil surge protection
circuit to these relays, we recommend a Zener diode with a Zener voltage of 48 V or higher, or a resistor $(2,800 \Omega$ to $4,700 \Omega$).
When a diode is connected to the coil in parallel, the release time will slow down and working life may shorten. Before use, please check the circuit and verify that the diode is not connected in parallel to the coil drive circuit.

2. Part numbers with diodes

These relays use a diode in the coil surge protection element. Therefore, the release time is slower and the working life might be shorter compared to part
numbers without protection elements and part numbers with resistors.
Be sure to use only after evaluating under actual load conditions.
3. Part numbers with resistors

This part number employs a resistor in the coil surge protection circuit; therefore, an external surge protection element is not required. In particular, when a diode is connected in parallel with a coil, the revert time becomes slower which could adversely affect working life. Please check the circuit and make sure that a diode is not connected in parallel with the coil drive circuit.

For Cautions for Use, see Relay Technical Information (page 582).

FEATURES

1. Best space savings in its class. 2. Large capacity switching despite small size. Can replace micro ISO terminal type relays.
2. Terminals for PC board pattern designs are easily allocated.
3. Sealed type

TYPICAL APPLICATIONS
Headlamp, Fog lamp, Fan motor, EPS, Defogger, Seat heater, etc.

ORDERING INFORMATION

TYPES

Contact arrangement	Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Part No.
1 Form A	12 V DC	Max. $6.5 \mathrm{~V} \mathrm{DC} \mathrm{(Initial)}$	ACNH3212
		Max. $5.5 \mathrm{~V} \mathrm{DC} \mathrm{(Initial)}$	ACNH3112

Standard packing; Carton (tube): 50 pcs.; Case: 1,000 pcs.
RATING

1. Coil data

Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating current $[\pm 10 \%$] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{aligned} & \text { Coil resistance } \\ & \quad[\pm 10 \%] \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Nominal operating power (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Usable voltage range
12 V DC	Max. 6.5 V DC (Initial)	Min. 1.0 V DC (Initial)	37.5 mA	320Ω	450 mW	10 to 16 V DC
	Max. 5.5 V DC (Initial)	Min. 0.8 V DC (Initial)	53.3 mA	225Ω	640 mW	

2. Specifications

Characteristics	Item		Specifications
Contact	Arrangement		1 Form A
	Initial contact resistance (Initial)		Typ5m (By voltage drop 6 V DC 1 A)
	Contact material		Ag alloy (Cadmium free)
Rating	Nominal switching	capacity (resistive load)	30A 14V DC
	Max. carrying current		<450mW> $35 \mathrm{~A} / 1 \mathrm{~h}, 45 \mathrm{~A} / 2 \mathrm{~min}$. at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$ $30 \mathrm{~A} / 1 \mathrm{~h}, 40 \mathrm{~A} / 2 \mathrm{~min}$. at $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$ $25 \mathrm{~A} / 1 \mathrm{~h}, 35 \mathrm{~A} / 2 \mathrm{~min}$. at $110^{\circ} \mathrm{C} 230^{\circ} \mathrm{F}$ < 640 mW > $30 \mathrm{~A} / 1 \mathrm{~h}, 40 \mathrm{~A} / 2 \mathrm{~min}$. at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$ $25 \mathrm{~A} / 1 \mathrm{~h}, 35 \mathrm{~A} / 2 \mathrm{~min}$. at $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$ 20A/1 h, 30A/2 min. at $110^{\circ} \mathrm{C} 230^{\circ} \mathrm{F}$
	Continuous carrying current		$20 \mathrm{~A} 14 \mathrm{~V} \mathrm{DC}(450 \mathrm{~mW})$ at $110^{\circ} \mathrm{C} 230^{\circ} \mathrm{F}, 15 \mathrm{~A} 14 \mathrm{~V} \mathrm{DC}(640 \mathrm{~mW})$ at $110^{\circ} \mathrm{C} 230^{\circ} \mathrm{F}$
	Nominal operating power		450 mW (for pick-up voltage max. 6.5 V DC), 640 mW (for pick-up voltage max. 5.5 V DC)
	Min. switching capacity (resistive load)		1A 12V DC
Electrical characteristics	Insulation resistance (Initial)		Min. $100 \mathrm{M} \Omega$ (at 500 V DC)
	Breakdown voltage (Initial)	Between open contacts	500 Vrms for 1 min. (Detection current: 10 mA)
		Between contacts and coil	500 Vrms for 1 min . (Detection current: 10 mA)
	Operate time (at nominal voltage)		Max. 10 ms (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$, excluding contact bounce time) (Initial)
	Release time (at nominal voltage)		Max. 10 ms (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$) (Initial) (without diode)
Mechanical characteristics	Shock resistance	Functional	Min. $100 \mathrm{~m} / \mathrm{s}^{2}\{10 \mathrm{G}\}$ (Half-wave pulse of sine wave: 11 ms ; detection: $10 \mu \mathrm{~s}$)
		Destructive	Min. $1,000 \mathrm{~m} / \mathrm{s}^{2}\{100 \mathrm{G}\}$ (Half-wave pulse of sine wave: 6 ms)
	Vibration resistance	Functional	10 Hz to 100 Hz , Min. $44.1 \mathrm{~m} / \mathrm{s}^{2}$ \{4.5G\} (Detection time: $10 \mu \mathrm{~s}$)
		Destructive	10 Hz to 500 Hz , Min. $44.1 \mathrm{~m} / \mathrm{s}^{2}\{4.5 \mathrm{G}\}$ Time of vibration for each direction; X, Y direction: 2 hours, Z direction: 4 hours
	Mechanical		Min. 10^{7} (at 120 cpm)
Expected life	Electrical		<Resistive load> Min. 10^{5} (At nominal switching capacity, operating frequency: 1s ON, 1s OFF) <Motor load> Min. 3×10^{5} : at 84 A (inrush), 18 A (steady), 14 V DC (Operating frequency: 2 s ON, 5 s OFF) <Lamp load> Min. 2×10^{5} : at 84 A (inrush), 12 A (steady), 14 V DC (Operating frequency: $1 \mathrm{~s} \mathrm{ON}, 14 \mathrm{~s}$ OFF)
Conditions	Conditions for operation, transport and storage		Ambient temp: $-40^{\circ} \mathrm{C}$ to $+110^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+230^{\circ} \mathrm{F}$ Humidity: 2% R.H. to 85% R.H. (Not freezing and condensing at low temperature)
Unit weight			Approx. 9 g .32 oz

REFERENCE DATA

1-(1). Coil temperature rise
Sample: ACNH3212, 3pcs
Measured portion: Inside the coil
Contact carrying current: 10A, 20A, 30A
Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$

3-(1). Distribution of pick-up and drop-out voltage
Sample: ACNH3212, 20pcs.

1-(2). Coil temperature rise
Sample: ACNH3212, 3pcs
Measured portion: Inside the coil
Contact carrying current: 10A, 20A
Ambient temperature: $110^{\circ} \mathrm{C} 230^{\circ} \mathrm{F}$

2. Ambient temperature and operating voltage range

3-(2). Distribution of pick-up and drop-out voltage
Sample: ACNH3112, 20pcs.

CN-H (ACNH3)

4-(1). Distribution of operate and release time Sample: ACNH3212, 20pcs.

4-(2). Distribution of operate and release time Sample: ACNH3112, 20pcs.

5. Electrical life test (Resistive load)

Sample: ACNH3212, 6pcs.
Load: Resistive load (NO side: 30A 14V DC)
Operating frequency: (ON:OFF $=1 \mathrm{~s}: 1 \mathrm{~s}$)
Ambient temperature: Room temperature
Circuit:

6-(1). Electrical life test (Motor load)
Sample: ACNH3212, 3pcs
Load: inrush: 84A/steady: 18A,
radiator fan actual load (motor free)
Switching frequency: (ON:OFF = 2s:5s)
Ambient temperature: $110^{\circ} \mathrm{C} 230^{\circ} \mathrm{F}$
Circuit:

Change of pick-up and drop-out voltage

Change of contact resistance

Change of pick-up and drop-out voltage

Change of contact resistance

6-(2). Electrical life test (Lamp load)
Sample: ACNH3212, 6pcs.
Load: $60 \mathrm{~W} \times 2$, inrush: $84 \mathrm{~A} /$ steady: 12 A
Switching frequency: (ON:OFF = 1s:14s)
Ambient temperature: Room temperature

Circuit:

Change of pick-up and drop-out voltage

Change of contact resistance

DIMENSIONS (mm inch $^{(}$

Interested in CAD data? You can obtain CAD data for all products with

NOTES

1. Coil operating power

Pure DC current should be applied to the coil. The wave form should be rectangular. If it includes ripple, the ripple factor should be less than 5%. However, check it with the actual circuit since the characteristics may be slightly different.

2. Coil applied voltage

To ensure proper operation, the voltage applied to the coil should be the rated operating voltage of the coil. Also, be aware that the pick-up and drop-out voltages will fluctuate depending on the ambient temperature and operating conditions.

3. Cycle lifetime

Check this with the real device as it is affected by coil driving circuit, load type, activation frequency, activation phase, ambient conditions and other factors.

4. Soldering

When soldering the relays, ensure conformance with the conditions listed below.

1) Automatic soldering

- Preheating: less than $100^{\circ} \mathrm{C} 212^{\circ} \mathrm{F}$ (solder target surface of PC board) for less than 120 sec
- Soldering: less than $260^{\circ} \mathrm{C} 500^{\circ} \mathrm{F}$
(solder temperature) for less than 5 sec (soldering time)

2) Manual soldering

- Soldering tip temperature: less than 280
to $300^{\circ} \mathrm{C} 536$ to $572^{\circ} \mathrm{F}$
- Soldering iron: 30 W to 60 W
- Soldering time: less than 5 sec

5. Usage, transport and storage conditions
1) Ambient temperature, humidity, and atmospheric pressure during usage, transport, and storage of the relay:
(1) Temperature:
-40 to $+110^{\circ} \mathrm{C}-40$ to $+230^{\circ} \mathrm{F}$
(2) Humidity: 2 to 85% RH
(Avoid freezing and condensation.)
(3) Atmospheric pressure: 86 to 106 kPa

The humidity range varies with the temperature. Use within the range indicated in the graph below. (Temperature and humidity range for usage, transport, and storage)

2) Condensation

Condensation forms when there is a sudden change in temperature under high temperature and high humidity conditions. Condensation will cause deterioration of the relay insulation.
3) Freezing

Condensation or other moisture may freeze on the relay when the temperatures is lower than $0^{\circ} \mathrm{C} 32^{\circ} \mathrm{F}$. This causes problems such as sticking of
4) Low temperature, low humidity environments
The plastic becomes brittle if the relay is exposed to a low temperature, low humidity environment for long periods of time.

6. Others

If the relay has been dropped, the appearance and characteristics should always be checked before use.

For Cautions for Use, see Relay Technical Information (page 582).

FEATURES

1. Best space savings in its class.
2. Compact and high-capacity 30A load switching.
3. Full line up (High heat-resistant type and SMD type)
4. Terminals for PC board pattern designs are easily allocated.

TYPICAL APPLICATIONS
Defogger, Seat heater, Head lamp, Fog lamp, Fan motor, etc.

ORDERING INFORMATION

Notes: *1. Surface-mount terminal type is available in high heat-resistant type only.
*2. Tube packing: PC board terminal type only
Tape and reel packing: Surface-mount type only

TYPES

1. PC board terminal type

Contact arrangement	Nominal coil voltage	Part No.	
		Standard type	High heat-resistant type
1 Form A	12 V DC	ACNM3112	ACNM7112
1 Form C		ACNM1112	ACNM5112

Standard packing; Carton (tube): 50 pcs.; Case: 1,500 pcs.

2. Surface-mount terminal type

Contact arrangement	Nominal coil voltage	Part No.
		High heat-resistant type
1 Form A	12 V DC	ACNM7112SAX
		ACNM7112SAZ
		ACNM5112SAX
		ACNM5112SAZ

[^46]Notes: *1.Surface-mount terminal type is available in high heat-resistant type only.
*2.An " X " at the end of the part number indicates, for tape and reel packing, reverse NO terminal direction in pull-out direction. A " Z " at the end of the part number indicates, for tape and reel packing, normal NO terminal direction in pull-out direction.

RATING

1. Coil data

Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating current $[\pm 10 \%$] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Coil resistance $[\pm 10 \%]$ (at $\left.20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)$	Nominal operating power (at $\left.20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)$	Usable voltage range
12 V DC	Max. 7.2 V DC (Initial)	Min. 1.0 V DC (Initial)	53.3 mA	225Ω	640 mW	10 to 16 VDC

2. Specifications

Characteristics	Item		Specifications
Contact	Arrangement		1 Form A, 1 Form C
	Contact resistance (Initial)		Typical $5 \mathrm{~m} \Omega$ (By voltage drop 6 V DC 1 A)
	Contact material		Ag alloy (Cadmium free)
Rating	Nominal switching capacity (resistive load)		N.O.: 30A 14V DC, N.C.: 15 A 14 V DC
	Max. carrying current (at 14V DC)		N.O. $30 \mathrm{~A} / 1 \mathrm{~h}, 40 \mathrm{~A} / 2 \mathrm{~min}$. at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$ $25 \mathrm{~A} / 1 \mathrm{~h}, 35 \mathrm{~A} / 2 \mathrm{~min}$. at $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$ 20A/1 h, 30A/2 min. at $110^{\circ} \mathrm{C} 230^{\circ} \mathrm{F}$ (High heat-resistant type) N.C. $25 \mathrm{~A} / 1 \mathrm{~h}, 30 \mathrm{~A} / 2 \mathrm{~min}$. at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$ 20A/1 h, 25A/2 min. at $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$ $15 \mathrm{~A} / 1 \mathrm{~h}, 20 \mathrm{~A} / 2 \mathrm{~min}$. at $110^{\circ} \mathrm{C} 230^{\circ} \mathrm{F}$ (High heat-resistant type)
	Nominal operating power		640 mW
	Min. switching capacity (resistive load)*		1A 12V DC
Electrical characteristics	Insulation resistance (Initial)		Min. $100 \mathrm{M} \Omega$ (at 500 V DC)
	Breakdown voltage (Initial)	Between open contacts	500 Vrms for 1 min . (Detection current: 10 mA)
		Between contacts and coil	500 Vrms for 1 min . (Detection current: 10 mA)
	Operate time (at nominal voltage)		Max. 10 ms (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$, excluding contact bounce time) (Initial)
	Release time (at nominal voltage)		Max. $10 \mathrm{~ms} \mathrm{(at} 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$, excluding contact bounce time) (Initial) (without diode)
Mechanical characteristics	Shock resistance	Functional	Min. $100 \mathrm{~m} / \mathrm{s}^{2}\{10 \mathrm{G}\}$ (Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$)
		Destructive	Min. $1,000 \mathrm{~m} / \mathrm{s}^{2}$ \{100G\} (Half-wave pulse of sine wave: 6 ms)
	Vibration resistance	Functional	10 Hz to 100 Hz , Min. $44.1 \mathrm{~m} / \mathrm{s}^{2}\{4.5 \mathrm{G}\}$ (Detection time: $10 \mu \mathrm{~s}$)
		Destructive	10 Hz to 500 Hz , Min. $44.1 \mathrm{~m} / \mathrm{s}^{2}\{4.5 \mathrm{G}\}$ Time of vibration for each direction; X, Y direction: 2 hours, Z direction: 4 hours
Expected life	Mechanical		Min. 10^{7} (at 120 cpm)
	Electrical		<Resistive load> Min. 10^{5} (At nominal switching capacity, operating frequency: 1s ON, 2s OFF)
			<Motor load> Min. 2×10^{5} : at 80 A (inrush), 16 A (steady), 14 V DC (Operating frequency: 2 s ON, 6 s OFF)
			<Lamp load> Min. 105: at 84 A (inrush), 12 A (steady), 14 V DC (Operating frequency: 1s ON, 14s OFF)
Conditions	Conditions for operation, transport and storage		Standard type; Ambient temp: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+185^{\circ} \mathrm{F}$, Humidity: 5 to 85% R.H. High heat-resistant type; Ambient temp: $-40^{\circ} \mathrm{C}$ to $+110^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+230^{\circ} \mathrm{F}$, Humidity: 2 to 85% R.H. (Not freezing and condensing at low temperature)
Unit weight			Approx. $5.5 \mathrm{~g} \mathrm{}$.

Note: *This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.

REFERENCE DATA

1-(1). Coil temperature rise Sample: ACNM1112, 3pcs
Measured portion: Inside the coil Contact carrying current: 10A, 20A, 30A

Ambient temperature: $26^{\circ} \mathrm{C} 78.8^{\circ} \mathrm{F}$

1-(2). Coil temperature rise
Sample: ACNM7112, 3pcs
Measured portion: Inside the coil
Contact carrying current: 10A, 20A
Ambient temperature: $110^{\circ} \mathrm{C} 230^{\circ} \mathrm{F}$

2. Ambient temperature and operating voltage range

CN-M (ACNM)

3. Distribution of pick-up and drop-out voltage Sample: ACNM1112, 20pcs.

4. Distribution of operate and release time Sample: ACNM1112, 20pcs.

5-(1). Electrical life test (Resistive load) Sample: ACNM1112, 3pcs.
Load: Resistive load (NO side: 30A 14V DC)
Operating frequency: (ON:OFF = 1s:1s)
Ambient temperature: Room temperature
Circuit:

5-(2). Electrical life test (Motor load)
Sample: ACNM7112, 3pcs.
Load: inrush: 80A/steady: 16A,
radiator fan actual load (motor free)
Switching frequency: (ON:OFF = 2s:6s)
Ambient temperature: $110^{\circ} \mathrm{C} 230^{\circ} \mathrm{F}$

Circuit:

5-(3). Electrical life test (Lamp load) Sample: ACNM3112, 3pcs.
Load: inrush: 84A/steady: 12A
Switching frequency: (ON:OFF = 1s:14s) Ambient temperature: Room temperature

Circuit:

Change of pick-up and drop-out voltage

Change of contact resistance

Change of pick-up and drop-out voltage

Change of contact resistance

Change of pick-up and drop-out voltage

Change of contact resistance

DIMENSIONS $(m m$ inch) Interested in CAD data? You can obtain CAD data for all products with a CAD Data mark from your local Panasonic Electric Works representative.

1. PC board terminal type

CAD Data

External dimensions

Dimension:
Max. 1mm . 039 inch:
1 to 3 mm .039 to .118 inch:
Min. 3mm . 118 inch:

General tolerance
$\pm 0.1 \pm .004$
$\pm 0.2 \pm .008$
$\pm 0.3 \pm .012$

PC board pattern (Bottom view)

1 Form A

1 Form C

Schematic (Bottom view)

1 Form A

1 Form C

* Dimensions (thickness and width) of terminal specified in this catalog is measured before pre-soldering. Intervals between terminals is measured at A surface level.

2. Surface-mount terminal type

External dimensions

Recommended mounting pad (Top view)

1 Form A

1 Form C

Schematic (Top view)

1 Form A

1 Form C

Tolerance: $\pm 0.1 \pm .004$

CN-M (ACNM)

NOTES

1. Coil operating power

Pure DC current should be applied to the coil. The wave form should be
rectangular. If it includes ripple, the ripple factor should be less than 5%. However, check it with the actual circuit since the characteristics may be slightly different.

2. Coil applied voltage

To ensure proper operation, the voltage applied to the coil should be the rated operating voltage of the coil. Also, be aware that the pick-up and drop-out voltages will fluctuate depending on the ambient temperature and operating conditions.

3. Cycle lifetime

Check this with the real device as it is affected by coil driving circuit, load type, activation frequency, activation phase, ambient conditions and other factors.

4. Soldering

When soldering the relays, ensure conformance with the conditions listed below.

1) Automatic soldering

- Preheating: less than $100^{\circ} \mathrm{C} 212^{\circ} \mathrm{F}$
(solder target surface of PC board) for less than 120 sec
- Soldering: less than $260^{\circ} \mathrm{C} 500^{\circ} \mathrm{F}$
(solder temperature) for less than 5 sec (soldering time)

2) Manual soldering

- Soldering tip temperature: less than 280
to $300^{\circ} \mathrm{C} 536$ to $572^{\circ} \mathrm{F}$
- Soldering iron: 30 to 60 W
- Soldering time: less than 5 sec

5. Usage, transport and storage conditions

1) Ambient temperature, humidity, and atmospheric pressure during usage, transport, and storage of the relay:
(1) Temperature:
-40 to $+85^{\circ} \mathrm{C}-40$ to $+185^{\circ} \mathrm{F}$
(Standard type)
-40 to $+110^{\circ} \mathrm{C}-40$ to $+230^{\circ} \mathrm{F}$
(High heat-resistant type)
(2) Humidity: 2 to 85% RH
(Avoid freezing and condensation.)
(3) Atmospheric pressure: 86 to 106 kPa The humidity range varies with the temperature. Use within the range indicated in the graph below.
(Temperature and humidity range for usage, transport, and storage)

2) Condensation

Condensation forms when there is a sudden change in temperature under high temperature and high humidity conditions. Condensation will cause deterioration of the relay insulation.
3) Freezing

Condensation or other moisture may
freeze on the relay when the
temperatures is lower than $0^{\circ} \mathrm{C} 32^{\circ} \mathrm{F}$. This causes problems such as sticking of movable parts or operational time lags.
4) Low temperature, low humidity environments
The plastic becomes brittle if the relay is exposed to a low temperature, low humidity environment for long periods of time.
6. Others

If the relay has been dropped, the appearance and characteristics should always be checked before use.

For Cautions for Use, see Relay Technical Information (page 582).

Panasonic ideas for life

FEATURES

1. Compact flat type

Flat size enables it to be built-in switch units.
<Height>
PC board terminal type:
9.5 mm .374 inch

Surface-mount terminal type:
10.5 mm .413 inch
2. High capacity

CP Relay provides low profile spacesaving advantages while offering high continuous current of 25A (1 hour).
3. Simple footprint pattern enables ease of PC board layout Arrangement of coil and contact terminals designed to withstand large capacity which ensures leeway and facilitates PC board design.

4. Sealed construction

Sealed construction suitable for harsh environments
5. "PC board terminal" and "Surface mount terminal" types available SMD automatic mounting is possible for surface mount terminal types because tape and reel packaging is used.
6. Model available for wiper load.

TYPICAL APPLICATIONS

For automotive system
Power windows, Auto door lock, Power sunroof, Memory seat, Wiper, Defogger, Blower fan, EPS, ABS etc.

ORDERING INFORMATION

TYPES

1. PC board terminal type

Contact arrangement	Coil voltage	
1 Form A		Part No.
1 Form C	12V DC	CP1a-12V
1 Form C for wiper load		CP1-12V

Standard packing; Carton (tube): 40 pcs.; Case: 1,000 pcs.
2. Surface mount terminal type

Contact arrangement	Coil voltage	Part No.
1 Form C	12 V DC	CP1SA-12V-X
		CP1SA-12V-Z

Standard packing; Carton (tape and reel): 300 pcs.; Case: 900 pcs.
Notes: *1. Surface-mount terminal type is available only for 1 form C contact arrangement.
*2. Surface mount terminal type is only supplied in tape and reel packaging. Tube packaging is only available for PC board type. Tape and reel packing symbol "-z" or "-x" are not marked on the relay.

CP
RATING

1. Coil data

Nominal coil voltage	Pick-up voltage $\left(\right.$ at $\left.20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)$	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating current $[\pm 10 \%]\left(\right.$ at $\left.20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)$	Coil resistance $[\pm 10 \%]\left(\right.$ at $\left.20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)$	Nominal operating power (at $\left.20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)$	Usable voltage range $\left(\right.$ at $\left.85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}\right)$
12 VDC	Max. 7.2 V DC (Initial) $)$	Min. 1.0 V DC (Initial)	53.3 mA	225Ω	640 mW	10 to 16 V DC

Note: Other pick-up voltage types are also available. Please contact us for details.

2. Specifications

1) Standard CP relay

Notes:
*1.This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.
*2.Refer to "6. Usage, Storage and Transport Conditions" in AMBIENT ENVIRONMENT (page 599).
Please inquire if you will be using the relay in a high temperature atmosphere $\left(110^{\circ} \mathrm{C} 230^{\circ} \mathrm{F}\right)$.
*3. Depends on connection conditions. Also, this does not guarantee repeated switching. We recommend that you confirm operation under actual conditions.

2) For wiper load

Anything outside of that given below complies with standard CP relays.

Characteristics	Item	Specifications
Rating	Max. carrying current (12V DC initial)	N.O.: 25A for 1 minutes, 15 A for 1 hour (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
Expected life	Electrical	<Wiper motor load (L = Approx. 1 mH)> N.O. side: Min. 5×10^{5} (Inrush 25A, steady 6A at 14V DC) N.C. side: Min. 5×10^{5} (12A 14V DC at brake current) (Operating frequency: 1s ON, 9s OFF)

Note:*1. Depends on connection conditions. Also, this does not guarantee repeated switching. We recommend that you confirm operation under actual conditions.

REFERENCE DATA

1. Coil temperature rise

Sample: CP1-12V, 6pcs
Point measured: Inside the coil
Contact carrying current, 5A, 10A, 15A, 20A
Resistance method, ambient temperature $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$

4. Distribution of pick-up and drop-out voltage

Sample: CP1-12V, 100pcs
Ambient temperature: $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$

2. Max. switching capability (Resistive load)

5. Distribution of operate time

Sample: CP1-12V, 100pcs
Ambient temperature: $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$

3. Ambient temperature and operating voltage range

6. Distribution of release time

Sample: CP1-12V, 100pcs
Ambient temperature: $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$

* Without diode

7.-(1) Electrical life test (at resistive load)

Sample: CP1-12V
Quantity: $\mathrm{n}=4$ (N.C. $=2$, N.O. $=2$)
Load: Resistive load (N.C. side: 10A 14V DC,
N.O. side: 20A 14V DC)

Operating frequency: ON 1s, OFF 9s
Ambient temperature: Room temperature

7.-(2) Electrical life test for wiper load

(motor free)
Sample: CP1W-12V
Quantity: $\mathrm{n}=5$
Load: N.O. side: Inrush 25A, steady 6A 14V DC
Load: N.C. side: Brake current 12A 14V DC
Operating frequency: ON 1s, OFF 9s
Ambient temperature: Room temperature
Circuit

Change of pick-up and drop-out voltage

Change of contact resistance

DIMENSIONS $_{\text {(mm inch }}$)
Interested in CAD data? You can obtain CAD data for all products with a CAD Data mark from your local Panasonic Electric Works representative.

1. PC board terminal type

* Dimensions (thickness and width) of terminal specified in this catalog is measured before pre-soldering. Intervals between terminals is measured at A surface level.

2. Surface mount terminal type

For Cautions for Use, see Relay Technical Information (page 582).

POWER TYPE
 MINIATURE LOW PROFILE AUTOMOTIVE RELAY

FEATURES

- Compact flat type

 (H)).We successfully developed a power type that is the same size as our CP relay $(14 \mathrm{~mm}(\mathrm{~L}) \times 13 \mathrm{~mm}(\mathrm{~W}) \times 9.5 \mathrm{~mm}(\mathrm{H})$
.551 inch (L) x. 512 inch (W) $\times .374$ inch

- 35A maximum carrying current Current carrying of $35 \mathrm{~A} / 1 \mathrm{~h}$ and $45 \mathrm{~A} / 2$ min. at $20^{\circ} \mathrm{C}$
(450 W type, 16 V applied) is possible due to use of N.O. double pin terminals and COM terminal width expansion.
- Supports capacitor loads required for power supply applications Inrush current: 60A, steady-state current: 1 A and 10^{5} switching times possible.
- Plastic sealed type

This plastic sealed type can be automatically cleaned.

TYPICAL APPLICATIONS

For automotive system
Defoggers, Ignitions, Heaters,
Accessories, Power windows, EPS and ABS etc.

SPECIFICATIONS

Contact			
Arrangement			1 Form A, 1 Form C
Contact material			Ag alloy (Cadmium free)
Initial contact resistance (Initial) (By voltage drop 6V DC 1A)			Typ. $3 \mathrm{~m} \Omega$ (N.O.) Typ. $4 \mathrm{~m} \Omega$ (N.C.)
Rating	Nominal switching capacity		$\begin{aligned} & \text { 20A 14V DC (N.O.) } \\ & \text { 10A 14V DC (N.C.) } \end{aligned}$
	Max. carrying current (16V DC)		N.O.: For 450 mW 45A/2 minutes, 35A/1 hour at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$ 40A/2 minutes, 30A/1 hour at $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$ $35 \mathrm{~A} / 2$ minutes, 25A/1 hour at $110^{\circ} \mathrm{C} 230^{\circ} \mathrm{F}$ For 640 mW 40A/2 minutes, 30A/1 hour at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$ 35A/2 minutes, 25A/1 hour at $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$ 30A/2 minutes, 20A/1 hour at $110^{\circ} \mathrm{C} 230^{\circ} \mathrm{F}$
	Min. switc	ing capacity\#1	1A 12V DC
Expected life (min. operations)	Mechanica	(at 120cpm)	Min. 10^{7}
	Electrical	Resistive load	Min. $10^{5 * 1}$
	(at 6cpm)	Capacitor load	Min. $10{ }^{5 *}$

Coil

Nominal operating power

450 mW for pick-up voltage 7.2V DC 640 mW for pick-up voltage 6.5V DC
\#1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.

Characteristics

Max. operating speed (at nominal switching capacity)		6cpm
Initial insulation resistance		Min. $100 \mathrm{M} \Omega$ (at 500 V DC)
Initial breakdown voltage*3	Between open contacts	500 Vrms for 1min.
	Between contact and coil	500 Vrms for 1min.
Operate time*4 (at nominal voltage) (Initial)		Max. 10 ms (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
Release time ${ }^{* 4}$ (at nominal voltage) (Initial)		Max. 10 ms (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
Shock resistance	Functional ${ }^{5}$	Min. $100 \mathrm{~m} / \mathrm{s}^{2}\{10 \mathrm{G}\}$
	Destructive*6	Min. $1,000 \mathrm{~m} / \mathrm{s}^{2}\{100 \mathrm{G}\}$
Vibration resistance	Functiona\|*7	$\begin{gathered} 10 \mathrm{~Hz} \text { to } 100 \mathrm{~Hz}, \\ \text { Min. } 44.1 \mathrm{~m} / \mathrm{s}^{2}\{4.5 \mathrm{G}\} \end{gathered}$
	Destructive*8	10 Hz to 500 Hz , Min. $44.1 \mathrm{~m} / \mathrm{s}^{2}\{4.5 \mathrm{G}\}$
Conditions in case of operation, transport and storage*9 (Not freezing and condensing at low temperature)	Ambient temp	$\begin{gathered} -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ -40 \text { to }+185^{\circ} \mathrm{F} \end{gathered}$
	Humidity	5\% R.H. to 85\% R.H.
Mass		Approx. 4.5 g .16 oz

Remarks

*1 At nominal switching capacity, operating frequency: 1s ON, 9s OFF
*2 At 1A (steady), 60 A (inrush), 14 V DC, operating frequency: 1s ON, 9s OFF
*3 Detection current: 10 mA
*4 Excluding contact bounce time
*5 Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$
*6 Half-wave pulse of sine wave: 6 ms
*7 Detection time: $10 \mu \mathrm{~s}$
*8 Time of vibration for each direction;

- X, Y direction: 2 hours
- Z direction: 4 hours
*9 Refer to "6. Usage, Storage and Transport Conditions" in AMBIENT ENVIRONMENT (page 599).
Please inquire if you will be using the relay in a high temperature atmosphere $\left(110^{\circ} \mathrm{C} 230^{\circ} \mathrm{F}\right.$).

CP POWER

ORDERING INFORMATION

Ex. CP	
Contact arrangement	Pick-up voltage

Note: Tube packing: Carton (Tube): 40 pcs.; Case: 1,000 pcs.

TYPES

Contact arrangement	Coil voltage	Pick-up voltage, V DC (Initial) (at $\left.20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)$	Part No.
1 Form C	12 V DC	Max. 7.2	$\mathrm{CP} 1 \mathrm{H}-12 \mathrm{~V}$
		$\mathrm{CP} 1 \mathrm{H}-\mathrm{N}-12 \mathrm{~V}$	
		Max. 7.2	$\mathrm{CP} 1 \mathrm{aH}-12 \mathrm{~V}$
		Max. 6.5	$\mathrm{CP} 1 \mathrm{aH}-\mathrm{N}-12 \mathrm{~V}$

Note: THD type only
COIL DATA (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)

Nominal voltage, V DC (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Pick-up voltage, V DC (Initial) (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage, V DC (Initial) (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Coil resistance $\Omega\left(\right.$ at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating current mA (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating power mW (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Usable voltage range, V DC (at $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$)
12	Max. 7.2	Min. 1.0	$320 \pm 10 \%$	$37.5 \pm 10 \%$	450	10 to 16
	Max. 6.5		225 $\pm 10 \%$	$53.3 \pm 10 \%$	640	9 to 16

DIMENSIONS(mm inch) Interested in CAD data? You can obtain CAD data for all products with a CAD Data mark from your local Panasonic Electric Works representative.

CAD Data

Dimension:
Tolerance
Max. 1 mm .039 inch: $\pm 0.1 \pm .004$
1 to 3 mm .039 to .118 inch: $\pm 0.2 \pm .008$
Min. 3mm . 118 inch: $\pm 0.3 \pm .012$

Schematic (Bottom view)

*Dimensions (thickness and width) of terminal specified in this catalog is measured before pre-soldering.
Intervals between terminals is measured at A surface level.

REFERENCE DATA

1-(1). Coil temperature rise
Sample: CP1H-12V, 3pcs
Point measured : Inside the coil
Ambient temperature: $27^{\circ} \mathrm{C} 81^{\circ} \mathrm{F}$

3-(1). Distribution of pick-up and drop-out voltage
Sample : CP1H-12V

4-(2). Distribution of operate and release time Sample : CP1H-N-12V

1-(2). Coil temperature rise
Sample: CP1H-12V, 3pcs
Point measured : Inside the coil
Ambient temperature: $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$

3-(2). Distribution of pick-up and drop-out voltage
Sample: CP1H-N-12V

2. Ambient temperature and operating voltage range

4-(1). Distribution of operate and release time Sample: CP1H-12V

CP POWER

5-(2). Electrical life test (at capacitor load)
Sample: CP1H-12V, 6pcs.
Load : Inrush 60A/steady 1A
Operating frequency: (ON:OFF =1s:9s)
Ambient temperature : Room temperature
Circuit :

For Cautions for Use, see Relay Technical Information (page 582).

Panasonic ideas for life

1 FORM C AUTOMOTIVE SILENT RELAY

CQRELAYS

FEATURES

1. Silent

Noise has been reduced by
approximately 20 dB , using our own silencing design.
2. Less space required

Measuring only $17(\mathrm{~L}) \times 13(\mathrm{~W}) \mathrm{mm}$ $.669(\mathrm{~L}) \times .512(\mathrm{~W})$ inches, this product ranks first among automotive quiet relays in terms of saving space.
3. Next-generation standard terminal pitch employed
The terminal array used is identical to that used in JJM relays.

4. Sealed construction
5. Model available for wiper load

TYPICAL APPLICATIONS
Intermittent wiper, Cruise control, Power windows, Auto door lock, Power supply of car stereo and car air-conditioner, Electrically powered seats, Electrically powered sunroof, etc.

TYPES

Contact arrangement		Coil voltage		Model No.	Part No.	
1 Form C		12V DC		ACQ131	CQ1-12V	
1 Form C for wiper load				ACQW131	CQ1W-12V	
Standard packing; Carton (tube): 40 pcs.; Case: 800 pcs.						
RATING						
1. Coil data						
Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%] \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) }} \end{gathered}$	Coil resistance [$\pm 10 \%$] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating power (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Usable voltage range
12V DC	$\underset{\text { (Initial) }}{\mathbf{M a x .} 7.2 \mathrm{~V} \text { DC }}$	$\underset{\text { (Initial) }}{\mathrm{Min} 1.0 \mathrm{~V} \text { DC }}$	53.3 mA	225Ω	640 mW	10 to 16V DC

[^47]
2. Specifications

1) Standard CQ relay

Characteristics	Item		Specifications
Contact	Arrangement		1 Form C
	Initial contact resistance (Initial)		N.O.: Typ7m , N.C.: Typ8m (By voltage drop 6V DC 1A)
	Contact voltage drop		Max. 0.2V (at 10 A)
	Contact material		Ag alloy (Cadmium free)
Rating	Nominal switching capacity (resistive load)		N.O.: 20A 14V DC, N.C.: 10A 14V DC
	Max. carrying current (12V DC initial) ${ }^{+1}$		N.O.: 35 A for 2 minutes, 25 A for 1 hour (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$) 30 A for 2 minutes, 20A for 1 hour (at $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$)
	Nominal operating power		640 mW
	Min. switching capacity (resistive load)*2		1 A 12 V DC
Electrical characteristics	Insulation resistance (Initial)		Min. $100 \mathrm{M} \Omega$ (at 500V DC)
	Breakdown voltage (Initial)	Between open contacts	500 Vrms for 1 min . (Detection current: 10 mA)
		Between contacts and coil	500 Vrms for 1 min . (Detection current: 10 mA)
	Operate time (at nominal voltage)		Max. 10 ms (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$, excluding contact bounce time) (Initial)
	Release time (at nominal voltage)		Max. 10 ms (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$, excluding contact bounce time) (Initial)
Mechanical characteristics	Shock resistance	Functional	Min. $100 \mathrm{~m} / \mathrm{s}^{2}\{10 \mathrm{G}\}$ (Half-wave pulse of sine wave: 11 ms ; detection: $10 \mu \mathrm{~s}$)
		Destructive	Min. $1,000 \mathrm{~m} / \mathrm{s}^{2}\{100 \mathrm{G}\}$ (Half-wave pulse of sine wave: 6 ms)
	Vibration resistance	Functional	10 Hz to 100 Hz , Min. $44.1 \mathrm{~m} / \mathrm{s}^{2}\{4.5 \mathrm{G}\}$ (Detection time: $10 \mu \mathrm{~s}$)
		Destructive	10 Hz to 500 Hz , Min. $44.1 \mathrm{~m} / \mathrm{s}^{2}\{4.5 \mathrm{G}\}$ Time of vibration for each direction; X, Y direction: 2 hours, Z direction: 4 hours
Expected life	Mechanical		Min. 10^{7} (at 120 cpm)
	Electrical *Motor load does not apply to wiper load applications.		<Resistive load> Min. 10^{5} (At nominal switching capacity, operating frequency: 1s ON, 9s OFF) <Motor load*> Min. 3×10^{5} (Inrush 30A, steady 5A, 20A 14V DC at brake current) (Operating frequency: 1s ON, 2s OFF)
Conditions	Conditions for operation, transport and storage*3		Ambient temp: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+185^{\circ} \mathrm{F}$ Humidity: 5% R.H. to 85% R.H. (Not freezing and condensing at low temperature)
	Max. operating speed		6 cpm (at rated load)
Mass			Approx. 6.5 g .23 oz

*1Depends on connection conditions. Also, this does not guarantee repeated switching. We recommend that you confirm operation under actual conditions.
*2This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load. *3Refer to "6. Usage, Storage and Transport Conditions" in AMBIENT ENVIRONMENT (page 599).

2) For wiper load

Anything outside of that given below complies with standard CQ relays.

Characteristics	Item	Specifications
Rating	Max. carrying current (12V DC initial)	N.O.: 25A for 1 minutes, 15 A for 1 hour (at 20 ${ }^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
	<Wiper motor load (L $=$ Approx. 1 mH) $>$	
Expected life	Electrical	N.O. side: Min. 5×10^{5} (Inrush 25A, steady 6A at 14V DC)
		N.C. side: Min. 5×10^{5} (12A 14V DC at brake current) (Operating frequency: 1s ON, 9s OFF)

Note:*1. Depends on connection conditions. Also, this does not guarantee repeated switching. We recommend that you confirm operation under actual conditions.

REFERENCE DATA

1. Max. switching capability (Resistive load, initial)

2. Ambient temperature and operating temperature range

3. Ambient temperature characteristics

4. Distribution of pick-up and drop-out voltage

Sample: CQ1-12V, 100pcs

7. Electrical life test for wiper load (motor free) Sample: CQ1W-12V
Quantity: $\mathrm{n}=3$
Load: N.O. side: Inrush 25A, steady 6A 14V DC Load: N.C. side: Brake current 12A 14V DC
Operating frequency: ON 1s, OFF 9s
Ambient temperature: Room temperature Circuit

8.-(1) Operation noise distribution When operate

5. Distribution of operate time

 Sample: CQ1-12V, 100pcs

Change of pick-up and drop-out voltage

6. Distribution of release time Sample: CQ1-12V, 100pcs

* Without diode

Change of contact resistance

8.-(2) Operation noise distribution When release

Measuring conditions
Sample: CQ1-12 V, 50 pcs.
Equipment setting: "A" weighted, Fast, Max. hold Coil voltage: 12 V DC
Coil connection device: Diode
Background noise: Approx. 20dB

DIMENSIONS
(mm inch) Interested in CAD data? You can obtain CAD data for all products with a CAD Data mark from your local Panasonic Electric Works representative.

External dimensions

Dimension:
Max. 1mm . 039 inch:
$\pm 0.1 \pm .004$
1 to 3 mm .039 to .118 inch: $\pm 0.2 \pm .008$
Min. 3mm . 118 inch: $\pm 0.3 \pm .012$

PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$

Schematic (Bottom view)

* Dimensions (thickness and width) of terminal specified in this catalog is measured before pre-soldering Intervals between terminals is measured at A surface level.

EXAMPLE OF CIRCUIT

Control circuit for intermittent wiper motor

(M) Wiper motor

For Cautions for Use, see Relay Technical Information (page 582).

Twin type (8 terminals)
mm inch

Slim 1c type

SUPER MINIATURE TWIN TYPE AUTOMOTIVE RELAY

FEATURES

- Small \& slim size

Twin type: $17.4(\mathrm{~L}) \times 14.0(\mathrm{~W}) \times 13.5(\mathrm{H}) \mathrm{mm}$ $.685(\mathrm{~L}) \times .551(\mathrm{~W}) \times .531(\mathrm{H})$ inch
Slim 1c type: $17.4(\mathrm{~L}) \times 7.2(\mathrm{~W}) \times 13.5(\mathrm{H}) \mathrm{mm}$.685(L) $\times .283(\mathrm{~W}) \times .531(\mathrm{H})$ inch

- Twin (1 Form C $\times 2$)

Forward/reverse motor control is possible with a single relay.

- Simple footprint enables ease of PC board layout
$※ 10$ terminals layout

TYPICAL APPLICATIONS

- Power windows
- Auto door lock
- Power sunroof
- Electrically powered mirrors
- Powered seats
- Lift gates
- Slide door closers, etc.
(for DC motor forward/reverse control circuits)

SPECIFICATIONS

Arrangement			1 Form $\mathrm{C} \times 2$, 1 Form C
Contact material			Ag alloy (Cadmium free)
Initial contact resistance (Initial) (By voltage drop 6 V DC 1 A)			Typ. $7 \mathrm{~m} \Omega$ (N.O.) Typ. $10 \mathrm{~m} \Omega$ (N.C.)
Rating	Nominal s capacity	witching	$\begin{aligned} & \text { N.O.: } 20 \text { A } 14 \mathrm{~V} \text { DC } \\ & \text { N.C.: } 10 \text { A } 14 \mathrm{~V} \text { DC } \end{aligned}$
	Max. carrying current (N.O.)		35 A for 2 minutes, 25 A for 1 hour $\left(14 \mathrm{~V}\right.$, at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$) 30 A for 2 minutes, 20 A for 1 hour $\left(14 \mathrm{~V}\right.$, at $\left.85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}\right)$
	Min. switc	ing capacity\#1	1 A 12 V DC
Expected life (min. operation)	Mechanic	(at 120 cpm)	Min. $10{ }^{7}$
	Electrical	Resistive load	Min. $10^{5 * 1}$
		Motor load	Min. $2 \times 10^{5 * 2}$ (free)
		Motor load	Min. $10^{5 * 3}$ (lock)
Coil			
Nominal operating power			800 mW
\#1 This value can change due to the switching frequency, environmental conditions and desired reliability level, therefore it is recommended to check this with the actual load.			
Remarks			
*1 At nominal switching capacity, operating frequency: 1s ON, 9s OFF *2 N.O.: at 5 A (steady), 25 A (inrush)/N.C.: at 20 A (brake) 14 V DC, operating frequency: 0.5 s ON, 9.5 s OFF			
*3 At 25A 14 V DC (Motor lock), operating frequency: 0.5 s ON, 9.5s OFF			
*4 Measurement at same location as "Initial breakdown voltage" section			
*5 Detection current: 10 mA			
*6 Excluding contact bounce time			
${ }^{*}{ }^{7}$ Half-wave pulse of sine wave: 11 ms ; detection: $10 \mu \mathrm{~s}$			
* Half-wave pulse of sine wave: 6 ms			
*9 Detection time: 1	0hs		

Characteristics

Max. operating speed (at nominal switching capacity)			6 cpm
Initial insulation resistance*4			Min. $100 \mathrm{M} \Omega$ (at 500 V DC)
Initial breakdown voltage*5	Between open contacts		500 Vrms for 1 min.
	Between contacts and coil		500 Vrms for 1 min.
Operate time*6 (at nominal voltage) (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)			Max. 10ms (Initial)
Release time*6 (at nominal voltage) (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)			Max. 10ms (Initial)
Shock resistance ${ }^{\text {a }}$ (${ }^{\text {F }}$		ctional* ${ }^{* 7}$	Min. $100 \mathrm{~m} / \mathrm{s}^{2}\{10 \mathrm{G}\}$
		tructive*8	Min. 1,000 m/s² $\{100 \mathrm{G}\}$
Vibration resistance		ctional*9	10 Hz to 100 Hz , Min. $44.1 \mathrm{~m} / \mathrm{s}^{2}\{4.5 \mathrm{G}\}$
		tructive*10	10 Hz to 500 Hz , Min. $44.1 \mathrm{~m} / \mathrm{s}^{2}\{4.5 \mathrm{G}\}$
Conditions for operation, transport and storage*11 (Not freezing and condensing at low temperature)		Ambient temp	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{F} \text { to }+185^{\circ} \mathrm{F} \end{aligned}$
		Humidity	5\% R.H. to 85\% R.H.
Mass			Approx. 8.0g .28oz (Twin type) Approx. 4.0 g . 14 oz (Slim 1c type)
*10 Time of vibration for each direction; X, Y, direction: 2 hours Z direction: 4 hours			

*11 Refer to "6. Usage, Storage and Transport Conditions" in AMBIENT ENVIRONMENT (page 599).
Please inquire if you will be using the relay in a high temperature atmosphere ($110^{\circ} \mathrm{C} 230^{\circ} \mathrm{F}$).

* If the relay is used continuously for long periods of time with coils on both sides in an energized condition, breakdown might occur due to abnormal heating depending on the carrying condition. Therefore, please inquire when using with a circuit that causes an energized condition on both sides simultaneously.

CT (ACT)

ORDERING INFORMATION

Standard packing; 1 Form C: Carton(tube package) 30pcs. Case 1,500pcs.
1 Form C $\times 2$: Carton(tube package) 30pcs. Case 900pcs.

TYPES AND COIL DATA (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)

Contact arrangement	Part No.	Nominal voltage, V DC	Pick-up voltage, V DC (Initial)	Drop-out voltage, V DC (Initial)	Coil resistance, Ω	Nominaloperating current, $m A$	Nominal operating power, mW	Usable voltage range, V DC
$1 c$	ACT112	12	Max. 7.2	Min. 1.0	$180 \pm 10 \%$	$66.7 \pm 10 \%$	800	10 to 16
$1 c \times 2$ $(8$ terminals type $)$	ACT212	12	Max. 7.2	Min. 1.0	$180 \pm 10 \%$	$66.7 \pm 10 \%$	800	10 to 16
$1 c \times 2$ $(10$ terminals type $)$	ACT512	12	Max. 7.2	Min. 1.0	$180 \pm 10 \%$	$66.7 \pm 10 \%$	800	10 to 16

* Other pick-up voltage types are also available. Please contact us for details.

DIMENSIONS (mm inch) Interested in CAD data? You can obtain CAD data for all products with a CAD Data mark from your local Panasonic Electric Works representative.
 Intervals between terminals is measured at A surface level.

2. Twin type (10 terminals)

 CAD Data

Sealed by epoxy resin

Max. 1 mm .039 inch:
1 to 3 mm .039 to .118 inch: $\pm 0.2 \pm .008$
Min. 3mm . 118 inch:

PC board pattern (Bottom view)

Schematic (Bottom view)

* Dimensions (thickness and width) of terminal specified in this catalog is measured before pre-soldering. Intervals between terminals is measured at A surface level.

3. Slim 1c type

CAD Data

mm inch

PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$
Schematic (Bottom view)

* Dimensions (thickness and width) of terminal specified in this catalog is measured before pre-soldering. Intervals between terminals is measured at A surface level.

EXAMPLE OF CIRCUIT

Forward/reverse control circuits of DC motor for power windows

CT (ACT)

REFERENCE DATA

1-(1). Coil temperature rise (at room temperature
Sample: ACT212, 3pcs.
Contact carrying current: 0A, 10A, 20A

3. Ambient temperature and operating voltage range

1-(2). Coil temperature rise (at $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$) Sample: ACT212, 3pcs.
Contact carrying current: 0A, 10A, 20A

4. Distribution of pick-up and drop-out voltage Sample: ACT212, 40pcs.

2. Max. switching capability (Resistive load, initial)

5. Distribution of operate and release time Sample: ACT212, 40pcs.
*Without diode

6-(1). Electrical life test (Motor free)
Sample: ACT212, 3pcs.
Load: 5A steady, Inrush 25A, 14 V DC
Brake current: 13A 14V DC,
Power window motor actual load (free condition)
Operating frequency: $(\mathrm{ON}: \mathrm{OFF}=0.5 \mathrm{~s}: 9.5 \mathrm{~s})$
Ambient temperature: Room temperature
Circuit:

Load current waveform
Inrush current: 25A, Steady current: 6A Brake current: 13A

6-(2). Electrical life test (Motor lock)
Sample: ACT212, 3pcs.
Load: 25A 14V DC
Switching frequency: (ON : OFF = 0.5s : 9.5s)
Ambient temperature: Room temperature

Circuit

Load current waveform

Change of pick-up and drop-out voltage

Change of contact resistance

CT (ACT)

6-(3). Electrical life test (Motor lock)
Sample: ACT212, 3pcs
Load: 20A 14V DC,
door lock motor actual load (Lock condition)
Switching frequency: (ON : OFF = 0.3s : 19.7s)
Ambient temperature: Room temperature
Circuit:

Change of pick-up and drop-out voltage

Change of contact resistance

Load current waveform

For Cautions for Use, see Relay Technical Information (page 582).

POWER TYPE SMALL \& SLIM AUTOMOTIVE RELAY

FEATURES

1. Compact type for automotives

We successfully developed a power type that is the same size as our CT relay. 2. 30 A maximum switching capacity Switching of 30 A motor loads is possible due to change of COM spring material and other improvements.
3. Still top-of-its-class for silent operation
Maintains equally silent operation as our CT relay (ACT).
4. Sealed type

Sealed type makes automatic cleaning possible.

APPLICATIONS

Power windows, Powered seats, Auto door lock, Slide door closers, Power sunroof, etc.

10-terminal layout

*8-terminal type has no terminals.

SPECIFICATIONS

Contact

Arrangement			$1 \text { Form } \mathrm{C} \times 2 \text {, }$ $1 \text { Form C }$
Contact material			Ag alloy (Cadmium free)
Initial contact resistance (Initial) (By voltage drop 6 V DC 1 A)			Typ. $7 \mathrm{~m} \Omega$ (N.O.) Typ. $10 \mathrm{~m} \Omega$ (N.C.)
Rating	Nominal s capacity	witching	$\begin{aligned} & \text { N.O.: } 30 \text { A } 14 \mathrm{~V} \text { DC } \\ & \text { N.C.: } 10 \text { A } 14 \mathrm{~V} \text { DC } \end{aligned}$
	Max. carrying current (N.O.)		40 A for 2 minutes, 25 A for 1 hour (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$) 35 A for 2 minutes, 20 A for 1 hour (at $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$)
	Min. switc	hing capacity\#1	1 A 12 V DC
Expected life (min. operation)	Mechanica	(at 120 cpm)	Min. $10{ }^{6}$
	Electrical	Resistive load	Min. $5 \times 10^{4^{* 1}}$
		Motor Ioad	Min. $10^{5 * 2}$ (free)
		Motor load	Min. $5 \times 10^{4 * 3}$ (lock)
Coil			
Nominal operating power			$1,000 \mathrm{~mW}$

\#1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.
Remarks
*1 At nominal switching capacity, operating frequency: 1s ON, 9s OFF
${ }^{* 2}$ N.O.: at 7 A (steady), 30 A (inrush)/N.C.: at 15 A (brake) 14 V DC, operating frequency: 0.5 s ON, 9.5 s OFF
*3 At 30A 14 V DC (Motor lock), operating frequency: 0.5s ON, 9.5s OFF
*4 Measurement at same location as "Initial breakdown voltage" section
*5 Detection current: 10 mA
*6 Excluding contact bounce time
*7 Half-wave pulse of sine wave: 11 ms ; detection: $10 \mu \mathrm{~s}$

* Half-wave pulse of sine wave: 6 ms
*9 Detection time: $10 \mu \mathrm{~s}$
*10 Time of vibration for each direction; X, Y, direction: 2 hours
Z direction: 4 hours
${ }^{* 11}$ Refer to " 6 . Usage, Storage and Transport Conditions" in AMBIENT ENVIRONMENT (page 599).
Please inquire if you will be using the relay in a high temperature atmosphere $\left(110^{\circ} \mathrm{C} 230^{\circ} \mathrm{F}\right.$).
* If the relay is used continuously for long periods of time with coils on both sides in an energized condition, breakdown might occur due to abnormal heating depending on the carrying condition. Therefore, please inquire when using with a circuit that causes an energized condition on both sides simultaneously.

Characteristics

Max. operating speed (at nominal switching capacity)			6 cpm
Initial insulation resistance*4			Min. $100 \mathrm{M} \Omega$ (at 500 V DC)
Initial breakdown voltage*5	Between op contacts		500 Vrms for 1 min.
	Between c and coil	tacts	500 Vrms for 1 min.
Operate time*6 (at nominal voltage) (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)			Max. 10ms (Initial)
Release time*6 (at nominal voltage) (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)			Max. 10ms (Initial)
Shock resistance ${ }^{\text {F }}$ F		ctional* ${ }^{* 7}$	Min. $100 \mathrm{~m} / \mathrm{s}^{2}\{10 \mathrm{G}\}$
		tructive*8	Min. 1,000 m/s² 100 G$\}$
Vibration resistance		ctional*9	10 Hz to 100 Hz , Min. $44.1 \mathrm{~m} / \mathrm{s}^{2}\{4.5 \mathrm{G}\}$
		tructive*10	10 Hz to 500 Hz , Min. $44.1 \mathrm{~m} / \mathrm{s}^{2}\{4.5 \mathrm{G}\}$
Conditions for operation, transport and storage*11 (Not freezing and condensing at low temperature)		Ambient temp	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{F} \text { to }+185^{\circ} \mathrm{F} \\ & \hline \end{aligned}$
		Humidity	5\% R.H. to 85\% R.H.
Mass			Twin type: approx. 8.0 g . 28 oz 1 Form C type: approx. 4.0 g . 14 oz

TYPES AND COIL DATA (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
Standard packing; 1 Form C: Carton(tube package) 30pcs. Case 1,500pcs.
1 Form C $\times 2$: Carton(tube package) 30pcs. Case 900pcs.

Contact arrangement	Part No.	Nominal voltage, V DC	Pick-up voltage, V DC (Initial)	Drop-out voltage, V DC (Initial)	Coil resistance, Ω	Nominaloperating current, mA	Nominal operating power, mW	Usable voltage range, V DC
1 Form C	ACTP112	12	Max. 7.2	Min. 1.0	144 $\pm 10 \%$	$83.3 \pm 10 \%$	1,000	10 to 16
1 Form C $\times 2$ (8 terminals type)	ACTP212	12	Max. 7.2	Min. 1.0	144 $\pm 10 \%$	$83.3 \pm 10 \%$	1,000	10 to 16
$\begin{gathered} 1 \text { Form } \mathrm{C} \times 2 \\ (10 \text { terminals type) } \end{gathered}$	ACTP512	12	Max. 7.2	Min. 1.0	144 $\pm 10 \%$	$83.3 \pm 10 \%$	1,000	10 to 16

* Other pick-up voltage types are also available. Please contact us for details.

DIMENSIONS $(m m$ inch) Interested in CAD data? You can obtain CAD data for all products with a CAD Data mark from your local Panasonic Electric Works representative.

1. Twin type (8 terminals)

CAD Data

Dimension:
Max. 1 mm .039 inch:
1 to 3 mm .039 to 118 inch:
Min. 3 mm .118 inch: $\quad \pm 0.3 \pm .012$

PC board pattern (Bottom view)

Schematic (Bottom view)

* Dimensions (thickness and width) of terminal specified in this catalog is measured before pre-soldering. Intervals between terminals is measured at A surface level.

* Dimensions (thickness and width) of terminal specified in this catalog is measured before pre-soldering. Intervals between terminals is measured at A surface level.

3. Single type (1 Form C) CAD Data

Pre-soldering

Dimension:

Max. 1mm . 039 inch: 1 to 3 mm Min. 3 mm .118 inch:

PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$

Schematic (Bottom view)

* Dimensions (thickness and width) of terminal specified in this catalog is measured before pre-soldering. Intervals between terminals is measured at A surface level.

EXAMPLE OF CIRCUIT

Forward/reverse control circuits of DC motor for power windows

REFERENCE DATA

1-(1). Coil temperature rise (at room temperature)
Sample: ACTP212, 3pcs.
Contact carrying current: 0A, 10A, 20A

1-(2). Coil temperature rise (at $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$) Sample: ACTP212, 3pcs
Contact carrying current: OA, 10A, 20A

2. Ambient temperature and operating voltage range

CT (ACTP)

3. Distribution of pick-up and drop-out voltage

Sample: ACTP212, 40pcs.

4. Distribution of operate and release time

Sample: ACTP212, 40pcs.

* Without diode

5. Electrical life test (Motor free)

Sample: ACTP212, 3pcs
Load: 7A steady, Inrush 30A
Brake current: 15A 14V DC,
Power window motor actual load (free condition)
Operating frequency: $(\mathrm{ON}: \mathrm{OFF}=0.5 \mathrm{~s}: 9.5 \mathrm{~s})$
Ambient temperature: Room temperature Circuit:

Load current waveform

nrush current: 30A, Steady current: 7A
Brake current: 15A
10A

Change of pick-up and drop-out voltage

Change of contact resistance

6. Electrical life test (Motor lock)

Sample: ACTP212, 3pcs.
Load: 30A 14V DC
Switching frequency: (ON : OFF $=0.5 \mathrm{~s}: 9.5 \mathrm{~s}$)
Ambient temperature: Room temperature
Circuit:

Change of contact resistance

Load current waveform

For Cautions for Use, see Relay Technical Information (page 582).

Panasonic ideas for life

AUTOMOTIVE LOW PROFILE MICRO-ISO/MICRO-280 RELAY
mm inch

Micro ISO 1c type

Micro 280 plug-in type Micro 280 PCB type
\& Products to be discontinued.

FEATURES

- Low profile:

$22.5 \mathrm{~mm}(\mathrm{~L}) \times 15 \mathrm{~mm}(\mathrm{~W}) \times 15.7 \mathrm{~mm}(\mathrm{H})$
.886 inch(L) $\times .591$ inch(W) $\times .618$ inch(H)

- Low temperature rise

Terminal temperature has been reduced compared with using our conventional product

- Low sound pressure level

Noise level has been reduced
approx. 10 dB compared with using our conventional product.

- Wide line-up

Micro ISO/Micro 280 terminal types and resistor and diode inside type, PCB terminal type (Micro 280 only).

- Plastic sealed type

Plastically sealed for automatic cleaning.

- Compact and high-capacity 20A load switching

N.O.: 20A 14V DC, N.C.: 10A 14V DC
(Max. carrying current: at $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$)

TYPICAL APPLICATIONS

- Headlights
- Magnetic clutches
- Radiator fans
- Blowers
- Fog lamps
- Tail lights
- Heaters
- Defoggers
- Horns
- Condenser fans, etc.

SPECIFICATIONS

Contact			
Arrangement		1 Form A	1 Form C
Contact material		Ag alloy (Cadmium free)	
Initial contact resistance (Initial) (By voltage drop 6 V DC 1 A)		Typ. $3 \mathrm{~m} \Omega$	
Contact voltage drop		$\begin{aligned} & \text { N.O.: Max. } 0.2 \mathrm{~V} \\ & \text { (at } 20 \mathrm{~A} \text {) } \end{aligned}$	N.O.: Max. 0.2 V (at 20 A switching) N.C.: Max. 0.5 V (at 10 A switching)
Rating	Nominal switching capacity	$\begin{gathered} \text { N.O.: } 20 \mathrm{~A} 14 \mathrm{~V} \\ \text { DC } \end{gathered}$	$\begin{aligned} & \text { N.O.: } 20 \text { A } 14 \mathrm{~V} \\ & \text { DC } \\ & \text { N.C.: } 10 \text { A } 14 \mathrm{~V} \\ & \text { DC } \\ & \hline \end{aligned}$
	Max. carrying current (Continuous, at $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$)	$\begin{gathered} \text { N.O.: } 20 \mathrm{~A} 12 \mathrm{~V} \\ \mathrm{DC} \end{gathered}$	$\begin{aligned} & \text { N.O.: } 20 \text { A } 12 \mathrm{~V} \\ & \text { DC } \\ & \text { N.C.: } 10 \text { A } 12 \mathrm{~V} \\ & \text { DC } \end{aligned}$
	Min. switching capacity\#1	1 A 12 V DC	
Expected life (min. operation)	Mechanical (at 120 cpm)	Min. 10^{6}	
	Electrical (at rated load)	Min. $10^{5 * 1}$	

Coil

Nominal operating power $\quad 0.8 \mathrm{~W}, 1.0 \mathrm{~W}$ (with resistor inside type)
\#1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.

Characteristics

Max. operating speed (at nominal switching capacity)			15cpm
Initial insulation resistance*2			$\begin{gathered} \operatorname{Min} .20 \mathrm{M} \Omega \\ \text { (at } 500 \mathrm{~V} \text { DC) } \end{gathered}$
Initial breakdown voltage*3	Between open contacts		500 Vrms for 1 min .
	Between contacts and coil		500 Vrms for 1min.
Operate time*4 (at nominal voltage) (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)			Max. 10ms (initial)
Release time*4 (at nominal voltage) (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)			Max. 10ms (initial) Max. 15ms (initial) (with diode inside type)
Shock resistance		Functional*5	Min. $100 \mathrm{~m} / \mathrm{s}^{2}\{10 \mathrm{G}\}$
		Destructive*6	Min. 1,000 m/s2 $\left.{ }^{2} 100 \mathrm{G}\right\}$
Vibration resistance		Functional*7	10 Hz to 100 Hz , Min. $44.1 \mathrm{~m} / \mathrm{s}^{2}\{4.5 \mathrm{G}\}$
		Destructive*8	10 Hz to 500 Hz , Min. $44.1 \mathrm{~m} / \mathrm{s}^{2}\{4.5 \mathrm{G}\}$
Conditions in case of operation, transport and storage*9 (Not freezing and condensing at low temperature)		Ambient temp	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{F} \text { to }+185^{\circ} \mathrm{F} \end{aligned}$
		Humidity	5\% R.H. to 85\% R.H.
Mass			Approx. 15.0g . 53 oz

Remarks

*1 At nominal switching capacity, operating frequency: 2 s ON, 2 s OFF
*2 Measurement at same location as "Initial breakdown voltage" section.
*3 Detection current: 10 mA
*4 Excluding contact bounce time.
*5 Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$
*6 Half-wave pulse of sine wave: 6 ms
${ }^{* 7}$ Detection time: $10 \mu \mathrm{~s}$
*8 Time of vibration for each direction;
X Y X, Y, Z direction: 4 hours
*9 Refer to "6. Usage, Storage and Transport Conditions" in AMBIENT ENVIRONMENT (page 18).
Please inquire if you will be using the relay in a high temperature atmosphere.

ORDERING INFORMATION

Note: Standard packing; Carton (Tube): 50 pcs.; Case: 200 pcs.

TYPES

Coil voltage (DC)	Contact arrangement	Mounting classification	Type classification	Part No.
12 V	1 Form A	Sealed type	Micro ISO plug-in type	ACV31012
			Micro 280 plug-in type	3 ACV32012
			Micro 280 PC board type	ACV33012
	1 Form C		Micro ISO plug-in type	ACV11012
			Micro 280 plug-in type	B ACV12012
			Micro 280 PC board type	ACV13012

COIL DATA (at $\mathbf{2 0}{ }^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)

Nominal voltage, V DC	Pick-up voltage, *V DC (Initial)	Drop-out voltage, V DC (Initial)	Coil resistance, W	Nominal operating current, mA	Nominal operating power, W	Usable voltage range, V DC $\left(a t 8 \circ^{\circ} \mathrm{C}\right.$ 185°)
12	Max. 7.0	Min. 0.6	$180 \pm 10 \%$ $142.3 \pm 10 \%$ (with resistor)	$67 \pm 10 \%$ $84 \pm 10 \%$ (with resistor)	0.8 1.0 (with resistor)	10 to 16

* Other pick-up voltage types are also available. Please contact us for details.

DIMENSIONS(mm inch)

 Interested in CAD data? You can obtain CAD data for all products with a CAD Data mark from your local Panasonic Electric Works representative.
1. Micro ISO terminal type

Schematic (Bottom view) 1 Form A

1 Form C

[^48]
CV (ACV)

2. Micro 280 terminal type

CAD Data

S 1). Plug-in type

Schematic (Bottom view)
1 Form A

1 Form C

* Intervals between terminals is measured at A surface level.
\& 2). PC board type

Dimension:
Tolerance
Max. 1 mm .039 inch: $\quad \pm 0.1 \pm .004$
1 to 3 mm .039 to .118 inch: $\pm 0.2 \pm .008$
Min. 3 mm .118 inch: $\quad \pm 0.3 \pm .012$

Schematic (Bottom view)
1 Form A

1 Form C

including resistor type also available

* Dimensions (thickness and width) of terminal specified in this catalog is measured before pre-soldering Intervals between terminals is measured at A surface level.

REFERENCE DATA

1. Coil temperature rise (20A)

Point measured: Inside the coil
Contact carrying current: 20A
Coli applied voltage: 13.5 V

2. Distribution of pick-up and drop-out voltage Sample: ACV11012, 100pcs

3. Distribution of operate and release time Sample: ACV11012, 100pcs.

4-(1). Electrical life test (Resistive load) Sample: ACV12212, 3pcs.
Load: Resistive load (NC switching) 11A
Switching frequency: (ON : OFF = 1s : 1s)
Ambient temperature: Room temperature
Circuit

Change of pick-up and drop-out voltage

Change of contact resistance

Load current waveform

4-(2). Electrical life test (Lamp load)
Sample: ACV12212, 3pcs.
Load: 55Wx4, inrush: 90A/steady: 20A,
lamp actual load
Switching frequency: (ON : OFF = 1s : 14s)
Ambient temperature: Room temperature

Circuit

Change of pick-up and drop-out voltage

Change of contact resistance

Load current waveform
Inrush current: 90A, steady current: 20A

4-(3). Electrical life test (Motor load)
Sample: ACV12212, 3pcs.
Load: inrush: 80A/steady: 18A,
radiator fan actual load (motor free)
Switching frequency: (ON : OFF = 2s : 6s
Ambient temperature: Room temperature

Circuit

Load current waveform
Inrush current: 80A, steady current: 18A

Change of pick-up and drop-out voltage

Cautions regarding the protection element

1. Part numbers without protection elements

- 12 V models

When connecting a coil surge protection circuit to these relays, we recommend a Zener diode with a Zener voltage of 24 V or higher, or a resistor (680Ω to $1,000 \Omega$). When a diode is connected to the coil in parallel, the release time will slow down and working life may shorten. Before use, please check the circuit and verify that the diode is not connected in parallel to the coil drive circuit.

2. Part numbers with diodes

These relays use a diode in the coil surge protection element. Therefore, the release time is slower and the working life might be shorter compared to part numbers without protection elements and part numbers with resistors.
Be sure to use only after evaluating under actual load conditions.

3. Part numbers with resistors

This part number employs a resistor in the coil surge protection circuit; therefore, an external surge protection element is not required. In particular, when a diode is connected in parallel with a coil, the revert time becomes slower which could adversely affect working life. Please check the circuit and make sure that a diode is not connected in parallel with the coil drive circuit.

Panasonic ideas for life

AUTOMOTIVE RELAY FOR FAILSAFE CIRCUITS IN HIGH OUTPUT MOTORS (EPS)

FEATURES

- Ideal relay for high output 3-phase motors (EPS)
2-path cut-off (2 Form A) using single coil for 3-phase motors
- High cut-off current capability

High cut-off current performance (12V)
using 2-point cut-off configuration

- High carrying current performance

High capacity achieved through use of high conductivity material

- Highly heat resistance properties

High heat resistance (at $125^{\circ} \mathrm{C} 257^{\circ} \mathrm{F}$)
through use of high heat resistance plastic

- To 3-phase motor EPS unit (for failsafe circuit)

ORDERING INFORMATION

Contact arrangement
2: 2 Form A
Coil voltage (DC)
12: 12 V

TYPES		
Contact arrangement	Coil voltage	
2 Form A	12 V DC	Part No.
Standard packing; Carton: 40 pcs.; Case: 160 pcs.		

RATING

1. Coil data

Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $\left.20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)$	Nominal operating current $[\pm 10 \%]\left(\right.$ at $\left.20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)$	Coil resistance $[\pm 10 \%]\left(\right.$ at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating power (at $\left.20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)$	Usable voltage range
12 V DC	Max. 6.2 V DC (Initial)	Min. 0.5 V DC (Initial)	117 mA	103Ω	1.4 W	10 to 16 V DC

2. Specifications

Characteristics	Item		Specifications
Contact	Arrangement		2 Form A
	Contact resistance (Initial)		Max. $50 \mathrm{~m} \Omega$ (By voltage drop 6V DC 1A)
	Contact material		Ag alloy (Cadmium free)
Rating	Max. carrying current (14V DC)		120 A for 5 seconds (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$) 70 A for 1 minute (at $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$) 45 A for continuous (at $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$)
	Nominal operating power		1.4 W
	Min. switching capacity (resistive load)		1 A 14 V DC (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
Electrical characteristics	Insulation resistance (Initial)		Min. $100 \mathrm{M} \Omega$ (at 500V DC)
	Breakdown voltage (Initial)	Between open contacts	500 Vrms for 1 min . (Detection current: 10 mA)
		Between contacts and coil	500 Vrms for 1 min . (Detection current: 10 mA)
	Operate time (at nominal voltage)		Max. 20 ms (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$, excluding contact bounce time) (Initial)
	Release time (at nominal voltage)		Max. 20 ms (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$) (Initial) (without protective element)
Mechanical characteristics	Shock resistance	Functional	Min. $200 \mathrm{~m} / \mathrm{s}^{2}$ \{approx. 20G\} (Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$) (12 V DC applied to the coil, at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
		Destructive	Min. 1,000 m/s² \{approx. 100G\} (Half-wave pulse of sine wave: 6 ms)
	Vibration resistance	Functional	10 Hz to 500 Hz, Min. $44.1 \mathrm{~m} / \mathrm{s}^{2}$ \{approx. 4.5 G$\}$ (Detection time: $10 \mu \mathrm{~s}$) (12 V DC applied to the coil, at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
		Destructive	10 Hz to 500 Hz , Min. $44.1 \mathrm{~m} / \mathrm{s}^{2}$ \{approx. 4.5 G$\}$, Time of vibration for each direction; X, Y, Z direction: 4 hours
Expected life	Mechanical		Min. 2×10^{5} (at 60 cpm)
	Electrical (at cut off only)		200 A 14V DC (resistive load), Min. 3 times (without diode)
Conditions	Conditions for operation, transport and storage*		Ambient temperature: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+257^{\circ} \mathrm{F}$, Humidity: 5\% R.H. to 85% R.H. (Not freezing and condensing at low temperature)
Mass			Approx. 26 g .92 oz
Note: * The upper ope Conditions" in	tion ambient tempera MBIENT ENVIRONME	limit is the maximum temp T (page 599).	ture that can satisfy the coil temperature rise value. Refer to " 6 . Usage, Storage and Tran

REFERENCE DATA

1.-(1) Coil temperature rise $\left(25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}\right)$

Sample: ACW212, 3pcs
Point measured: Inside the coil
Contact carrying current: 45A
Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$

3. Distribution of operate and release time Sample: ACW212, 100pcs.
1.-(1) Coil temperature rise $\left(85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}\right)$

Sample: ACW212, 3pcs
Point measured: Inside the coil
Contact carrying current: 45A
Ambient temperature: $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$

2. Distribution of pick-up and drop-out voltage Sample: ACW212, 100pcs
4. Ambient temperature and operating voltage range

DIMENSIONS (mm inch) Interested in CAD data? You can obtain CAD data for all products with a CAD Data mark from your local Panasonic Electric Works representative.

* Intervals between terminals is measured at A surface level

For Cautions for Use, see Relay Technical Information (page 582).

Panasonic ideas for life

(100A type)

COMPACT BUT CUT OFF DC POWER CURRENT, POWER CAPSULE CONTACT RELAY

EB RELAYS (AEB)

FEATURES

- Compact and high capacity using double contacts in series and permanent magnet installed.
(1,000A/3 times) cut-off possible (EB Relay 100A type)
- Compact and lightweight for space savings and improved gas mileage.

TYPICAL APPLICATIONS

Equipment requiring high capacity cutoff such as main power supplies for 42 V vehicles, motor assisters, quick recharging power supplies for AGVs (automatic guided vehicle), and motor controls for forklifts, etc.

ORDERING INFORMATION

AEB 31	00	
Contact arrangement 3: 1 Form A		
Contact rating / Relay shape $\text { 1: } 100 \text { A / Flat }$		
Heat resistance grade / protective element 0: Standard / no protective element		
Terminal shape 0: Screw terminal		
$\begin{aligned} & \text { Coil voltage (DC) } \\ & \text { 12: } 12 \mathrm{~V} \\ & 24: 24 \mathrm{~V} \\ & 36: 36 \mathrm{~V} \end{aligned}$		

TYPES

Contact arrangement	Coil voltage	Protective costruction	Terminal shape	Part No.
1 Form A	12 V DC	Dust cover	Screw terminal	AEB310012
	24 V DC			AEB310024
	36 V DC			AEB310036

RATING

Type	Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating current $[\pm 10 \%]$ (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Coil resistance } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right. \text {) }} \end{gathered}$	Nominal operating power (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Usable voltage range
100 A	12 V DC	Max. 9.0 V DC	Min. 1.0 V DC	410 mA	29.0Ω	5.0 W	10 to 16V DC
	24V DC	Max. 18.0 V DC	Min. 2.0 V DC	208 mA	115Ω	5.0 W	20 to 32V DC
	36 V DC	Max. 27.0 V DC	Min. 3.0 V DC	139 mA	260Ω	5.0 W	30 to 48V DC

2. Specifications

Characteristics	Item		Specifications
			100 A type
Contact rating	Arrangement		1 Form A
	Between terminal voltage drop (Initial)		Max. 0.15 V (at 100 A), Max. 0.05 V (at 10 A), Max. 0.01 V (at 1 A)
	Contact material		Ag alloy (Cadmium free)
	Nominal switching capacity (resistive load)		100 A 42V DC
	Max. carrying current		1,000A (0.1s)
	Min. switching capacity (resistive load)*1		1 A 12V DC
	Max. cut-off current		1,000A 42V DC/3 cycle*3
	Overload opening/closing rating		400A 55V DC/10 cycle
Electrical characteristics	Insulation resistance (Initial)		Min. $100 \mathrm{M} \Omega$ (at 500 V DC)
	Breakdown voltage (Initial)	Between open contacts	1,500 Vrms for 1 min .
		Between contacts and coil	2,500 Vrms for 1 min.
	Operate time (at nominal voltage)		Max. 30 ms (at nominal coil voltage, excluding contact bounce time, at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
	Release time (at nominal voltage)		Max. 15 ms (at nominal coil voltage, at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
Mechanical characteristics	Shock resistance	Functional	Min. $196 \mathrm{~m} / \mathrm{s}^{2}\{20.0 \mathrm{G}\}$ (Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$) (Nominal coil voltage applied to the coil)
		Destructive	Min. $980 \mathrm{~m} / \mathrm{s}^{2}\{100 \mathrm{G}\}$ (Half-wave pulse of sine wave: 6 ms) (Nominal coil voltage applied to the coil or deenergized)
	Vibration resistance	Functional	10 Hz to 500 Hz , Min. $44.1 \mathrm{~m} / \mathrm{s}^{2}\{4.5 \mathrm{G}\}$ (Nominal coil voltage applied to the coil)
		Destructive	10 Hz to 200 Hz , Min. $44.1 \mathrm{~m} / \mathrm{s}^{2}\{4.5 \mathrm{G}\}$, (Nominal coil voltage applied to the coil or deenergized)
Expected life	Mechanical		Min. 10^{6}
	Electrical		Min. 10^{4} (at $100 \mathrm{~A} \mathrm{42V} \mathrm{DC)}$ (resistive load, operating frequency: 1s ON, 9s OFF, room temperature)
Conditions	Conditions for operation, transport and storage*2		Ambient temperature: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+185^{\circ} \mathrm{F}$
Mass			Approx. 300 g 10.58 oz

1. This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.
*2. The upper operation ambient temperature limit is the maximum temperature that can satisfy the coil temperature rise value. Refer to "6. Usage, Storage and Transport Conditions" in AMBIENT ENVIRONMENT (page 599).
*3.Condition: Nominal switching 100cycles, each cut off 1,000A

* When using a surge absorbing element for the relay coil drive circuit, please use with a surge absorbing element with a clamp voltage of "Rating voltage $\times 1.5$: $18 \mathrm{~V} / 36 \mathrm{~V} /$ 54 V " or more. When the coil is connected in parallel with a diode, resistor or capacitor, the revert time will delay which might lead to degradation in shutoff performance and electrical working life.
Contact terminals have polarity; therefore, please obey the wiring diagram when connecting contacts.
The electrical load performance value applies when a varistor is connected in parallel with the coil.

REFERENCE DATA

1. Operate and release time characteristics

Sample: AEB310012
*nominal coil voltage 12 V type, 1pcs Load: Coil applied voltage; 8.0 to 16.0 V DC, coil surge protection elements; with zener diode (33V)
Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$
Circuit:

2. Ambient temperature characteristics (Cold start)
Sample: AEB310012
*nominal coil voltage 12 V type
5pcs

Ambient temperature $\left({ }^{\circ} \mathrm{C}\right)$	-35	20	80
Standard value (V)	-	9.0	-
Actual value (V)	5.4	6.7	8.3

Coil applied voltage vs operate and release time

Ambient temperature vs pick-up voltage
(Cold start)

3. Carrying current limit (error assumed)

Sample: AEB310012
*nominal coil voltage 12 V type
1pcs
Connection electric wire: $40 \mathrm{~mm}^{2}$
Ambient temperature: $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$
Standard for judgment: Relay contacts off when carrying finished.

Carrying current and carrying time

(1) Cut off current/voltage: $300 \mathrm{~A} / 42 \mathrm{~V}$ DC (resistive load)

(2) Cut-off current/voltage: $1,000 \mathrm{~A} / 42 \mathrm{~V}$ DC (resistive load)

DIMENSIONS (mm inch) Interested in CAD data? You can obtain CAD data for all products with a CAD Data mark CAD Data from your local Panasonic Electric Works representative.

tes: 1. Please be warned that contact terminals have polarity. There is no polarity in the coil input line
2. We will make separate consideration if a coil lead wire connector is desired.
3. M6 tighten torque: $6.0 \mathrm{~N} \cdot \mathrm{~m}$ to $8.0 \mathrm{~N} \cdot \mathrm{~m}$

Schematic (TOP VIEW)

Mounting hole pattern (TOP VIEW)

Tolerance: $\pm 0.1 \pm .004$

General tolerance;

less than 10 .394:
$\pm 0.3 \pm .012$
10 to 50.394 to 1.969: $\pm 0.6 \pm .024$
more than 50 1.969: $\pm 1.0 \pm .039$

NOTES

1. For general cautions for use, please refer to the "CAUTIONS FOR USE OF AUTOMOTIVE RELAYS".
2. To ensure proper operation, the voltage applied to the coil should be the rated operating voltage of the coil. Also, be aware that the pick-up and drop-out voltages will fluctuate depending on the ambient temperature and operating conditions.
3. Heat, smoke, and even a fire may occur if the relay is used in conditions outside of the allowable ranges for the coil ratings, contact ratings, operating cycle lifetime, and other
specifications. Therefore, do not use the relay if these ratings are exceeded.
4. If the relay has been dropped, the appearance and characteristics should always be checked before use.
5. When using this relay for AC load switching, caution is required. Please contact us.
6. Make sure that the relay is wired correctly. Incorrect wiring may cause unexpected events or the generation of heat or flames.
7. We recommend you use a surge absorbing element with a clamp voltage of "Rating voltate $\times 1.5$: $18 \mathrm{~V} /$ $36 \mathrm{~V} / 54 \mathrm{~V}$ " or more for the relay coil drive circuit as a means for relay coil surge absorption. Please avoid the use of diodes, capacitors and resistors because they lead to degradation in cut-off performance.
8. Avoid mounting the relay in strong magnetic fields (near a transformer or magnet) or close to an object that radiates heat.

9. Electrical life

This relay is a high-voltage direct-current switch. In its final breakdown mode, it may lose the ability to provide the proper cut-off. Therefore, do not exceed the indicated switching capacity and life. (Please treat the relay as a product with limited life and replace it when necessary.)
In the event that the relay loses cut-off ability, there is a possibility that burning may spread to surrounding parts, so configure the layout so that the power is turned off within one second.
10. If the power is turned off and then immediately on after applying the rated voltage (current) continuously to the relay's coil and contact, the resistance of the coil will increase due to a rise in the coil temperature. This causes the pick-up voltage to rise, and possibly exceed the rated pick-up voltage. In these circumstances, take measures such as reducing the load current, limiting the duration of current flow, and applying a coil voltage higher than the rated operating voltage (quick start).
11. If you are using an inductive load (L load) such that $L / R>1 \mathrm{~ms}$, add surge protection in parallel with the inductive load. If this is not done, the electrical life will decrease and cut-off failure may occur.
12. Be careful that foreign matter and oils and fats kind doesn't stick to the main terminal part because it is likely to cause a terminal part to give off unusual heat.
13. Avoid excessive load applied to the terminal in case of installing such as a bus bar etc., because it might give bad influence to the opening and closing performance.
Tighten each of the screws within the rated ranges given below.
Main terminal (M6 screw):
$6.0 \mathrm{~N} \cdot \mathrm{~m}$ to $8.0 \mathrm{~N} \cdot \mathrm{~m}$
Main unit mounting (M5 screw):
$2.5 \mathrm{~N} \cdot \mathrm{~m}$ to $3.6 \mathrm{~N} \cdot \mathrm{~m}$
14. Usage, transport and storage conditions
Ambient temperature, humidity, and atmospheric pressure during usage, transport, and storage of the relay:

1) Temperature: -40 to $+85^{\circ} \mathrm{C}-40$ to $+185^{\circ} \mathrm{F}$
2) Humidity: 5 to 85% RH
(Avoid freezing and condensation.)
3) Atmospheric pressure: 85 to 106 kPa

Temperature and humidity range for usage, transport, and storage:

4) Condensation

Condensation forms when there is a sudden change in temperature under high temperature and high humidity conditions. Condensation will cause deterioration of the relay insulation.
5) Freezing

Condensation or other moisture may freeze on the relay when the temperatures is lower than $0^{\circ} \mathrm{C} 32^{\circ} \mathrm{F}$. This causes problems such as sticking of movable parts or operational time lags. 6) Low temperature, low humidity environments
The plastic becomes brittle if the relay is exposed to a low temperature, low humidity environment for long periods of time.

Panasonic ideas for life

FEATURES

1. Compact and lightweight

Charged with hydrogen gas for high arc cooling capacity, short gap cutoff has been achieved at high DC voltages.

2. Safety

High safety achieved with construction that prevents explosions by keeping the arc from leaking.

3. High contact reliability

Since the contact portion is sealed in hydrogen gas, there is no contact oxidation. The relay is also dustproof.

TYPICAL APPLICATIONS

High DC voltage applications such as

- Electric vehicle
- Hybrid vehicle
- Fuel-cell vehicle
- Battery charge and discharge systems
- Construction equipment

ORDERING INFORMATION

TYPES

Type	Nominal coil voltage	Contact arrangement	Part number
10 A	12 V DC	1 Form A	AEV110122
20 A			AEV52012
80 A			AEV18012
120 A			AEV14012
300 A			AEV19012
10 A	24 V DC	1 Form A	AEV110242
80 A			AEV18024
120 A			AEV14024
300 A			AEV19024

Packing quantity:
Inner 25pcs. Outer 100pcs (for 10 A type)
Inner 25pcs. Outer 50pcs (for 20 A type) Inner 1pc. Outer 20pcs (for 80 A type) Inner 1pc. Outer 20pcs (for 120 A type) Inner 1 pc. Outer 5 pcs (for 300 A type)

RATING

1. Coil data

Type	Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating current [$\pm 10 \%$] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating power (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Max. allowable voltage
10 A	12 V DC	Max. 9 V DC	Min. 1 V DC	0.103 A	1.24 W	16 V DC
20 A		Max. 9 V DC	Min. 0.5 V DC	0.327 A	3.9 W	
80 A		Max. 9 V DC	Min. 1 V DC	0.353 A	4.2 W	
120 A		Max. 9 V DC	Min. 1 V DC	0.353 A	4.2 W	
300 A		Max. 9 V DC	Min. 2 V DC	3.2 A (Inrush)	37.9 W (Inrush, approx. 0.1 sec .) 3.6 W (Stable) 3.6 W (Stable)	
10 A	24 V DC	Max. 18 V DC	Min. 2 V DC	0.052 A	1.24 W	32 V DC
80 A		Max. 18 V DC	Min. 2 V DC	0.176 A	4.2 W	
120 A		Max. 18 V DC	Min. 2 V DC	0.176 A	4.2 W	
300 A		Max. 18 V DC	Min. 4 V DC	1.85 A (Inrush)	44.4 W (Inrush, approx. 0.1 sec.) 3.8 W (Stable)	

EV (AEV)

2. Specifications

Characteristics	Item		Specifications				
			10A type	20A type	80A type	120 A type	300 A type
Contact rating	Contact arrangement		1 Form A				
	Nominal switching capacity (resistive load)		10A 400V DC	20A 400V DC	80A 400V DC	120A 400V DC (Carry current)	300A 400V DC
	Short term current		15A 2min, 30A 30sec ($2 \mathrm{~mm}^{2}$)	40A 10 min , 60A 1min (3mm²)	120A 15 min , 180A $2 \mathrm{~min}\left(15 \mathrm{~mm}^{2}\right)$	225A 3min, 400A 30sec. (38mm²)	400A 10 min , 600A 1 min. $\left(100 \mathrm{~mm}^{2}\right)$
	Min. switching capacity (resistive load) ${ }^{\star 1}$		1A 12V DC	1A 12V DC	1A 12V DC	1A 12V DC	1A 24V DC
	Max. cut-off current*5		-	-	800A 300V DC (Min. 1 cycles) ${ }^{*_{2}^{2}}$	1,200A 300V DC (Min. 1 cycle) ${ }^{*}$	2,500A 300V DC (Min. 3 cycles) ${ }^{* 3}$
	Overload opening/closing rating*5		30 A 400 V DC (Min. 50 cycles)*2	60A 400V DC (Min. 50 cycles)*2	120A 400 V DC (Min. 50 cycles) ${ }^{{ }^{2}}$	800A 300V DC (Min. 5 cycles)*2 120 A 400 V DC (Min. 50 cycles)*2	600A 400V DC (Min. 300 cycles)
	Reverse direction cut-off*5		-	-	$\begin{aligned} & -120 \mathrm{~A} 200 \mathrm{~V} \text { DC } \\ & (\text { Min. } 50 \mathrm{cycle})^{* 2} \end{aligned}$	$\begin{aligned} & \text {-120A } 200 \mathrm{~V} \text { DC } \\ & \text { (Min. } 50 \text { cycle) }{ }^{* 2} \end{aligned}$	$\begin{aligned} & -300 \mathrm{~A} 200 \mathrm{~V} \text { DC } \\ & \text { (Min. } 100 \text { cycles) } \end{aligned}$
	Contact voltage drop (Initial)		Max. 0.5V (By voltage drop 6 V DC 10A)	Max. 0.2V (By voltage drop 6 V DC 20A)	Max. 0.067 V (By voltage drop 6 V DC 20A)	Max. 0.03V (By voltage drop 6 V DC 20A)	Max. 0.06V (300 A Carry current)
Electrical characteristics	Insulation resistance (Initial)		Min. 100M Ω (at 500 V DC, Measurement at same location as "Initial breakdown voltage" section.)				
	Breakdown voltage (Initial)	Between open contacts	$2,500 \mathrm{Vrms} / \mathrm{min}$. (Detection current: 10 mA)				
		Between contact and coil	$2,500 \mathrm{Vrms} / \mathrm{min}$. (Detection current: 10 mA)				
	Operate time (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 50 ms (Nominal coil voltage applied to the coil, excluding contact bounce time.)				```Max. 30ms (Nominal coil voltage applied to the coil, excluding contact bounce time.)```
	Release time (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 30ms (Nominal coil voltage applied to the coil, without diode.)				Max. 10ms (Nominal coil voltage applied to the coil, without diode.)
Mechanical characteristics	Shock resistance	Functional	Min. $196 \mathrm{~m} / \mathrm{s}^{2}$ \{20 G $\}$ (Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$)	For ON: Min. $196 \mathrm{~m} / \mathrm{s}^{2}\{20 \mathrm{G}\}$ (Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$) For OFF: Min. $98 \mathrm{~m} / \mathrm{s}^{2}\{10 \mathrm{G}\}$ (Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$)			
		Destructive	Min. $490 \mathrm{~m} / \mathrm{s}^{2}\{50 \mathrm{G}\}$ (Half-wave pulse of sine wave: 6 ms)				
	Vibration resistance	Functional	10 to $200 \mathrm{~Hz}, \mathrm{Min} .43 \mathrm{~m} / \mathrm{s}^{2}\{4.4 \mathrm{G}\}$ (Detection time: $10 \mu \mathrm{~s}$)				$10 \text { to } 200 \mathrm{~Hz} \text {, }$ Min. $44 \mathrm{~m} / \mathrm{s}^{2}\{4.5 \mathrm{G}\}$ (Detection time: $10 \mu \mathrm{~s}$)
		Destructive	$10 \text { to } 200 \mathrm{~Hz}, \operatorname{Min} .43 \mathrm{~m} / \mathrm{s}^{2}\{4.4 \mathrm{G}\}$ (Time of vibration for each direction; $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ direction: 4 hours)				$10 \text { to } 200 \mathrm{~Hz} \text {, }$ Min. $44 \mathrm{~m} / \mathrm{s}^{2}\{4.5 \mathrm{G}\}$ (Time of vibration for each direction; $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ direction: 4 hours)
Expected life	Mechanical		Min. 10^{5}	Min. 2×10^{5}			
	Electrical (resistive load)		10A 400V DC Min. 75,000*2	$\begin{aligned} & \text { 20A 400V DC } \\ & \text { Min. } 3,000^{* 2} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 80A 400V DC } \\ & \text { Min. } 1,000 * 2 \end{aligned}$	30A 400V DC Min. 3,000*2	$\begin{aligned} & \text { 300A 400V DC } \\ & \text { Min. } 1,000 \end{aligned}$
Conditions*6	Conditions for operation, transport and storage		Ambient temperature: -40 to $+80^{\circ} \mathrm{C}-40$ to $+176^{\circ} \mathrm{F}$ (Storage: Max. $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$), Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature)				Ambient temperature: -40 to $+85^{\circ} \mathrm{C}-40$ to $+185^{\circ} \mathrm{F}$ (Storage: Max. $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$), Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature)
Unit weight (Approx.)			90 g 3.17 oz	180 g 6.35 oz	400 g 14.11 oz	400 g 14.11 oz	750 g 26.46 oz

Notes:

*1. This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.
*2. The electrical load performance value for the 10A, 20A, 80A and 120 A types applies when a varistor is connected in parallel to the coil. Please be warned that working
life will be reduced when a diode is used.
*3. Condition: Nominal switching 10 cycles, each cut-off $2,500 \mathrm{~A}$
*4. The coil voltage 12 V DC type and 24 V DC type have the same specifications.
*5. at $\mathrm{L} / \mathrm{R} \leq 1 \mathrm{~ms}$
*6. Refer to "6. Usage, Storage and Transport Conditions" in AMBIENT ENVIRONMENT (page 599).

REFERENCE DATA

1.-(1) Ambient temperature characteristics (10 A type)
Sample: EV relay $10 \mathrm{~A}, 3$ pcs.

1.-(2) Ambient temperature characteristics (20 A type)
Sample: EV relay $20 \mathrm{~A}, 3$ pcs.

1.-(3) Ambient temperature characteristics (80 A type)
Sample: EV relay 80 A, 3 pcs.

1.-(4) Ambient temperature characteristics (120 A type)
Sample: EV relay 120 A, 3 pcs.

1.-(5) Ambient temperature characteristics (300 A type)
Sample: EV relay 300 A, 3 pcs.

2. Max. value for switching capacity

5. Carrying performance curve ($80^{\circ} \mathrm{C} 176^{\circ} \mathrm{F}$) *For 300 A , at $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$

DIMENSIONS (mm inch) Interested in CAD data? You can obtain CAD data for all products with a CAD Data mark from your local Panasonic Electric Works representative.

1. 10 A type

Schematic (TOP VIEW)

Mounting dimensions

General tolerance:

less than 10.394 : $\quad \pm 0.3 \pm .012$
10 to 50.394 to 1.969: $\pm 0.6 \pm .024$
more than 50 1.969: $\pm 1.0 \pm .039$

2. 20 A type

CAD Data

Schematic (TOP VIEW)

Load side has polarities (+) and (-)

Mounting dimensions

General tolerance;
less than 10.394 : $\quad \pm 0.3 \pm .012$
10 to 50.394 to 1.969: $\pm 0.6 \pm .024$
more than 50 1.969: $\pm 1.0 \pm .039$

3. 80 A type

CAD Data

Schematic (TOP VIEW)

Mounting dimensions

General tolerance:
less than 10 .394: $\quad \pm 0.3 \pm .012$
10 to 50.394 to 1.969 : $\pm 0.6 \pm .024$
more than 50 1.969: $\pm 1.0 \pm .039$
*Note: Separate connection of the terminal and lead wire is required.

4. 120 A type

CAD Data

*Note: Separate connection of the terminal and lead wire is required.

5. 300 A type

CAD Data

Schematic (TOP VIEW)

Load side has polarities (+) and (-)
Mounting dimensions

*Note: Separate connection of the terminal and lead wire is required.

NOTES

1. When installing the relay, always use washers to prevent the screws from loosening.
Tighten each screw within the rated range given below. Exceeding the maximum torque may result in breakage Mounting is possible in either direction.
<Relay installing section>

- M4 screw (for 10A type): 1.8 to $2.7 \mathrm{~N} \cdot \mathrm{~m}$
- M5 screw (for 20A, 80A, 120A and 300A types): 3 to $4 \mathrm{~N} \cdot \mathrm{~m}$
<Main terminal installing section>
- M5 nut (for 80A type): 3 to $4 \mathrm{~N} \cdot \mathrm{~m}$
- M6 nut (for 120A type): 6 to $8 \mathrm{~N} \cdot \mathrm{~m}$
- M8 nut (for 300A type): 10 to $12 \mathrm{~N} \cdot \mathrm{~m}$

2. The coils (300 A type) and contacts (all type) of the relay are polarized, so follow the connection schematic when connecting the coils and contacts. Type 300 A contains a reverse surge voltage absorption circuit; therefore a surge protector is not needed. We recommend installing a surge protector varistor (ZNR) for the 10A, 20A, 80A and 120A types.
<Recommend varistor>
Amount of proof energy: Min. 1 J
Varistor voltage: 1.5 to 2.0 times of nominal voltage
Avoid using a diode as this may result in decreased cut-off capability.
3. As a general rule, do not use a relay if it has been dropped.
4. Avoid mounting the relay in strong magnetic fields (near a transformer or magnet) or close to an object that radiates heat.
5. Electrical life

This relay is a high-voltage direct-current switch. In its final breakdown mode, it may lose the ability to provide the proper cut-off. Therefore, do not exceed the indicated switching capacity and life. (Please treat the relay as a product with limited life and replace it when necessary.)
In the event that the relay loses cut-off ability, there is a possibility that burning may spread to surrounding parts, so configure the layout so that the power is turned off within one second.
6. Permeation life of internal gas This relay uses a hermetically encased contact (capsule contact) with gas inside. The gas has a permeation life that is affected by the temperature inside the capsule contact (ambient temperature + temperature rise due to flow of electrical current). For this reason, make sure the ambient operating temperature is between -40 and $80^{\circ} \mathrm{C}-40$ and $+176^{\circ} \mathrm{F}$ (300A type is Max. $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$), and the ambient storage temperature is between -40 and $85^{\circ} \mathrm{C}-40$ and $+185^{\circ} \mathrm{F}$.
7. If the power is turned off and then immediately on after applying the rated voltage (current) continuously to the relay's coil and contact, the resistance of the coil will increase due to a rise in the coil temperature. This causes the pick-up voltage to rise, and possibly exceed the rated pick-up voltage. In these circumstances, take measures such as reducing the load current, limiting the duration of current flow, and applying a coil voltage higher than the rated operating voltage.
8. Main contact ratings in the ratings apply to when there is a resistive load. If you are using an inductive load (L load) such that L/R > 1 ms , add surge protection in parallel with the inductive load.
If this is not done, the electrical life will decrease and cut-off failure may occur.
9. For the 300 A type, drive the coil with a quick startup.
(Built-in one-shot pulse generator circuit)
10. Be careful that foreign matter and oils and fats kind don't stick to the main terminal parts because it is likely to cause terminal parts to give off unusual heat.
Also, please use the following materials for connected harnesses and bus bars.

10A type:
Min. $2 \mathrm{~mm}^{2}$ nominal cross-sectional area 20A type:
Min. $3 \mathrm{~mm}^{2}$ nominal cross-sectional area 80A type:
Min. $15 \mathrm{~mm}^{2}$ nominal cross-sectional area
120A type:
Min. $38 \mathrm{~mm}^{2}$ nominal cross-sectional area
300A type:
Min. $100 \mathrm{~mm}^{2}$ nominal cross-sectional area 11. As a guide, the insertion strength of the plug-in terminal into the relay tab terminal should be 40 to 70 N (10A type), 40 to 80 N (20A type). Please select a plug-in terminal (flat connection terminal) which comply with JIS C2809-1992.
10A type: for plate thickness 0.5 mm and \#187 tab terminal
20A type: for plate thickness 0.8 mm and \#250 tab terminal
12. Avoid excessive load applied to the terminal in case of installing such as a bus bar etc., Because it might adversely affect the opening and closing performance.
13. Use the specified connector for the connector terminal connection (80A, 120A and 300A)
Yazaki Corporation 7283 - 1020 or equivalent
14. After the ON signal enters the 300A type, automatic coil current switching occurs after approximately 0.1 seconds. Do not repeatedly turn it OFF within that 0.1 seconds interval, as doing so may damage the relay.

For Cautions for Use, see Relay Technical Information (page 582).

COMPACT SIZE

AUTOMOTIVE RELAY

FEATURES

- Compact (half-size).

The base area is approximately half the size of conventional (JS-M) relays. The controller unit can be made more compact.
Base area has been reduced by one half

- Perfect for automobile electrical systems.
Over 2×10^{5} openings possible with a 14 V DC motor load, an inrush current of 25 A, and steady state current of 5 A .
(N.O. side)
- Standard terminal pitch employed The terminal array used is identical to that used in small automotive relays.
- Plastic sealed type.

Plastically sealed for automatic cleaning.

- Line-up of 1 Form A and 1 Form C.

TYPICAL APPLICATIONS

- Power windows
- Auto door lock
- Electrically powered sun roof
- Electrically powered mirror
- Cornerring lamp, etc.

SPECIFICATIONS

Contact

| Arrangement | 1 Form A | 1 Form C |
| :--- | :--- | :--- | :--- | :--- |
| Contact material | Ag alloy (Cadmium free) | |

Coil

Nominal operating power	640 mW

\#1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.

Remarks

${ }^{* 1}$ at 20 A 14 VDC , at 20 cpm , operating frequency: 1s ON, 9s OFF
${ }^{*}$ at 20 A 14 VDC , operating frequency: 1s ON, 9s OFF
${ }^{* 3}$ at 10 A 14 VDC , at 20 cpm , operating frequency: 1s ON, 9s OFF
*4 at 5 A (steady), 25 A (inrush) 14 V DC
${ }^{* 5}$ at 20 A 14 V DC (Motor lock), operating frequency: $0.5 \mathrm{~s} \mathrm{ON}, 9.5 \mathrm{~s}$ OFF
*6 at 5A (steady), 25 A (inrush) 14 V DC

Characteristics

Max. operating speed (at rated load)			6 cpm
Initial insulation resistance*9			Min. $100 \mathrm{M} \Omega$ (at 500 V DC)
Initial breakdown voltage*10	Between open contacts		500 Vrms for 1 min .
	Between contact and coil		500 Vrms for 1 min .
Operate time*11 (at nominal voltage)			$\begin{gathered} \text { Max. } 10 \mathrm{~ms} \\ \left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right) \end{gathered}$
Release time (without diode) ${ }^{* 11}$ (at nominal voltage) (Initial)			$\begin{gathered} \text { Max. } 10 \mathrm{~ms} \\ \left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right) \end{gathered}$
Shock resistance		Functiona**12	Min. $100 \mathrm{~m} / \mathrm{s}^{2}\{10 \mathrm{G}\}$
		Destructive*13	Min. 1,000 m/s² 100 G$\}$
Vibration resistance		Functional*14	10 Hz to 100 Hz , Min. $44.1 \mathrm{~m} / \mathrm{s}^{2}\{4.5 \mathrm{G}\}$
		Destructive	10 Hz to 500 Hz , Min. $44.1 \mathrm{~m} / \mathrm{s}^{2}\{4.5 \mathrm{G}\}$
Conditions in case of operation, transport and storage*15 (Not freezing and condensing at low temperature)		Ambient temp.	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{F} \text { to }+185^{\circ} \mathrm{F} \end{aligned}$
		Humidity	5\% R.H. to 85\% R.H.
Mass			Approx. 5 g .176 oz
*7 at 20 A 14 V DC (Motor lock) *8 at peak 20 A 14 V DC (Braking current) operating frequency: $0.5 \mathrm{~s} \mathrm{ON}, 9.5 \mathrm{~s}$ OFF *9 Measurement at same location as "Initial break down voltage" section. *10 Detection current: 10 mA ${ }^{*} 11$ Excluding contact bounce time. ${ }^{* 12}$ Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$ ${ }^{* 13}$ Half-wave pulse of sine wave: 6 ms *14 Detection time: $10 \mu \mathrm{~s}$ *15 Refer to "6. Usage, Storage and Transport Conditions" in AMBIENT ENVIRONMENT (page 599). Please inquire if you will be using the relay in a high temperature atmosphere ($110^{\circ} \mathrm{C} 230^{\circ} \mathrm{F}$).			

ORDERING INFORMATION

Ex. JJM	
Contact arrangement	Coil voltage(DC)
1a: 1 Form A	
1: 1 Form C	12 V

(Note) Standard packing: Carton: 50 pcs.; Case: 1,000 pcs.

TYPES AND COIL DATA (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)

Contact arrangement	Part No.	Nominal voltage, V DC	Pick-up voltage, V DC (Initial)	Drop-out voltage, V DC (Initial)	Coil resistance Ω	Nominal operating current mA	Nominal operating power mW	Usable voltage range, V DC
1 Form A	JJM1a-12 V	12	Max. 7.2	Min. 1.0	$225 \pm 10 \%$	$53.3 \pm 10 \%$	640	10 to 16
1 Form C	JJM1-12 V	12	Max. 7.2	Min. 1.0	$225 \pm 10 \%$	$53.3 \pm 10 \%$	640	10 to 16

* Other pick-up voltage types are also available. Please contact us for details.

DIMENSIONS (mm inch) Interested in CAD data? You can obtain CAD data for all products with a CAD Data mark from your local Panasonic Electric Works representative.

Note: 米Marked terminal is only for 1Form C type

* Dimensions (thickness and width) of terminal specified in this catalog is measured before pre-soldering.
Intervals between terminals is measured at A surface level.

Schematic (Bottom view)

Tolerance: $\pm 0.1 \pm .004$

PC board pattern (Bottom view)

Dimension:
General tolerance
Max. 1mm 039 inch: $\quad \pm 0.1 \pm .004$
1 to 3 mm .039 to .118 inch: $\pm 0.2 \pm .008$
Min. 3 mm .118 inch: $\pm 0.3 \pm .012$

JJ-M

REFERENCE DATA

1. Coil temperature rise

Sample: JJM1-12V, 6pcs
Point measured: Inside the coil
Contact current: Now current through
contact, 5A, 10A, 15A, 20A
Resistance method, ambient temperature $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$

4. Distribution of pick-up and drop-out voltage Sample: JJM1-12V, 100pcs

3. Ambient temperature and operating voltage range

5. Distribution of operate time Sample: JJM1-12V, 100pcs

6. Distribution of release time Sample: JJM1-12V, 100pcs * With diode

7-(1). Electrical life test (at rated load)

Sample: JJM1-12V
Quantity: $\mathrm{n}=6(\mathrm{NC}=3, \mathrm{NO}=3)$
Load: Resisitive load (NC side: 10A 14 V DC, NO side: 20 A 14 V DC); Operating frequency: ON 1 s , OFF 9s
Ambient temperature: Room temperature

7-(2). Electrical life test (Motor free)
Sample: JJM1-12V, 6pcs.
Load: 5A, Inrush 25A, Brake current 18A 14V DC,
Power window motor load (Free condition).
Operating frequency: (ON : OFF = 0.5s : 9.5s)
Ambient temperature: Room temperature

Circuit :

Change of pick-up and drop-out voltage

Change of contact resistance

7-(3). Electrical life test (Motor lock)
Sample: JJM1-12V, 6pcs.
Load: 20A, 14VDC,
Power window motor actual load (lock condition).
Operating frequency: (ON:OFF =1s:5s)
Ambient temperature: Room temperature
Circuit :

Change of pick-up and drop-out voltage

Change of contact resistance

Inrush current: 42A, Steady current: 4.4A

7-(4). Electrical life test (Lamp load) Sample: JJM1-12V, 6pcs
Load: 27W+21W, min. 4A (steady), Lamp actual load
Operating frequency: ON 2s, OFF 13s
Ambient temperature: Room temperature

Circuit:

Change of pick-up and drop-out voltage

Change of contact resistance

For Cautions for Use, see Relay Technical Information (page 582).

Panasonic ideas for life

DOUBLE MAKE CONTACT

 AUTOMOTIVE RELAY
JJ-M RELAYS (Double make type)

FEATURES

- Small size

The smallest double make type relay $12.0(\mathrm{~W}) \times 15.5(\mathrm{~L}) \times 13.9(\mathrm{H}) \mathrm{mm}$ $.472(\mathrm{~W}) \times .610(\mathrm{~L}) \times .547(\mathrm{H})$ inch

- Pattern design simplification

Simplified pattern design is possible because, while double make construction is employed, the external COM terminal is single.

- Standard terminal pitch employed The terminal array used is identical to that used in JJM relays(1c type).
- Plastic sealed type

Plastically sealed for automotive cleaning.

SPECIFICATIONS

Contact

Arrangement	Double make contact		
Contact material	Ag alloy (Cadmium free)		
$\begin{array}{l}\text { Initial contact resistance (Initial) } \\ \text { (By voltage drop 6V DC 1A) }\end{array}$	Typ. $10 \mathrm{~m} \Omega$		
Contact voltage drop			Max. 0.25V (at $2 \times 6 \mathrm{~A}$)
Rating	Nominal switching capacity		

(at 2 \times 6 \mathrm{~A}, lamp load)\end{array}\right]\)

Coil

Nominal operating power $\quad 1,000 \mathrm{~mW}$
\#1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.

Remarks

*1 At 12A 14V DC (lamp), operating frequency: 1s ON, 14s OFF
${ }^{* 2}$ Measurement at same location as "initial breakdown voltage" section.
*3 Detection current: 10 mA
${ }^{*} 4$ Excluding contact bounce time.
${ }^{* 5}$ Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$
${ }^{*} 6$ Half-wave pulse of sine wave: 6 ms
${ }^{* 7}$ Detection time: $10 \mu \mathrm{~s}$
${ }^{* 8}$ Time of vibration for each direction; X, Y direction: 2 hours Z direction: 4 hours

*9 Refer to " 6 . Usage, Storage and Transport Conditions" in AMBIENT
ENVIRONMENT (page 599).
Please inquire if you will be using the relay in a high temperature atmosphere $\left(110^{\circ} \mathrm{C} 230^{\circ} \mathrm{F}\right.$).

Characteristics

Max. operating speed (at nominal switching capacity)			4 cpm
Initial insulation resistance*2			Min. $100 \mathrm{M} \Omega$ (at 500 V DC)
Initial breakdown voltage*3	Between open contacts		500 Vrms for 1 min .
	Between contact and coil		500 Vrms for 1min.
Operate time ${ }^{* 4}$ (at nominal voltage)(at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)			Max. 10 ms (Initial)
Release time (without diode) ${ }^{*_{4}}$ (at nominal voltage)(at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)			Max. 10 ms (Initial)
Shock resistance		Functional*5	Min. $100 \mathrm{~m} / \mathrm{s}^{2}\{10 \mathrm{G}\}$
		Destructive*6	Min. $1,000 \mathrm{~m} / \mathrm{s}^{2}\{100 \mathrm{G}\}$
Vibration resistance		Functional*7	10 Hz to 100 Hz , Min. $44.1 \mathrm{~m} / \mathrm{s}^{2}\{4.5 \mathrm{G}\}$
		Destructive*8	10 Hz to 500 Hz , Min. $44.1 \mathrm{~m} / \mathrm{s}^{2}\{4.5 \mathrm{G}\}$
Conditions in case of operation, transport and storage*9 (Not freezing and condensing at low temperature)		Ambient temp.	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{F} \text { to }+185^{\circ} \mathrm{F} \end{aligned}$
		Humidity	5\% R.H. to 85\% R.H.
Mass			Approx. 5 g .176 oz

TYPICAL APPLICATIONS

Car alarm system flashing lamp etc.

ORDERING INFORMATION

Coment	Coil voltage (DC)
ontact	12 V

Standard packing: Carton(tube package) 50pcs. Case: 1,000pcs.

TYPES AND COIL DATA (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)

- Single side stable type

Part No.	Nominal voltage, V DC	Pick-up voltage, V DC (Initial)	Drop-out voltage, V DC (Initial)	Coil resistance Ω	Nominal operating current, mA	Nominal operating power, mW	Usable voltage range, V DC
JJM2w-12V	12	Max. 6.9	Min. 1.0	$144 \pm 10 \%$	$83.3 \pm 10 \%$	1,000	10 to 16

DIMENSIONS(mm inch)

Interested in CAD data? You can obtain CAD data for all products with a CAD Data mark
from your local Panasonic Electric Works representative.
CAD Data

Schematic (Bottom view)
PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$

Dimension:
Max. 1mm . 039 inch:
8 inch: $\pm 0.2 \pm .008$

* Dimensions (thickness and width) of terminal in this catalog is measured before pre-soldering

Intervals between terminals is measured at A surface level.

EXAMPLE OF CIRCUIT

JJ-M(2w)

REFERENCE DATA

1. Coil temperature rise

Sample: JJM2w-12V, 6pcs
Point measured: Inside the coil
Contact carrying current: $2 \times 6 \mathrm{~A}, 2 \times 4 \mathrm{~A}$
Ambient temperature: Room temperature, $85^{\circ} \mathrm{C}$ $185^{\circ} \mathrm{F}$

4. Distribution of operate time Sample: JJM2W-12V, 50pcs.

2. Ambient temperature and operating voltage range

3. Distribution of pick-up and drop-out voltage Sample: JJM2W-12V, 50pcs.

5. Distribution of release time

Sample: JJM2W-12V, 50pcs.

* Without diode

6. Electrical life test (Lamp load)

Sample: JJM2w-12V, 6pcs.
Load: 5.5A, inrush 48A, $6 \times 21 \mathrm{~W}$
Operating frequency: (ON : OFF = 1s : 14s)
Ambient temperature: Room temperature
Circuit:

Load current waveform

Current value per contact on one side

Inrush current: 48A, Steady current: 5.5A 10 A

Change of contact resistance

Change of pick-up and drop-out voltage

mm inch

FEATURES

- Low pick-up voltage for high ambient use
- Sealed construction
- Global standard terminal pitch
- Usable at high temperature: $85^{\circ} \mathrm{C}$ $185^{\circ} \mathrm{F}$

TYPICAL APPLICATIONS

- Power-window	- Power seat
- Car antenna	- Power sunroof
- Door lock	- Car stereo
- Intermittent wiper	- Horn
- Interior lighting	• Lift gate, etc.

SPECIFICATIONS

Contact

			Standard type	High capacity type
Arrangement			1 Form A, 1 Form C	
Contact material			Ag alloy (Cadmium free)	
Initial contact resistance (By voltage drop 6 V DC 1 A)			*Max. $100 \mathrm{~m} \Omega$	*Max. 100 m Ω
Contact voltage drop			Max. 0.2 V DC (at 10 A 12 V DC)	
Rating	Nominal switching capacity		10 A 16 V DC (resistive)	15 A 16 V DC (resistive)
	Max. carrying current		25 A (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$ for 2 minutes) 15 A (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$ for 1 hour) 20 A (at $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$ for 2 minutes) 10 A (at $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$ for 1 hour)	
	Max. switching power		160 W	
	Max. switching voltage		16 V DC	
	Max. switching current		10 A	15 A $(10 \mathrm{~A} \max$. at $\left.85^{\circ} \mathrm{C}\right)$
	Min. switching capacity\#1		1 A 12 V DC	
Expected life (min. ope.)	Mechanical life (at 180 cpm)		10^{7}	
	Electrical (at 15 cpm)	Resistive	10^{5}	$\begin{gathered} \text { N.O.: } 10^{5} \\ \text { N.C.: } 5 \times 10^{4} \end{gathered}$

* Measured after operating 5 times at the rated load

Coil

Nominal operating power	640 mW

Contact rating

Load	Standard type			High capacity type		
	Form A	Form C		Form A	Form C	
		N.O.	N.C.		N.O.	N.C.
Max. carry current	15 A					
Max. make current	25 A	25 A	10 A	50 A	50 A	15 A
Max. break current	10 A	10 A	10 A	15 A	15 A	15 A

Characteristics

Max. operating speed (at rated load)			15 cps.
Initial insulation resistance*1			Min. $100 \mathrm{M} \Omega$ (at 500 V DC)
Initial breakdown voltage*2	Between open contacts		750 Vrms for 1 min.
	Between contacts and coil		1,500 Vrms for 1 min .
Operate time*3 (at nominal voltage)			Max. 10 ms
Release time (without diode)*3 (at nominal voltage)			Max. 10 ms
Shock resistance		ctional*4	Min. $98 \mathrm{~m} / \mathrm{s}^{2}\{10 \mathrm{G}\}$
		ructive*5	Min. $980 \mathrm{~m} / \mathrm{s}^{2}$ \{100 G\}
Vibration resistance		ctional*6	10 Hz to 55 Hz at double amplitude of 1.6 mm
		tructive	10 Hz to 55 Hz at double amplitude of 2 mm
Conditions for operation, transport and storage*7 (Not freezing and condensing at low temperature)		Ambient temp.	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{F} \text { to }+185^{\circ} \mathrm{F} \end{aligned}$
		Humidity	5\% R.H. to 85\% R.H.
Mass			Approx. 12 g .423 oz

\#1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.

Remarks

${ }^{* 1}$ Measurement at same location as "Initial breakdown voltage" section
*2 Detection current: 10 mA
${ }^{*}$ Excluding contact bounce time
${ }^{*} 4$ Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$
${ }^{* 5}$ Half-wave pulse of sine wave: 6 ms
${ }^{*} 6$ Detection time: $10 \mu \mathrm{~s}$
${ }^{* 7}$ Refer to "6. Usage, Storage and Transport Conditions" in AMBIENT ENVIRONMENT (page 599).

ORDERING INFORMATION

Ex. JSM			
Contact arrangement	Protective construction	Coil voltage (DC)	Contact material
1a: 1 Form A	Nil: Sealed construction	12 V	4: Standard type (10 A) 1: 1 Form C
F: Flux-resistant type			

Note: Standard packing: Carton: 100 pcs. Case: 500 pcs.

TYPES AND COIL DATA (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)

Contact arrangement	Coil voltage, V DC	Standard type (10 A)		High capacity type (15 A)		Nominal voltage, V DC	Pick-up voltage, V DC	Drop-out voltage, V DC	Coil resistance Ω	Nominal operating current, mA	Nominal operating power, mW	Max. allowable voltage, V DC (at $80^{\circ} \mathrm{C}$ $176^{\circ} \mathrm{F}$)
		Sealed type	Flux-resistant type	Sealed type	Flux-resistant type							
1 Form A	12	JSM1a-12V-4	JSM1aF-12V-4	JSM1a-12V-5	JSM1aF-12V-5	12	Max. 6.3	Min. 0.9	$225 \pm 10 \%$	$53.3 \pm 10 \%$	640	10 to 16
1 Form C	12	JSM1-12V-4	JSM1F-12V-4	JSM1-12V-5	JSM1F-12V-5	12	Max. 6.3	Min. 0.9	225 $\pm 10 \%$	53.3 $\pm 10 \%$	640	10 to 16

* Other pick-up voltage types are also available. Please contact us for details.

DIMENSIONS (mm inch) $^{(1)}$
Interested in CAD data? You can obtain CAD data for all products with a CAD Data mark from your local Panasonic Electric Works representative.

CAD Data

Dimension:
Max. 1mm . 039 inch:
Max. 1 m
1 to 3 mm .039 to .1
Min. 3mm . 118 inch:
General tolerance
$\pm 0.1 \pm .004$
$\pm 0.2 \pm .008$
$\pm 0.3 \pm .012$

* Dimensions (thickness and width) of terminal specified in this catalog is measured before pre-soldering. Intervals between terminals is measured at A surface level.

Schematic (Bottom view)
1a

1c

PC board pattern (Bottom view)
1a

Tolerance: $\pm 0.1 \pm .004$

REFERENCE DATA

1-(1). Coil temperature rise (10A)
Measured portion: Inside the coil
Contact carrying current, 10A
Ambient temperature: Room temperature, $85^{\circ} \mathrm{C}$ $185^{\circ} \mathrm{F}$

3. Ambient temperature and oprating voltage range

1-(2). Coil temperature rise (15A)
Measured portion: Inside the coil
Contact carrying current, 15A
Ambient temperature: Room temperature, $85^{\circ} \mathrm{C}$ $185{ }^{\circ} \mathrm{F}$

4. Distribution of pick-up and drop-out voltage Sample: JSM1-12V-5, 50pcs.

2. Max. switching capability (Resistive load,
initial)

5. Distribution of operate and release time Sample: JSM1-12V-5, 50pcs. Coil both side without diode

6-(1). Electrical life test (Motor load)
Sample: JSM1-12V-5, 3pcs.
Load: 50A (Inrush), 10A 16V DC (Steady)
Switching frequency: (ON : OFF = 1s:9s)

Circuit :

6-(2). Electrical life test (Lamp load)
Sample: JSM1-12V-5, 4pcs.
Load: 55.2A (Inrush), 9.6A 14.5V DC (Steady)
Switching frequency: ($\mathrm{ON}: \mathrm{OFF}=1 \mathrm{~s}: 3 \mathrm{~s}$)

Circuit :

PCB type

FEATURES

- High switching capacity - 30 A for 1 Form A
- 2 contact arrangements - 1 Form A or 1 Form C
- "TMP" types available
- UL/CSA recognized
- Class F types standard

SPECIFICATIONS

Contacts

* The life is for open venting-hole condition.

Coil at $\mathbf{2 0}^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$
Nominal operating power
Approx. 800 mW

Characteristics

			PCB \& TMP type
Initial insulation resistance*1			Min. $100 \mathrm{M} \Omega$ at 500 V DC
Initial breakdown voltage*2	Betw	en contacts	1,200 Vrms
	Betw and	en contacts oil	2,500 Vrms
Operate time*3 (at nominal voltage)			Max. 20 ms
Release time (without diode)*3 (at nominal voltage)			Max. 10 ms
Shock resistance		Functional*4	Min. $98 \mathrm{~m} / \mathrm{s}^{2}\{10 \mathrm{G}\}$
		Destructive*5	Min. $980 \mathrm{~m} / \mathrm{s}^{2}\{100 \mathrm{G}\}$
Vibration resistance		Functional*6	Max. $88.2 \mathrm{~m} / \mathrm{s}^{2}\{9 \mathrm{G}\}, 10$ to 55 Hz at double amplitude of 1.5 mm
		Destructive	Max. $117.6 \mathrm{~m} / \mathrm{s}^{2}\{12 \mathrm{G}\}, 10$ to 55 Hz at double amplitude of 2 mm
Conditions for operation, transport and storage*7 (Not freezing and condensing at low temperature)		Ambient temp.	$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}-67^{\circ} \mathrm{F}$ to $+185^{\circ} \mathrm{F}$
		Humidity	5 to 85\% R.H.
Unit weight			PCB type: Approx. 25 g (. 88 oz) TMP type: Approx. 30 g (1.06 oz)

\#1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.

Remarks

* Specifications will vary with foreign standards certification ratings.
${ }^{*}$ Measurement at same location as "Initial breakdown voltage" section
*2 Detection current: 10 mA
${ }^{* 3}$ Excluding contact bounce time
${ }^{*} 4$ Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$
${ }^{* 5}$ Half-wave pulse of sine wave: 6 ms
*6 Detection time: 10 1 s
*7 Refer to " 6 . Usage, Storage and Transport Conditions" in AMBIENT ENVIRONMENT (page 599).

TYPICAL APPLICATIONS

- Automotive
- Air conditioner
- Heating \& ventilation
- Home appliance

ORDERING INFORMATION

JT-N Relays (PCB and TMP type)

Notes: 1. UL/CSA approved type is standard.
2. Standard packing: PCB type: Carton: 50 pcs. Case: 500 pcs. TMP type: Carton: 50 pcs. Case: 300 pcs.

COIL DATA (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)

Nominal voltage, V DC	Pick-up voltage	Drop-out voltage,	Coil resistance, Ω ($\pm 10 \%$)	Nominal operating power, mW	Max. allowable voltage, V DC (at $70^{\circ} \mathrm{C} 158^{\circ} \mathrm{F}$)
	V DC (max.) (Initial)	V DC (min.) (Initial)	PCB \& TMP	PCB \& TMP	
5	3.75	0.5	31	800	6
6	4.5	0.6	45	800	7.2
9	6.75	0.9	101	800	10.8
12	9.0	1.2	180	800	14.4
15	11.25	1.5	281	800	18
18	13.5	1.8	405	800	21.6
24	18.0	2.4	720	800	28.8

DIMENSIONS (mm inch) Interested in CAD data? You can obtain CAD data for all products with a CAD Data mark from your local Panasonic Electric Works representative.

REFERENCE DATA

1. Change of rate of pick-up and drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
Sample: JTN1S-TMP-F-DC24V (6 pcs.)

2. Operate \& release time (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)

Sample: JTN1S-TMP-F-DC24V (6 pcs.)

3. Operate \& release time (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$) Sample: JTN1aS-PA-F-DC24V (6 pcs.)

4. Distribution frequency of pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
Sample: JTN1S-TMP-F-DC12V (30 pcs.)

5. Distribution frequency of drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
Sample: JTN1S-TMP-F-DC12V (30 pcs.)

6.-(1) Coil temperature rise (TMP type)*

Ambient temperature: $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$
Sample: JTN1aS-TMP-F-DC12V (6 pcs.)

[^49]

For Cautions for Use, see Relay Technical Information (page 582).

Tolerance $\pm 0.3 \mathrm{~mm}$
Weight approx. 47 g

POLARIZED, MONOSTABLE SAFETY RELAY WITH FORCIBLY GUIDED DOUBLE CONTACTS

Features

- Relay complies with EN 50205, Type A
- Overvoltage category as per IEC 60664-1 III / 4kV
- Rated voltage as per IEC 60664-1 basic insulation

	Polution degree		
	2	2	3
	inside	outside	inside
Coil-contact	400 V	400 V	250 V
Contact-contact	400 V	400 V	400 V

- Relay complies with IEC/EN 60335-1 (GWT)
- For applications according to EN 50155*
*For details, please contact your local Panasonic Electric Works representative.

SPECIFICATIONS

Contact

Contact configuration (a = normally open / NO, $\mathrm{b}=$ normally closed / NC)	2 a 2 b
Contact material	AgSnO_{2}, with Au flash
Contact resistance (initial at 6V DC, 1A)	$30 \mathrm{~m} \Omega$
Making and breaking capacities (breathing hole open)	
Max. switching voltage	$6 \mathrm{~A} \mathrm{250V/3A} \mathrm{24V}$
Min. switching voltage / min. switching current	400 V
Pick-up / drop-out / bounce time (approx. values at $U_{\text {nominal }}$)	$10 \mathrm{~V} / 10 \mathrm{~mA}$
Mechanical life	$17.5 / 7 / 2 \mathrm{~ms}$

Coil

Operate / release voltage (\% of $U_{\text {nominal }}$ at $\left.20^{\circ} \mathrm{C}\right)$	$75 \% / 10 \%$
Pick-up/nominal power consumption at $20^{\circ} \mathrm{C}$	$280 / 500 \mathrm{~mW}$

Remarks

*1 According to EN 60947-5-1: 1997, table 4 AC15 / DC13
*2 Contact interruption <10 $\mathrm{\mu s}$
*3 Breathing hole open

Characteristics

Max. switching frequency (without load)	10 Hz
Permissible ambient temperature at nominal power consumption	$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Upper temperature limit	$105^{\circ} \mathrm{C}$
Test voltage: open contact / contact-contact / contact-coil	$\begin{aligned} & 2500 / 2500 / \\ & 2500 \mathrm{~V}_{\mathrm{rms}} \end{aligned}$
Insulation resistance at 500V DC (initial)	$10^{9} \Omega$
Shock resistance (11ms) NO/NC*2	30G
Vibration resistance $10-200 \mathrm{~Hz}(10-55 \mathrm{~Hz}$, amplitude 2 mm$)^{*}{ }^{2}$	10G
Degree of protection	IP67 / IP30*3
Unit weight	37 g

Important: Relay characteristics may be influenced by:

- strong external magnetic fields
- magnetic conductive materials near the relay
- narrow top-to-top mounting (printed surface to printed surface)

Note:

Suitable for most common washing methods except ultrasonic cleaning

ORDERING INFORMATION

Ex. SF2D - DC12 V

Coil voltage (DC)
$5,9,12,18,21$
$24,36,48,60$

Note: Standard packing; Carton: 20 pcs. Case 200 pcs.

COIL DATA

Part number	Coil nominal voltage V DC	Operate voltage V DC	Release voltage V DC	Coil resistance $\Omega\left(\pm 10 \%, 20^{\circ} \mathrm{C}\right)$	Coil inductance (mH)
SF2D-DC5V	5	3.75	0.5	50	47
SF2D-DC9V	9	6.75	0.9	162	145
SF2D-DC12V	12	9.00	1.2	288	252
SF2D-DC18V	18	13.50	1.8	648	551
SF2D-DC21V	21	15.75	2.1	882	742
SF2D-DC24V	24	18.00	2.4	1152	959
SF2D-DC36V	36	27.00	3.6	2592	2097
SF2D-DC48V	48	36.00	4.8	4608	3654
SF2D-DC60V	60	45.00	6.0	7200	5612

ELECTRICAL LIFE

Voltage	Current	Load type	Frequency	Duty cycle	No. of contacts	No. of ops.
230V AC	8A	AC 1	0.25 Hz	25\%	2^{*}	85,000*5
250V AC	6A	AC 1	0.33 Hz	50\%	4^{*}	100,000*5
230 V AC	6A	AC 1	0.33 Hz	10\%	$2^{* 3}$	200,000*4,*5
230 V AC	$30 / 3 \mathrm{~A}$	AC $15^{* 1}$	0.33 Hz	10\%	$1{ }^{* 3}$	$150,000{ }^{*} 4,{ }^{*} 5$
24 V DC	8A	DC 1	0.33 Hz	10\%	$2{ }^{*}$	200,000*4,*5
24 V DC	3A	DC 13*1	0.33 Hz	10\%	$1{ }^{* 3}$	$50,000{ }^{*} 4{ }^{* 5}$
24V DC	3A	L/R = 40ms	0.33 Hz	10\%	$1{ }^{* 3}$	100,000*4,*5

*1 EN 60947-5-1: 1997; table C. 1
*2 Breathing hole closed
*3 Breathing hole open
*4 Ambient temperature $+70^{\circ} \mathrm{C}$
*5 Dielectric strength according to EN61810-1:2004

REFERENCE DATA

Load limit curve

Loads in the range under the curve can be switched safely. The arc will extinguish before the opposite contact makes

Coil voltage characteristics

Permissable coil voltages and pick-up and drop-out characteristics at various ambient temperatures.

Connection diagram and pcb bore hole data

Bottom view
The contacts are shown in the deenergized condition.

Contact current characteristics

APPLICATION NOTES

If required a breathing hole can be made in the cover by removing the nipple.
However be aware that the degree of protection will be reduced from IP67 to IP30!
For Cautions for Use, see Relay Technical Information (page 582).

Panasonic ideas for life

POLARIZED, MONOSTABLE
 SAFETY RELAY WITH FORCIBLY GUIDED

 SF3 RELAY

Tolerance $\pm 0.3 \mathrm{~mm}$ Weight approx. 47 g

FEATURES

- Relay complies with EN 50205, Type A
- Overvoltage category as per IEC 60664-1 III / 4kV
- Rated voltage as per IEC 60664-1 basic insulation

	Polution degree			
	2 inside	2 outside	3	
outside				
Coil-contact	400 V	400 V	250 V	
Contact-contact	400 V	400 V	400 V	

- Relay complies with IEC/EN 60335-1 (GWT)
- For applications according to EN 50155*
*For details, please contact your local Panasonic Electric Works representative.

SPECIFICATIONS

Contact

Contact configuration (a = normally open / NO, b = normally closed / NC)	3a1b
Contact material	AgSnO_{2}, with Au flash
Contact resistance (initial at 6V DC, 1A)	$\leq 30 \mathrm{~m} \Omega$
Making and breaking capacities (breathing hole open) ${ }^{* 1}$, *3	6A 250V / 3A 24V
Max. switching voltage	400 V
Min. switching voltage / min. switching current	$10 \mathrm{~V} / 10 \mathrm{~mA}$
Pick-up / drop-out / bounce time (approx. values at $U_{\text {nominal }}$)	16.5 / 7 / 3ms
Mechanical life	10^{7} ops

Coil

Operate / release voltage (\% of $U_{\text {nominal }}$ at $20^{\circ} \mathrm{C}$)	$75 \% / 10 \%$
Pick-up/nominal power consumption at $20^{\circ} \mathrm{C}$	$280 / 500 \mathrm{~mW}$

Remarks

*1 According to EN 60947-5-1: 1997, table 4 AC15 / DC13
*2 Contact interruption <10 $\mu \mathrm{s}$
*3 Breathing hole open

Characteristics

Max. switching frequency (without load)	10 Hz
Permissible ambient temperature at nominal power consumption	$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Upper temperature limit	$105^{\circ} \mathrm{C}$
Test voltage: open contact / contact-contact / contact-coil	$\begin{gathered} 2500 / 2500 / \\ 2500 \mathrm{~V}_{\mathrm{rms}} \end{gathered}$
Insulation resistance at 500V DC (initial)	$10^{9} \Omega$
Shock resistance (11ms) NO/NC*2	30G
Vibration resistance $10-200 \mathrm{~Hz}(10-55 \mathrm{~Hz}$, amplitude 2 mm$)^{* 2}$	10G
Solder bath temperature, maximum duration	$260^{\circ} \mathrm{C}, 5 \mathrm{~s}$
Degree of protection	IP67 / IP30*3
Unit weight	37 g

Important: Relay characteristics may be influenced by:

- strong external magnetic fields
- magnetic conductive materials near the relay
- narrow top-to-top mounting (printed surface to printed surface)

Note:

Suitable for most common washing methods except ultrasonic cleaning.

ORDERING INFORMATION

Note: Standard packing; Carton: 20 pcs. Case 200 pcs.

SF3
COIL DATA

Part number	Coil nominal voltage V DC	Operate voltage V DC	Release voltage V DC	Coil resistance $\Omega\left(\pm 10 \%, 20^{\circ} \mathrm{C}\right)$	Coil inductance (mH)
SF3-5V	5	3.75	0.5	50	47
SF3-9V	9	6.75	0.9	162	145
SF3-12V	12	9.00	1.2	288	252
SF3-18V	18	13.50	1.8	648	551
SF3-21V	21	15.75	2.1	882	742
SF3-24V	24	18.00	2.4	1152	959
SF3-36V	36	27.00	3.6	2592	2097
SF3-48V	48	36.00	4.8	4608	3654
SF3-60V	60	45.00	6.0	7200	5612

ELECTRICAL LIFE

Voltage	Current	Load type	Frequency	Duty cycle	No. of contacts	No. of ops.
250V AC	8A	$\cos \varphi=1$	0.33 Hz	50\%	$2{ }^{* 2, *}$	30,000*4,*5
250V AC	6A	$\cos \varphi=1$	0.33 Hz	50\%	$4^{*} 2$	$100,000{ }^{*} 4,{ }^{* 5}$
250V AC	2A	$\cos \varphi=1$	0.33 Hz	50\%	$4^{*}{ }^{2}$	$500,000{ }^{*} 4,{ }^{*} 5$
220V AC	$30 / 3 \mathrm{~A}$	AC $15^{* 1}$	0.10 Hz	10\%	$1{ }^{* 3}$	$200,000{ }^{*} 4,{ }^{*} 5$
220V AC	5.10A	$\cos \varphi=0.60$	0.20 Hz	10\%	$1^{* 3}$	$100,000{ }^{*} 4,{ }^{*} 5$
220 V AC	4.43A	$\cos \varphi=0.35$	0.20 Hz	50\%	$1^{* 3}$	$100,000{ }^{* 4, * 5}$
220V AC	1.45A	$\cos \varphi=0.35$	0.20 Hz	50\%	$1{ }^{* 3}$	$300,000 * 4, * 5$
24 V DC	6A	resistive	0.33 Hz	50\%	$4^{* 2}$	$400,000{ }^{*} 4,{ }^{*} 5$
24 V DC	2A	resistive	0.50 Hz	50\%	$4^{* 2}$	2,000,000*4,*5
24 V DC	3A	DC 13*1	0.33 Hz	10\%	$1{ }^{* 3}$	50,000*4,*5
24 V DC	3A	$\mathrm{L} / \mathrm{R}=40 \mathrm{~ms}$	0.33 Hz	10\%	$1^{* 3}$	100,000*4,*5

*1 EN 60947-5-1: 1997; table C. 1
*2 Breathing hole closed
*3 Breathing hole open

* 4 Ambient temperature $+70^{\circ} \mathrm{C}$
*5 Dielectric strength according to EN61810-1:2004.
* 6 Normally open contacts

REFERENCE DATA

Load limit curve

Loads in the range under the curve can be switched safely. The arc will extinguish before the opposite contact makes.

Coil voltage characteristics

Permissable coil voltages and pick-up and drop-out characteristics at various ambient temperatures.

Connection diagram and pcb bore hole data

The contacts are shown in the deenergized condition.

Contact current characteristics

APPLICATION NOTES

If required a breathing hole can be made in the cover by removing the nipple.
However be aware that the degree of protection will reduce from IP67 to IP30!

For Cautions for Use, see Relay Technical Information (page 582).

POLARIZED, MONOSTABLE

 SAFETY RELAY WITH FORCIBLY GUIDED DOUBLE CONTACTSTolerance $\pm 0.3 \mathrm{~mm}$
Tolerance $\pm 0.3 \mathrm{~mm}$
Weight approx. 47 g

Features

- Relay complies with EN 50205, Type B
- Overvoltage category as per IEC 60664-1 III / 4kV
- Rated voltage as per IEC 60664-1 basic insulation

Coil-contact	inside	2 outside	3 inside
Contact-contactforcibly linked pair only	250 V	250 V	250 V
all other contacts	400 V	400 V	400 V

SPECIFICATIONS

Contact

Contact configuration (a = normally open / NO, $\mathrm{b}=$ normally closed / NC)	4 a 4 b
Contact material	AgSnO_{2}, with Au flash
Contact resistance (initial at 6V DC, 1A)	$\leq 30 \mathrm{~m} \Omega$
Making and breaking capacities (breathing hole open) ${ }^{* 1}$	$6 \mathrm{~A} \mathrm{250V} / 3 \mathrm{~A} \mathrm{24V}$
Max. switching voltage	400 V
Min. switching voltage / min. switching current	$10 \mathrm{~V} / 10 \mathrm{~mA}$
Pick-up / drop-out / bounce time $\left(\right.$ approx. values at $\left.U_{\text {nominal }}\right)$	$18.5 / 7.5 / 3 \mathrm{~ms}$
Mechanical life	$10^{7} \mathrm{ops}$

Coil	
Operate / release voltage (\% of $U_{\text {nominal }}$ at $20^{\circ} \mathrm{C}$)	$75 \% / 15 \%$
Pick-up/nominal power consumption at $20^{\circ} \mathrm{C}$	$280 / 500 \mathrm{~mW}$

Remarks

*1 According to EN 60947-5-1: 1997, table 4 AC15 / DC13
*2 Contact interruption $<10 \mu \mathrm{~s}$
*3 Breathing hole open

Characteristics

Max. switching frequency (without load)	10Hz
Permissible ambient temperature at nominal power consumption	$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Upper temperature limit	$105^{\circ} \mathrm{C}$
Test voltage: open contact / contact-contact / contact-coil	$\begin{gathered} 2500 / 2500 / \\ 2500 \mathrm{~V}_{\mathrm{rms}} \end{gathered}$
Insulation resistance at 500V DC (initial)	$10^{9} \Omega$
Shock resistance (11ms) NO/NC*2	30G
Vibration resistance $10-200 \mathrm{~Hz}(10-55 \mathrm{~Hz}$, amplitude 2 mm$)^{*}{ }^{2}$	10G
Degree of protection	IP67 / IP30*3
Unit weight	47 g

Important: Relay characteristics may be influenced by:

- strong external magnetic fields
- magnetic conductive materials near the relay
- narrow top-to-top mounting (printed surface to printed surface)

Note:

Suitable for most common washing methods except ultrasonic cleaning

ORDERING INFORMATION

Note: Standard packing; Carton: 20 pcs. Case 200 pcs.

COIL DATA

Part number	Coil nominal voltage V DC	Operate voltage V DC	Release voltage V DC	Coil resistance $\Omega\left(\pm 10 \%, 20^{\circ} \mathrm{C}\right)$	Coil inductance (mH)
SF4D-DC5V	5	3.75	0.75	50	47
SF4D-DC9V	9	6.75	1.35	162	145
SF4D-DC12V	12	9.00	1.80	288	252
SF4D-DC18V	18	13.50	2.70	648	551
SF4D-DC21V	21	15.75	3.15	882	742
SF4D-DC24V	24	18.00	3.60	1152	959
SF4D-DC36V	36	27.00	5.40	2592	2097
SF4D-DC48V	48	36.00	7.20	4608	3654
SF4D-DC60V	60	45.00	9.00	7200	5612

ELECTRICAL LIFE

Voltage	Current	Load type	Frequency	Duty cycle	No. of contacts	No. of ops.
230 V AC	8A	AC 1	0.25 Hz	25\%	$4^{*} 2$	85,000*5
250 V AC	6A	AC 1	0.33 Hz	50\%	4^{*} / $8^{* 3}$	100,000*5
230 V AC	6A	AC 1	0.33 Hz	10\%	$2{ }^{*}$	$200,000{ }^{*} 4, * 5$
230V AC	$30 / 3 \mathrm{~A}$	AC $15{ }^{* 1}$	0.33 Hz	10\%	$1^{* 3}$	$200,000 * 4, * 5$
24 V DC	8A	DC 1	0.33 Hz	10\%	$2 * 3$	200,000*4,*5
24V DC	3A	DC 13*1	0.33 Hz	10\%	$1{ }^{* 3}$	50,000*4,*5
24V DC	3A	L/R = 40ms	0.33 Hz	10\%	$1{ }^{* 3}$	$100,000{ }^{*} 4,{ }^{*}$

*1 EN 60947-5-1: 1997; table C. 1
*2 Breathing hole closed
*3 Breathing hole open
*4 Ambient temperature $+70^{\circ} \mathrm{C}$
*5 Dielectric strength according to EN61810-1:2004

REFERENCE DATA

Load limit curve

Loads in the range under the curve can be switched safely. The arc will extinguish before the opposite contact makes.

Coil voltage characteristics

Permissable coil voltages and pick-up and drop-out characteristics at various ambient temperatures.

Connection diagram and pcb bore hole data

Contact current characteristics

APPLICATION NOTES

If required a breathing hole can be made in the cover by removing the nipple.
However be aware that the degree of protection will reduce from IP67 to IP30!
Operation of forcibly guided contacts, Type B
If an outer contact should weld, then the forced operated inner contacts driven by the actuator remain open.
The rotating armature remains free to move.
The unaffected contact pairs can operate normally, i.e. their function to make or break remains unaffected.

If an inner contact should weld, then the movement of the rotating armature is blocked via the actuator.
Open contacts of all four contact pairs remain open.
This arrangement corresponds to a conventional forcibly guided contact operation.

For Cautions for Use, see Relay Technical Information (page 582).

US

LOW PROFILE

 SAFETY RELAY WITH FORCIBLY GUIDED DOUBLE CONTACTS

Features

- Relay complies with EN 50205, Type B
- Polarized magnet system with snap action function
- Extremely small total power loss
- Nominal coil power consumption of 390 mW
- Double contacts with low contact resistance, e.g. $\left[(6 \mathrm{~A})^{2} \times 2.5 \mathrm{~m} \Omega\right] \times 4 \mathrm{NO}=360 \mathrm{~mW}$
- Relay height, 14.5 mm
- Reinforced insulation according to EN 50178
- between coil-contacts and contacts-contacts
- rated voltage of the circuits 230 / 400 V or 277 / 480Vrms - rated impulse voltage of $6 \mathrm{kV} \rightarrow$ clearance $\geq 5.5 \mathrm{~mm}$ - pollution degree $2 \rightarrow$ creepage distance $\geq 5.5 \mathrm{~mm}$

SPECIFICATIONS

Contact	
Contact configuration (a = normally open / NO, $\mathrm{b}=$ normally closed / NC)	4 a 2 b
Contact material	AgSnO_{2}, with Au flash
Contact resistance (initial at 6V DC, 1A) Typical contact resistance	$\leq 30 \mathrm{~m} \Omega$
Max. switching capacity	$2.5 \mathrm{~m} \Omega$
Max. switching voltage	$6 \mathrm{~A} / 8 \mathrm{~A}^{* 1} 250 \mathrm{~V} \mathrm{AC}$
Min. switching voltage / min. switching current	Reference $10 \mathrm{~V} / 10 \mathrm{~mA}$
Pick-up / drop-out / bounce time (approx. values at Unominal $)$	$23 / 6^{* 2} / 2 \mathrm{~ms}$
Mechanical life	$10^{7} \mathrm{ops}$

Coil

Operate / release and holding at $20^{\circ} \mathrm{C}\left(\% \text { of } U_{\text {nominal }}\right)^{* 3}$	$75 \% / 25 \%$ min. 48%
Pick-up/nominal power consumption	$219-236 / 390-420 \mathrm{~mW}$

Characteristics

Max. switching frequency (without load)	5 Hz
Permissible ambient temperature at nominal power consumption ${ }^{*}$	$-25^{\circ} \mathrm{C}$ to $92^{\circ} \mathrm{C}$
Upper temperature limit	$105^{\circ} \mathrm{C}$
Test voltage: open contact / contact-contact / contact-coil	$2500 / 4000 /$ $5000 \mathrm{~V}_{\text {rms }}$
Insulation resistance at $500 \mathrm{~V} \mathrm{DC} \mathrm{(initial)}$	$10^{9} \Omega$
Shock resistance (11ms) NO/NC*4	$20 / 15 \mathrm{G}$
Vibration resistance $10-200 ~ \mathrm{~Hz} \mathrm{(10} \mathrm{-} 55 \mathrm{~Hz}$, amplitude 2 mm)	
Degree of protection	10 G
Unit weight	RT III ${ }^{*} 5$

Important: Relay characteristics may be influenced by:

- strong external magnetic fields
- magnetic conductive materials near the relay
- narrow top-to-top mounting (printed surface to printed surface)
1 See "ELECTRICAL LIFE (Reference Data) ${ }^{}$ "" on page 564.
*2 Without diode
*3 See also "REFERENCE DATA" on page 565.
*4 Contact interruption <10 $\mu \mathrm{s}$
*5 According to EN 61810-1: 2004, table 2

ORDERING INFORMATION

Notes: 1) Standard packing; Tube: 10 pcs. Case 100 pcs.
2) Other coil voltage available upon request

COIL DATA (at $20^{\circ} \mathrm{C}$)

Part number	Coil nominal voltage V DC	Operate voltage*1 V DC	Release voltage*1 V DC	Coil resistance $\Omega\left(\pm 10 \%, 20^{\circ} \mathrm{C}\right)$
SFN4D-DC5V	5	3.75	1.25	64.1
SFN4D-DC9V	9	6.75	2.25	207.7
SFN4D-DC12V	12	9.00	3.00	369.2
SFN4D-DC16V	16	12.00	4.00	656.4
SFN4D-DC18V	18	13.5	4.50	830.8
SFN4D-DC21V	21	15.75	5.25	1130.8
SFN4D-DC24V	24	18.00	6.00	1476.9
SFN4D-DC36V	36	27.00	9.00	3085.7
SFN4D-DC48V	48	36.00	12.00	5485.7
SFN4D-DC60V	60	45.00	15.00	8571.4

*1 Operate and release voltage at different temperatures, see "REFERENCE DATA" on page 565, coil voltage characteristics.

SWITCHING CAPABILITY

- Making / breaking capacities according to EN 60947-5-1: 2000, table 4 / 5; AC15: 6A 230V AC / DC13: 6A 24V DC
- Endurance / overload test according to UL 50816 edition, sections 42 / 43; 6A 250V AC / 6A 24V DC; B300 / R300; File E120782

ELECTRICAL LIFE (Reference Data) ${ }^{* 1}$

Voltage	Current (A)	Load type	Frequency	Duty cycle	No. of contacts	No. of ops.
230 V AC	8	AC 1	0.25 Hz	25%	4	85,000
230 V AC	6	AC 1	0.25 Hz	25%	4	200,000
230 V AC	2.5	AC 1	0.25 Hz	25%	4	$1,500,000$
230 V AC	$60 / 6$	AC 15	0.20 Hz	20%	3	40,000
24 V DC	6	DC 1	0.25 Hz	25%	4	$2,000,000$
250 V DC	0.27	DC 13	0.10 Hz	10%	4	$>1,000,000^{2}$

*1 Test conditions: Room temperature, breathing hole closed, dielectric strength according to EN61810-1:2004.
*2 Has to be confirmed

DIMENSIONS

Outer dimensions

General tolerance: ± 0.3
Projection mode: (0)

Schematic (Bottom view)

PC board pattern (Bottom view)

Coil voltage characteristics

Thermic operating range

Switching time in relation to coil excitement at $20^{\circ} \mathrm{C}$

REFERENCE DATA, continued

Load limit curve

Time / current characteristic

APPLICATION NOTES

The SFN4D Safety Relay

Remark:
Only NC 5-6 monitors
all NO contacts!

Legend for interpreting contact conditions

Contact	NC (Normally Closed)					NO (Normally Open)		
Condition	Closed	Fully open	Open	Open or closed	Closed	Fully open	Open	Open or closed
Symbol								

The SFN4D under normal operating conditions

Condition	Illustration of Relay State	Condition of Contacts
- Coil deenergized.		
- Armature in deenergized		
position.		
- NC contacts closed.		
- NO contacts have a contact		
gap of approx. 1.5mm.		

The SFN4D safety relay with welded contacts

Condition	Illustration of Relay State	Condition of Contacts	
- NC 5-6 welded. - Coil energized. - Armature nearly in deenergized position.			- All NO contacts are forcibly guided. - The NO contact gaps are min .0 .5 mm . - For NC 16-15, the contact condition is not defined.
- NC 16-15 welded. - Coil energized. - Armature nearly in deenergized position.			- All NO contacts are forcibly guided. - The NO contact gaps are min .0 .5 mm . - For NC 5-6, the contact condition is not defined.
- NO 12-11 welded. - Coil deenergized. - Armature nearly in energized position.			- All (both) NC contacts are forcibly guided. - The NC contact gaps are min. 0.5 mm . - For all NO contacts, the contact condition is not defined.
- NO 14-13 welded. - Coil deenergized. - Armature in nearly energized position.			- All (both) NC contacts are forcibly guided. - The NC contact gaps are min. 0.5 mm . - For all NO contacts, the contact condition is not defined.
- NO 7-8 welded. - Coil deenergized. - Armature in deenergized position.			- NC 16-15 is closed!! - All non-welded NO contacts show their max. contact gap. - NC 5-6 forcibly guided to the welded contact by sub card 1. The contact gap is min. 0.5 mm .
- NO 9-10 welded. - Coil deenergized. - Armature in deenergized position.			- NC 16-15 is closed!! - All non-welded NO contacts show their max. contact gap. - NC 5-6 forcibly guided to the welded contact by sub card 2 . The contact gap is min. 0.5 mm .

Failure modes, application examples

1) Feedback loop, 2) Self-holding circuit, 3) Safety circuit, 4) Auxilliary contacts

1. Self-holding circuit, three safety circuits

Condition of contacts at deenergized coil
2.1. Four safety circuits

(see wiring example, p. 570)
One contact welded, e.g. NO 9-10 of K1.
2.2. Two safety circuits

(see wiring example, p. 570)

Both contacts of one path are welded, e.g. NO 7-8 and NO 14-13.

A safety circuit needs two paths in this failure mode. The contacts $9-10,12-11$, and 14-13 of K1 interrupt the load.

Both contacts of one path are welded, e.g. NO 9-10 and NO 12-11.

A safety circuit needs two paths in this failure mode. The contacts 7-8, 12-11, and 14-13 of K1 interrupt the load.

Wiring for application examples 2.1 and 2.2

For Cautions for Use, see Relay Technical Information (page 582).

Panasonic ideas for life

SLIM COMPACT SAFETY RELAY

FEATURES

- Forcibly guide contact structure (EN50205 ClassA TÜV recognized)
- Slim profile (mm inch)

Compact size with slim profile relay reduces substrate size.
[4-pole type]40 (L) $\times 13(\mathrm{~W}) \times 24(\mathrm{H})$ 1.575 (L)×. 512 (W) $\times .945(\mathrm{H})$ [6-pole type]50 (L) $\times 13(\mathrm{~W}) \times 24(\mathrm{H})$ 1.969 (L) $\times .512$ (W) $\times .945(\mathrm{H})$

- Built-in LED indication type available Built-in LED eliminates need for design and mounting of separate LED circuit. This cuts costs and saves labor.
- Fast response time is achieved (8 ms or less).
Circuit is quickly opened to ensure safety.
- High shock resistance (Functional: Min. $200 \mathrm{~m} / \mathrm{s}^{2}$)
Improved anti-shock properties meaning that the relay can be safely used in high shock and vibration environments such as in machine tools and other factory equipment.
- PC board sockets also available (4 and 6-poles)
- Lineup also includes DIN terminal socket with finger protect construction. (4 and 6-poles)

TYPICAL APPLICATIONS

- Machine tools
- Robots
- Safety PLCs
- Circuits with stringent safety standard requirements such as those in motor vehicle production equipment.

SPECIFICATIONS

Contact

Item		4 poles	6 poles
Contact arrangement		2 Form A/2 Form B 3 Form A/1 Form B	4 Form A/2 Form B 5 Form A/1 Form B 3 Form A/3 Form B
Initial contact resistance, max. (By voltage drop 6 V DC 1 A)		$100 \mathrm{~m} \Omega$	
Contact material		Gold-flashed AgSnO_{2} type	
Rating (resistive load)	Nominal switching capacity	6 A 250 V AC, 6 A 30 V DC	
	Max. switching power	1,500 VA, 180 W	
	Max. switching voltage	250 V AC, 30 V DC	
	Max. switching current	6 A (Reduce by $0.1 \mathrm{~A} /{ }^{\circ} \mathrm{C}$ for temperatures 70 to $85^{\circ} \mathrm{C}$.)	
	Min. switching capacity (Reference value) \#1	1 mA 5 V DC	
Expected life (min. operations)	Mechanical (at 180 cpm)	10^{7}	
	Electrical	250 V AC 6 A resistive load: 10^{5} (at 20 cpm)	
		30 V DC 6 A resistive load: 10^{5} (at 20 cpm)	
		250 V AC 1 A resistive load: 5×10^{5} (at 30 cpm)	
		30 V DC 1 A resistive load: 5×10^{5} (at 30 cpm)	
		[AC 15] 240 V AC 2 A inductive load: 10^{5} (at $20 \mathrm{cpm}, \cos \phi=0.3$)	
		[DC 13] 24 V DC 1 A inductive load: 10^{5} (at $20 \mathrm{cpm}, \mathrm{L} / \mathrm{R}=48 \mathrm{~ms}$)	

[^50]
Coil

	4 poles	6 6oles
	2 Form A/2 Form B	4 Form A/2 Form B
	3 Form A/1 Form B	5 Form A/1 Form B
	360 mW	3 Form A/3 Form B
Nominal operating power	500 mW	

Item		4 poles	6 poles
		2 Form A/2 Form B 3 Form A/1 Form B	4 Form A/2 Form B 5 Form A/1 Form B 3 Form A/3 Form B
Max. operating speed		20 cpm (at nominal voltage)	
Initial insulation resistance*1		Min. 1,000 M 2 at 500 V DC	
Initial breakdown voltage*2	Between open contacts	1,500 Vrms for 1 min .	
	Between contact sets	2,500 Vrms for 1 min.: 7-8/9-10 between open contacts	2,500 Vrms for 1 min.: 7-8/11-12 between open contacts 9-10/13-14 between open contacts 11-12/13-14 between open contacts
		4,000 Vrms for 1 min .: 3-4/5-6 between open contacts 3-4/7-8 between open contacts 5-6/9-10 between open contacts	4,000 Vrms for 1 min .: 3-4/5-6 between open contacts 3-4/7-8 between open contacts 5-6/9-10 between open contacts 7-8/9-10 between open contacts
	Between contact and coil	4,000 Vrms for 1 min .	
Operate time (at nominal voltage)		Max. $20 \mathrm{~ms}^{* 3}$	
Response time*4 (without diode) (at nominal voltage)		Max. 8 ms*3	
Release time (without diode) (at nominal voltage)		Max. $20 \mathrm{~ms}^{* 3}$	
Shock resistance	Functional* ${ }^{*}$	Min. $200 \mathrm{~m} / \mathrm{s}^{2}$	
	Destructive*6	Min. 1,000 m/s ${ }^{2}$	
Vibration resistance	Functional ${ }^{* 7}$	10 to 55 Hz at double amplitude of 1.5 mm	
	Destructive	10 to 55 Hz at double amplitude of 1.5 mm	
Conditions for operation, transport and storage*8 (Not freezing and condensing at low temperature)	Ambient temp.	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+185^{\circ} \mathrm{F}$	
	Humidity	5 to 85\% R.H.	
Unit weight		Approx. 20 g Approx. 71 oz	Approx. 23 g Approx. 81 oz

- Outline of performance [Socket for PC board/DIN terminal socket]

Max. carrying current	6 A (Reduce by $0.1 \mathrm{~A} /{ }^{\circ} \mathrm{C}$ for temperatures 70 to $\left.85^{\circ} \mathrm{C}.\right)$
Initial breakdown voltage	Between each terminal: 2,500 Vrms for 1 min. (Detection current: 10 mA)
Initial insulation resistance ${ }^{*_{1}}$	Min. $1,000 \mathrm{M} \Omega$ at 500 V DC

${ }^{* 1}$ Measurement at same location as "Initial breakdown voltage" section

Remarks

${ }^{*}$. Measurement at same location as "Initial breakdown voltage" section
${ }^{*}$ 2 Detection current: 10 mA
${ }^{*}$ Excluding contact bounce time
${ }^{*}$ Response time is the time after the coil voltage turns off until the time when "a" contact turns off
${ }^{*}$ Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$
${ }^{* 6}$ Half-wave pulse of sine wave: 6 ms
${ }^{4} 7$ Detection time: $10 \mu \mathrm{~s}$
*8 Refer to "NOTES" on page 579, 7. Usage, transport and storage conditions.

ORDERING INFORMATION

Product name	Contact arrangement	Operation indication	Coil voltage
Slim type	2: 2 Form A/2 Form B 3: 3 Form A/1 Form B 4: 4 Form A/2 Form B 5: 5 Form A/1 Form B 6: 3 Form A/3 Form B	Nil: Without LED indication L: With LED indication	$\begin{aligned} & \mathrm{DC} 12,16,18, \\ & 21,24,48 \mathrm{~V} \end{aligned}$

Note: Standard packing: Carton 50 pcs. Case 200 pcs. (Accessories: Carton 10 pcs. Case 100 pcs.) Please inquire about other coil voltages.

TYPES

Contact arrangement		Nominal voltage	Without LED indication	With LED indication	
		Part No.	Part No.		
4 poles	2 Form A/2 Form B		12 V DC	SFS2-DC12V	SFS2-L-DC12V
		16 V DC	SFS2-DC16V	SFS2-L-DC16V	
		18 V DC	SFS2-DC18V	SFS2-L-DC18V	
		21 V DC	SFS2-DC21V	SFS2-L-DC21V	
		24 V DC	SFS2-DC24V	SFS2-L-DC24V	
		48 V DC	SFS2-DC48V	SFS2-L-DC48V	
	3 Form A/1 Form B	12 V DC	SFS3-DC12V	SFS3-L-DC12V	
		16 V DC	SFS3-DC16V	SFS3-L-DC16V	
		18 V DC	SFS3-DC18V	SFS3-L-DC18V	
		21 VDC	SFS3-DC21V	SFS3-L-DC21V	
		24 V DC	SFS3-DC24V	SFS3-L-DC24V	
		48 V DC	SFS3-DC48V	SFS3-L-DC48V	
6 poles	4 Form A/2 Form B	12 V DC	SFS4-DC12V	SFS4-L-DC12V	
		16 V DC	SFS4-DC16V	SFS4-L-DC16V	
		18 V DC	SFS4-DC18V	SFS4-L-DC18V	
		21 V DC	SFS4-DC21V	SFS4-L-DC21V	
		24 V DC	SFS4-DC24V	SFS4-L-DC24V	
		48 V DC	SFS4-DC48V	SFS4-L-DC48V	
	5 Form A/1 Form B	12 V DC	SFS5-DC12V	SFS5-L-DC12V	
		16 V DC	SFS5-DC16V	SFS5-L-DC16V	
		18 V DC	SFS5-DC18V	SFS5-L-DC18V	
		21 V DC	SFS5-DC21V	SFS5-L-DC21V	
		24 V DC	SFS5-DC24V	SFS5-L-DC24V	
		48 V DC	SFS5-DC48V	SFS5-L-DC48V	
	3 Form A/3 Form B	12 V DC	SFS6-DC12V	SFS6-L-DC12V	
		16 V DC	SFS6-DC16V	SFS6-L-DC16V	
		18 V DC	SFS6-DC18V	SFS6-L-DC18V	
		21 VDC	SFS6-DC21V	SFS6-L-DC21V	
		24 V DC	SFS6-DC24V	SFS6-L-DC24V	
		48 V DC	SFS6-DC48V	SFS6-L-DC48V	

2. Accessories

Type	No. of poles	Part No.
PC board sockets	4 poles	SFS4-PS
	6 poles	SFS6-PS
DIN terminal socket	4 poles	SFS4-SFD
	6 poles	SFS6-SFD

COIL DATA (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)

Contact arrangement		Nominal voltage, V DC	Pick-up voltage, V DC (max.) (initial)	Drop-out voltage, V DC (min.) (initial)	Nominal operating current, mA $(\pm 10 \%)$	Coil resistance $\Omega(\pm 10 \%)$	Nominal operating power, mW	Max. allowable voltage, V DC
4 poles	2 Form A/2 Form B	12	9	1.2	30	400	Approx. 360	13.2
		16	12	1.6	22.5	711		17.6
		18	13.5	1.8	20	900		19.8
		21	15.75	2.1	17.1	1,225		23.1
		24	18	2.4	15	1,600		26.4
		48	36	4.8	7.5	6,400		52.8
	3 Form A/1 Form B	12	9	1.2	30	400		13.2
		16	12	1.6	22.5	711		17.6
		18	13.5	1.8	20	900		19.8
		21	15.75	2.1	17.1	1,225		23.1
		24	18	2.4	15	1,600		26.4
		48	36	4.8	7.5	6,400		52.8
6 poles	4 Form A/2 Form B	12	9	1.2	41.7	288	Approx. 500	13.2
		16	12	1.6	31.3	512		17.6
		18	13.5	1.8	27.8	648		19.8
		21	15.75	2.1	23.8	882		23.1
		24	18	2.4	20.8	1,152		26.4
		48	36	4.8	10.4	4,608		52.8
	5 Form A/1 Form B	12	9	1.2	41.7	288		13.2
		16	12	1.6	31.3	512		17.6
		18	13.5	1.8	27.8	648		19.8
		21	15.75	2.1	23.8	882		23.1
		24	18	2.4	20.8	1,152		26.4
		48	36	4.8	10.4	4,608		52.8
	3 Form A/3 Form B	12	9	1.2	41.7	288		13.2
		16	12	1.6	31.3	512		17.6
		18	13.5	1.8	27.8	648		19.8
		21	15.75	2.1	23.8	882		23.1
		24	18	2.4	20.8	1,152		26.4
		48	36	4.8	10.4	4,608		52.8

Note: The nominal operating current of the LED indication type increases approximately 2 mA because of the light emitting diode display.

1. 4 poles (2 Form A/2 Form B, 3 FormA/1 Form B)

Schematic (Bottom view)

Standard

(2 FormA/2 Form B)

With LED indication

(2 FormA/2 Form B)

(3 FormA/1 Form B)

(3 FormA/1 Form B)
2. 6 poles (4 Form A/2 Form B, 5 FormA/1 Form B, 3 Form A/3 Form B)

Schematic (Bottom view)

Standard

With LED indication

(4 Form A/2 Form B)

(4 Form A/2 Form B)

(5 FormA/1 Form B)

(5 FormA/1 Form B)

(3 Form A/3 Form B)

(3 Form A/3 Form B)

Schematic (Bottom view)

Standard

(When 2 FormA/2 Form B mounted)

With LED indication

(When 2 FormA/2 Form B mounted)

(When 3 FormA/1 Form B mounted)

(When 3 FormA/1 Form B mounted)
4. PC board sockets (6 poles)

General tolerance: $\pm 0.3 \pm .012$
Schematic (Bottom view)

Standard

(When 4 Form A/2 Form B mounted)

With LED indication

(When 5 FormA/1 Form B mounted)

(When 5 FormA/1 Form B mounted)

(When 3 Form A/3 Form B mounted)

(When 3 Form A/3 Form B mounted)

6. DIN terminal socket (6 poles)

Note: Round terminals cannot be used with DIN terminal sockets.

REFERENCE DATA

1. Operate/response/release time

Sample: SFS4-DC24V (4 Form A/2 Form B)
Quantity: $\mathrm{n}=20$ (a contacts: $80, \mathrm{~b}$ contacts: 40)

2. Coil temperature rise

Sample: SFS4-DC24V (4 Form A/2 Form B)
Quantity: n = 3
Measured portion: Inside the coil
Ambient temperature: Room temperature
$\left(27^{\circ} \mathrm{C} 80.6^{\circ} \mathrm{F}\right), 70^{\circ} \mathrm{C} 158^{\circ} \mathrm{F}, 85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$

3. Malfunctional shock

Sample: SFS4-DC24V (4 Form A/2 Form B)
Quantity: $\mathrm{n}=3$

4. Max, switching capacity
(2 Form A/2 Form B type)

Other contact gaps when contacts are welded

Sample: SFS4-DC24V (4 Form A/2 Form B)
The table below shows the state of the other contacts.
In case of form "NO" contact weld the coil applied voltage is 0 V .
In case of form "NC" contact weld the coil applied voltage is nominal.

		State of other contacts					
		3-4 (NC)	5-6 (NC)	7-8 (NO)	9-10 (NO)	11-12 (NO)	13-14 (NO)
Welded contact No.	3-4 (NC)	-		>0.5	>0.5	>0.5	>0.5
	5-6 (NC)			>0.5	>0.5	>0.5	>0.5
	7-8 (NO)	>0.5	>0.5				
	9-10 (NO)	>0.5	>0.5				
	11-12 (NO)	>0.5	>0.5			-	
	13-14 (NO)	>0.5	>0.5				-

>0.5 : contact gap is kept at min. 0.5 mm .020 inch
Empty cells: either ON or OFF
Note: Contact gaps are shown at the initial state.
If the contact transfer is caused by load switching, it is necessary to check the actual loading.

NOTES

1. Coil operating power

Pure DC current should be applied to the coil. The wave form should be rectangular. If it includes ripple, the ripple factor should be less than 5%. However, check it with the actual circuit since the characteristics may be slightly different.

2. Coil connection

When connecting coils, refer to the wiring diagram to prevent mis-operation or malfunction.

3. Cleaning

This relay is not sealed, therefore, immersion may cause failure. Be careful that flux does not overflow onto the PC board or penetrate inside the relay.

4. Soldering

When using automatic soldering, the following conditions are recommended

1) Preheating: $120^{\circ} \mathrm{C} 248^{\circ} \mathrm{F}$, within 120 s max (PC board solder surface).
2) Soldering: $260^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C} 500^{\circ} \mathrm{F} \pm 41^{\circ} \mathrm{F}$, within 6 s max.

5. Attach directly to the chassis or use a

 DIN rail.(1) When attaching directly to chassis

- Use a M3.5 screw, spring washer, and hex nut.
- For the mounting pitch, refer to the dimensions.
(2) When installing on a DIN rail
- Use a 35 mm 1.378 inch wide DIN rail (DIN46277).
- Install and remove as shown in the figures below.
<When installing>

<When removing>

2) Refer to the figure below for applicable wire-pressed terminals.
(You cannot use round type wire-pressed terminals.)

6. Other

1) If the relay has been dropped, the appearance and characteristics should always be checked before use.
2) The switching lifetime is defined under the standard test condition specified in the JIS* C 5442-1996 standard (temperature 15 to $35^{\circ} \mathrm{C} 59$ to $95^{\circ} \mathrm{F}$, humidity 25 to 75%). Check this with the actual product as it is affected by the coil driving circuit, load type, activation frequency, activation phase, ambient conditions and other factors. Also, be especially careful with loads such as those listed below.
(1) When used for AC load-operation and the operating phase is synchronous.
Rocking and fusing can easily occur due to contact shifting.
(2) During high frequency on/off operation with certain loads, arcing may occur at the contacts. This can cause fusion to Oxygen and Nitrogen gas in the air creating Nitric Acid $\left(\mathrm{HNO}_{3}\right)$ which can cause corrosion to the contacts.
Please see the following countermeasure examples:
1. Incorporate an arc-extinguishing circuit.
2. Lower the operating frequency
3. Lower the ambient humidity
3) For secure operations, nominal coil voltage should be applied. In addition, please note that pick-up and drop-out voltage will vary according to the ambient temperature and operating conditions.
4) Heat, smoke, and/or fire may occur if the relay is used outside the allowable ranges for the coil ratings, contact ratings, operating cycle lifetime, and other specifications. Therefore, do not use the relay if these ratings are exceeded. Also, make sure that the relay is wired correctly. 5) Incorrect wiring may cause false operation or generate heat or flames.
5) Check the ambient conditions when storing or transporting the relays and devices containing the relays. Freezing or condensation may occur in the relay causing damage. Avoid exposing the relays to heavy loads, or strong shock and vibration.

7. Usage, transport and storage conditions

1) Ambient temperature, humidity, and atmospheric pressure during usage, transport, and storage of the relay:
(1) Temperature:
-40 to $+85^{\circ} \mathrm{C}-40$ to $+185^{\circ} \mathrm{F}$
(When the temperature is 70 to $80^{\circ} \mathrm{C}$, reduce the 6 A max. switching current by $0.1 \mathrm{~A} /{ }^{\circ} \mathrm{C}$.)
(2) Humidity: 5 to 85% RH
(Avoid freezing and condensation.) The humidity range varies with the temperature. Use within the range indicated in the graph below.

(3) Atmospheric pressure: 86 to 106 kPa Temperature and humidity range for usage, transport, and storage
2) Condensation

Condensation forms when there is a sudden change in temperature under high temperature and high humidity conditions. Condensation will cause deterioration of the relay insulation.
3) Freezing

Condensation or other moisture may freeze on the relay when the temperatures is lower than $0^{\circ} \mathrm{C} 32^{\circ} \mathrm{F}$. This causes problems such as sticking of movable parts or operational time lags.
4) At low temperature, low humidity environments, the plastic becomes brittle. Please note corrections.

Relay Technical Information

CONFIGURATION AND CONSTRUCTION

PROTECTIVE CONSTRUCTION

1. Dust Cover Type

To protect from dust, these types are covered, for example, with a plastic case. We recommend hand soldering, because these relays are not constructed to prevent flux and cleaning fluid from entering during automatic soldering.

2. Flux-Resistant Type

The relay is constructed so that flux will not enter inside the relay during automatic soldering. However, cleaning is not possible.

3. Sealed Type

Construction is designed to prevent seeping of flux when soldering and
cleaning fluid when cleaning. Harmful substances on the contacts are removed by gas purging before sealing with.

4. Sealed capsule type

This type is hermetically sealed with ceramic and metal plating. No harmful gas or humidity will ever reach the contacts. This type cannot be washed.

CONSTRUCTION AND CHARACTERISTIC

$\left.\begin{array}{l|l|l|l|l|l|l|l|l}\hline \text { Type } & \text { Construction } & \text { Characteristics } & \begin{array}{l}\text { Automatic } \\ \text { Soldering }\end{array} & \begin{array}{l}\text { Automatic } \\ \text { Cleaning }\end{array} & \begin{array}{l}\text { Dust } \\ \text { Resistance }\end{array} \\ \text { Dust Cover Type } \\ \text { Resistance }\end{array}\right]$

OPERATIONAL FUNCTION

1. Single Side Stable Type

Relay which turns on when the coil is energized and turns off when deenergized.

(Schematic example: DS relay)

2. 1 Coil Latching Type

Relay with latching construction that can maintain the on or off state with a pulse input. With one coil, the relay is set or
reset by applying signals of opposite polarities.

3. 2 Coil Latching Type

Relay with latching construction composed of 2 coils: set coil and reset coil. The relay is set or reset by alternately applying pulse signals of the
same polarity. The HC latching (keep) relay also has the same function.

4. Operation Indication

Indicates the set and reset states either electrically or mechanically for easy maintenance. An LED type (HC relay with LED), lamp type (HP relay with lamp), and a mechanical display type (HC latching (keep) relay) in which the display
panel moves using the movement of the armature, are available.

TERMINAL CONFIGURATION

Type	PC board through hole terminal	PC board self-clinching terminal	Plug-in terminal	Quick connect terminal	Screw terminal
Typical relay					
Terminal configuration					
Typical relay type	GQ(AGQ), TX, DS relay	TQ, TX, TN relay	HJ, HN, HP relay	JC, JM relay	HE, EP relay

Note:
A plug-in solder dual type (HG relay) is also available.

MOUNTING METHOD

Type	Insertion mount	Socket mount	Terminal socket mount	TM type	TMP type
Mounting configuration					
Typical relay type	TQ, DS, S relay	NC, HC relay	SP-, HC-, HJ-, HL-, HP-, HG-, JW-, SFS-Relays	HC, JC relay	LE, LF relay

Notes:

- Sockets are available for certain PC board relays (S relay, ST relay).
- M type (solder type) for direct screw mounting of case is also available. (HG relay)

COIL (also referred to as primary or input)

1. Coil Designation

Single side stable type		1 coil latching type	2 coil latching type	
Non-polarized	Polarized		4-terminal	3-terminal
	\square_{0}^{+}	${ }^{0-}$		

A black coil represents the energized state. For latching relays, schematic diagrams generally show the coil in its reset state. Therefore, the coil symbol is also shown for the reset coil in its reset state.

2. Nominal Coil Voltage

(Rated Coil Voltage)
A single value (or narrow range) of source voltage intended by design to be applied to the coil or input.

3. Nominal Operating Current

The value of current flow in the coil when nominal voltage is impressed on the coil.

4. Nominal Operating Power

The value of power used by the coil at nominal voltage. For DC coils expressed in watts; AC expressed as volt amperes. Nominal Power (W or VA) = Nominal Voltage \times Nominal Current.

5. Coil Resistance

This is the DC resistance of the coil in DC type relays for the temperature conditions listed in the catalog. (Note that for certain types of relays, the DC resistance may be for temperatures other than the standard $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$.)

6. Pick-Up Voltage

(Pull-In Voltage or Must Operate Voltage)

As the voltage on an unoperated relay is increased, the value at or below which all contacts must function (transfer).

7. Drop-Out Voltage

(Release or Must Release Voltage)
As the voltage on an operated relay is decreased, the value at or above which all contacts must revert to their unoperated position.

8. Maximum Continuous Voltage

The maximum voltage that can be applied continuously to the coil without causing damage. Short duration spikes of a higher voltage may be tolerable, but this should not be assumed without first checking with the manufacturer.

CONTACTS (secondary or output)

1. Contact Forms

Denotes the contact mechanism and number of contacts in the contact circuit.

2. Contact Symbols

Form A contacts (normally open contacts)	
Form B contacts (normally closed contacts)	\bigcirc
Form C contacts (changeover contacts)	

Form A contacts are also called N.O. contacts or make contacts.
Form B contacts are also called N.C. contacts or break contacts.
Form C contacts are also called changeover contacts or transfer contacts.

3. MBB Contacts

Abbreviation for make-before-break contacts. Contact mechanism where Form A contacts (normally open contacts) close before Form B contacts open (normally closed contacts).

4. Rated Switching Power

The design value in watts (DC) or volt amperes (AC) which can safely be
switched by the contacts. This value is the product of switching voltage x switching current, and will be lower than the maximum voltage and maximum current product.

5. Maximum Switching Voltage

The maximum open circuit voltage which can safely be switched by the contacts. $A C$ and $D C$ voltage maximums will differ in most cases.

6. Maximum Switching Current

The maximum current which can safely be switched by the contacts. AC and DC current maximums may differ.

7. Maximum Switching Power

The upper limit of power which can be switched by the contacts. Care should be taken not to exceed this value.

8. Maximum Switching Capacity

This is listed in the data column for each type of relay as the maximum value of the contact capacity and is an interrelationship of the maximum switching power, maximum switching voltage, and maximum switching current. The switching current and switching voltage can be obtained from this graph.

For example, if the switching voltage is fixed in a certain application, the maximum switching current can be obtained from the intersection between the voltage on the axis and the maximum switching power.

Maximum switching capacity

Example: Using TX relay at a switching voltage of $60 \mathrm{~V} D C$, the maximum switching current is 1 A .
(*Maximum switching capacity is given for a resistive load. Be sure to carefully check the actual load before use.)

9. Minimum switching capability

This value is a guideline as to the lowest possible level at which it will be possible for a low level load to allow switching. The level of reliability of this value depends on switching frequency, ambient conditions, change in the desired contact resistance, and the absolute value. Please use a relay with AgPd contacts if your needs analog low level loads, control, or a contact resistance of 100 $\mathrm{m} \Omega$ or less.

We recommend that you verify with one of our sales offices regarding usage.

10.Contact Resistance

This value is the combined resistance of the resistance when the contacts are touching each other, the resistance of the terminals and contact spring. The contact resistance is measured using the
voltage-drop method as shown below. The measuring currents are designated.

Ⓐ):Ammeter (ㄱ): Voltmeter ®®):Variable resistor

Test Currents

Rated Contact Current or Switching Current (A)	Test Current (mA)
Less than 0.01	1
0.01 or more and less than 0.1	10
0.1 or more and less than 1	100
1 or more	1,000

The resistance can be measured with reasonable accuracy on a YHP 4328A milliohmmeter.

In general, for relays with a contact rating of 1 A or more, measure using the voltage-drop method at 1A 6V DC.

11.Maximum Carrying Current

The maximum current which after closing or prior to opening, the contacts can safely pass without being subject to temperature rise in excess of their design limit, or the design limit of other temperature sensitive components in the relay (coil, springs, insulation, etc.). This value is usually in excess of the maximum switching current.

12.Capacitance

This value is measured between the terminals at 1 kHz and $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$

ELECTRICAL PERFORMANCE

1. Insulation Resistance

The resistance value between all mutually isolated conducting sections of the relay, i.e. between coil and contacts, across open contacts and between coil or contacts to any core or frame at ground potential. This value is usually expressed as "initial insulation resistance" and may decrease with time, due to material degradation and the accumulation of contaminants.

- Between coil and contacts
- Between open contacts
- Between contact sets
- Between set coil and reset coil

2. Breakdown Voltage

(Hi-Pot or Dielectric Strength)
The maximum voltage which can be tolerated by the relay without damage for a specified period of time, usually measured at the same points as insulation resistance. Usually the stated value is in VAC (RMS) for one minute duration.

3. Surge Breakdown Voltage

The ability of the device to withstand an abnormal externally produced power surge, as in a lightning strike, or other phenomenon. An impulse test waveform
is usually specified, indicating rise time, peak value and fall time.

4. Operate Time (Set Time)

The elapsed time from the initial application of power to the coil, until the closure of the Form A (normally open) contacts. (With multiple pole devices the time until the last contact closes.) This time does not include any bounce time.

5. Release Time (Reset Time)

The elapsed time from the initial removal of coil power until the reclosure of the Form B (normally closed) contacts (last contact with multi-pole). This time does not include any bounce time.

6. Contact Bounce (Time)

Generally expressed in time (ms), this refers to the intermittent switching phenomenon of the contacts which occurs due to the collision between the movable metal parts or contacts, when the relay is operated or released.

Definition of Relay Terminology

MECHANICAL PERFORMANCE AND LIFE

1. Shock Resistance

1) Functional

The acceleration which can be tolerated by the relay during service without causing the closed contacts to open for more than the specified time.
(usually $10 \mu \mathrm{~s}$)

2) Destructive

The acceleration which can be withstood by the relay during shipping or installation without it suffering damage, and without causing a change in its operating characteristics. Usually expressed in "G"s. However, test was performed a total of 18 times, six times each in three-axis directions.

2. Vibration Resistance

1) Functional

The vibration which can be tolerated by the relay during service, without causing the closed contacts to open for more than the specified time.

2) Destructive

The vibration which can be withstood by the relay during shipping, installation or use without it suffering damage, and without causing a change in its operating characteristics. Expressed as an acceleration in G's or displacement, and frequency range. However, test was performed a total of six hours, two hours each in three-axis directions.

3. Mechanical Life

The minimum number of times the relay can be operated under nominal conditions (coil voltage, temperature, humidity, etc.) with no load on the contacts.

4. Electrical Life

The minimum number of times the relay can be operated under nominal conditions with a specific load being switched by the contacts.

5. Maximum Switching Frequency

This refers to the maximum switching frequency which satisfies the mechanical
life or electrical life under repeated operations by applying a pulse train at the rated voltage to the operating coil.

6. Life Curve

This is listed in the data column for each type of relay. The life (number of operations) can be estimated from the switching voltage and switching current. For example, for a DS relay operating at:
Switching voltage $=125 \mathrm{~V}$ AC
Switching current $=0.6 \mathrm{~A}$
The life expectancy is 300,000 operations. However, this value is for a resistive load. Be sure to carefully check the actual load before use.

Life Curve

HIGH FREQUENCY CHARACTERISTICS

1. Isolation

High frequency signals leak through the stray capacitance across contacts even if the contacts are separated. This leak is called isolation. The symbol dB (decibel) is used to express the magnitude of the leak signal. This is expressed as the logarithm of the magnitude ratio of the signal generated by the leak with respect to the input signal. The larger the magnitude, the better the isolation.

2. Insertion Loss

At the high frequency region, signal disturbance occurs from self-induction, resistance, and dielectric loss as well as from reflection due to impedance mismatching in circuits. Loss due to any of these types of disturbances is called insertion loss. Therefore, this refers to the magnitude of loss of the input signal. The smaller the magnitude, the better the relay.

3. V.S.W.R.

(Voltage Standing Wave Ratio)
High frequency resonance is generated from the interference between the input signal and reflected (wave) signal.
V.S.W.R. refers to the ratio of the maximum value to minimum value of the waveform. The V.S.W.R. is 1 when there is no reflected wave. It usually becomes greater than 1.

Notes:

1. Except where otherwise specified, the tests above are conducted under standard temperature and humidity $\left(15^{\circ} \mathrm{C}\right.$ to $35^{\circ} \mathrm{C} 59^{\circ} \mathrm{F}$ to $95^{\circ} \mathrm{F}, 25$ to 75\%).
2. The coil impressed voltage in the switching tests is a rectangular wave at the rated voltage.
3. The phase of the AC load operation is random.

GENERAL APPLICATION GUIDELINES

A relay may encounter a variety of ambient conditions during actual use resulting in unexpected failure.

Therefore, testing over a practical range under actual operating conditions is necessary. Application considerations
should be reviewed and determined for proper use of the relay.

SAFETY PRECAUTIONS

- Use that exceeds the specification ranges such as the coil rating, contact rating and switching life should be absolutely avoided. Doing so may lead to abnormal heating, smoke, and fire.
- Never touch live parts when power is applied to the relay. Doing so may cause electrical shock. When installing,
maintaining, or troubleshooting a relay (including connecting parts such as terminals and sockets) be sure that the power is turned off.
- When connecting terminals, please follow the internal connection diagrams in the catalog to ensure that connections are done correctly. Be
warned that an incorrect connection may lead to unexpected operation error, abnormal heating, and fire.
- If the possibility exists that faulty adhesion or contact could endanger assets or human life, take double safety precautions and make sure that operation is foolproof.

[1] METHOD OF DETERMINING SPECIFICATIONS

In order to use the relays properly, the characteristics of the selected relay should be well known, and the conditions of use of the relay should be investigated to determine whether they are matched
to the environmental conditions, and at the same time, the coil conditions, contact conditions, and the ambient conditions for the relay that is actually used must be sufficiently known in
advance. In the table below, a summary has been made of the points of consideration for relay selection. It may be used as a reference for investigation of items and points of caution.

	Specification item	Consideration points regarding selection
Coil	a) Rating b) Pick-up voltage/current c) Drop-out voltage/current d) Maximum continuous voltage/ current e) Coil resistance f) Impedance g) Temperature rise	1) Select relay with consideration for power source ripple. 2) Give sufficient consideration to ambient temperature, for the coil temperature rise and hot start. 3) When used in conjunction with semiconductors, additional attention to the application should be taken. Be careful of voltage drops when starting up.
Contacts	a) Contact arrangement b) Contact rating c) Contact material d) Life e) Contact resistance	1) It is desirable to use a standard product with more than the required number of contacts. 2) It is beneficial to have the relay life balanced with the life of the device it is used in. 3)Is the contact material matched to the type of load? It is necessary to take care particularly with low level usage. 4)The rated life may become reduced when used at high temperatures. Life should be verified in the actual atmosphere used. 5)Depending on the circuit, the relay drive may synchronize with the AC load. As this will cause a drastic shortening of life should be verified with the actual machine.
Operate time	a) Operate time b) Release time c) Bounce time d) Switching frequency	1) It is beneficial to make the bounce time short for sound circuits and similar applications.
Mechanical characteristics	a) Vibration resistance b) Shock resistance c) Ambient temperature d) Life	1) Give consideration to performance under vibration and shock in the use location. 2) In particular, when used in high temperature applications, relay with class B or class F coil insulation may be required.
Other items	a) Breakdown voltage b) Mounting method c) Size d) Protective construction	1)Selection can be made for connection method with plug-in type, PC board type, soldering, tab terminals, and screw fastening type. 2) For use in an adverse atmosphere, sealed construction type should be selected. 3) When used in adverse environments, use the sealed type. 4)Are there any special conditions?

BASICS ON RELAY HANDLING

- To maintain initial performance, care should be taken to avoid dropping or hitting the relay.
- Under normal use, the relay is designed so that the case will not detach. To maintain initial performance, the case should not be removed. Relay characteristics cannot be guaranteed if the case is removed.
- Use of the relay in an atmosphere at standard temperature and humidity with minimal amounts of dust, SO_{2}, $\mathrm{H}_{2} \mathrm{~S}$, or organic gases is recommended.
For installation in adverse environments, one of the sealed types should be considered.
Please avoid the use of silicone-based resins near the relay, because doing so may result in contact failure. (This
applies to plastic sealed type relays, too.)
- Care should be taken to observe correct coil polarity $(+,-)$ for polarized relays.
- Proper usage requires that the rated voltage be impressed on the coil. Use rectangular waves for DC coils and sine waves for AC coils.
- Be sure the coil impressed voltage does not continuously exceed the maximum allowable voltage.
- The rated switching power and life are given only as guides. The physical phenomena at the contacts and contact life greatly vary depending on the type of load and the operating conditions. Therefore, be sure to carefully check the type of load and operating conditions before use.
- Do not exceed the usable ambient temperature values listed in the catalog.
- Use the flux-resistant type or sealed type if automatic soldering is to be used.
- Use alcohol based cleaning solvents when cleaning is to be performed using a sealed type relay. Avoid ultrasonic cleaning of all types of relays.
- As a guide, use a Faston mounting pressure of 40 to 70 N \{4 to 7 kgf$\}$ for relays with tab terminals.
- Avoid bending terminals, because it may cause malfunction.
- For proper use, read the main text for details.

[2] PRECAUTIONS REGARDING COIL INPUT

Application of the rated voltage is the most basic requirement for accurate relay operation. Although the relay will work if the voltage applied exceeds the pick-up voltage, it is required that only the rated voltage be applied to the coil out of
consideration for changes in coil resistance, etc., due to differences in power supply type, voltage fluctuations, and rises in temperature. Also, caution is required, because problems such as layer shorts and burnout in the coil may
occur if the voltage applied exceeds the maximum that can be applied continuously. The following section contains precautions regarding coil input. Please refer to it in order to avoid problems.

1. Basic Precautions Regarding Coil

- AC operation type

For the operation of AC relays, the power source is almost always a commercial frequency (50 or 60 Hz) with standard voltages of $6,12,24,48,115,120,230$ and 240 V AC. Because of this, when the voltage is other than the standard voltage, the product is a special order item, and the factors of price, delivery, and stability of characteristics may create inconveniences. To the extent that it is possible, the standard voltages should be selected.

Also, in the AC type, shading coil resistance loss, magnetic circuit eddy current loss, and hysteresis loss exit, and because of lower coil efficiency, it is normal for the temperature rise to be greater than that for the DC type.
Furthermore, because humming occurs when below the pick-up voltage and when above the rated voltage, care is required with regard to power source voltage fluctuations.
For example, in the case of motor starting, if the power source voltage drops, and during the humming of the relay, if it reverts to the restored condition, the contacts suffer a burn damage and welding, with the
occurrence of a false operation selfmaintaining condition.
For the AC type, there is an inrush current during the operation time (for the separated condition of the armature, the impedance is low and a current greater than rated current flows; for the adhered condition of the armature, the impedance is high and the rated value of current flows), and because of this, for the case of several relays being used in parallel connection, it is necessary to give consideration to power consumption.

- DC operation type

For the operation of DC relays, standards exist for power source voltage and current, with DC voltage standards set at $5,6,12,24,48$, and 100 V , but with regard to current, the values as expressed in catalogs in milliamperes of pick-up current.
However, because this value of pick-up current is nothing more than a guarantee of just barely moving the armature, the variation in energizing voltage and resistance values, and the increase in coil resistance due to temperature rise, must be given consideration for the worst possible condition of relay operation, making it necessary to consider the
current value as 1.5 to 2 times the pickup current. Also, because of the extensive use of relays as limit devices in place of meters for both voltage and current, and because of the gradual increase or decrease of current impressed on the coil causing possible delay in movement of the contacts, there is the possibility that the designated control capacity may not be satisfied. Thus it is necessary to exercise care. The DC type relay coil resistance varies due to ambient temperature as well as to its own heat generation to the extent of about $0.4 \% /{ }^{\circ} \mathrm{C}$, and accordingly, if the temperature increases, because of the increase in pic k-up and drop-out voltages, care is required.
(However, for some polarized relays, this rate of change is considerably smaller.)

2. Power Source for Coil Input

- Energizing voltage of AC coil

In order to have stable operation of the relay, the energizing voltage should be basically within the range of $+10 \% /-15 \%$ of the rated voltage. However, it is necessary that the waveform of the voltage impressed on the coil be a sine wave. There is no problem if the power source is commercially provided power, but when a stabilized AC power source is used, there is a waveform distortion due to that equipment, and there is the possibility of abnormal overheating. By means of a shading coil for the AC coil, humming is stopped, but with a distorted waveform, that function is not displayed.

Figure 1 shows an example of waveform distortion.
If the power source for the relay operating circuit is connected to the same line as motors, solenoids, transformers, and other loads, when these loads operate, the line voltage drops, and because of this the relay contacts suffer the effect of vibration and subsequent burn damage. In particular, if a small type transformer is used and its capacity has no margin of safety, when there is long wiring, or in the case of household used or small sales shop use where the wiring is slender, it is necessary to take precautions because of the normal voltage fluctuations combined with these other factors. When trouble develops, a
survey of the voltage situation should be made using a synchroscope or similar means, and the necessary countermeasures should be taken, and together with this determine whether a special relay with suitable excitation characteristics should be used, or make a change in the DC circuit as shown in Figure 2 in which a capacitor is inserted to absorb the voltage fluctuations.
In particular, when a magnetic switch is being used, because the load becomes like that of a motor, depending upon the application, separation of the operating circuit and power circuit should be tried and investigated.

- Power source for DC input

We recommend that the voltage applied to both ends of the coil in DC type relays be within $\pm 5 \%$ of the rated coil voltage.
As a power source for the DC type relay, a battery or either a half wave or full wave rectifier circuit with a smoothing capacitor is used. The characteristics with regard to the pick-up voltage of the relay will change depending upon the type of power source, and because of this, in order to display stable characteristics, the most desirable method is perfect DC.

In the case of ripple included in the DC power source, particularly in the case of half wave rectifier circuit with a smoothing capacitor, if the capacity of the capacitor is too small, due to the influence of the ripple, humming develops and an unsatisfactory condition is produced. With the actual circuit to be used, it is absolutely necessary to confirm the characteristics.
It is necessary to give consideration to the use of a DC power source with less than a 5% ripple. Also ordinarily the following must be given thought.

- It is desirable to have less than a 5% ripple for the reed type relay.
- For the hinge type relay, a half wave rectifier cannot be used, alone unless you use a smoothing capacitor. The ripple and the characteristics must be evaluated for proper usage.
- For the hinge type relay, there are certain applications that may or maynot use the full wave rectifier on it's own. Please check specifications with the original manufacture.
- Coil applied voltage and the drop in voltage Shown following is a circuit driven by the same power supply (battery, etc.) for both the coil and contact. Electrical life will be affected by the drop in voltage in the coil when load is turned on.

Please verify that the actual voltage is applied to the coil at the actual load.

3. Maximum Continuous Voltage and Temperature Rise

Proper usage requires that the rated voltage be impressed on the coil. Note, however, that if a voltage greater than or equal to the maximum continuous voltage is impressed on the coil, the coil may burn or its layers short due to the temperature rise. Furthermore, do not exceed the usable ambient temperature range listed in the catalog.

- Maximum continuous voltage

In addition to being a requirement for relay operation stability, the maximum continuous voltage is an important constraint for the prevention of such problems as thermal deterioration or deformity of the insulation material, or the occurrence of fire hazards.
In actual use with E-type insulation, when the ambient temperature is $40^{\circ} \mathrm{C} 104^{\circ} \mathrm{F}$, a temperature rise limit of $80^{\circ} \mathrm{C} 176^{\circ} \mathrm{F}$ is thought to be reasonable according to the resistance method. However, when complying with the Electrical Appliance
and Material Safety Law, this becomes $75^{\circ} \mathrm{C} 167^{\circ} \mathrm{F}$.

- Temperature rise due to pulse voltage

When a pulse voltage with ON time of less than 2 minutes is used, the coil temperature rise bares no relationship to the ON time. This varies with the ratio of ON time to OFF time, and compared with continuous current passage, it is rather small. The various relays are essentially the same in this respect.

Current passage time	$\%$
For continuous passage	Temperature rise value is 100%
ON : OFF $=3: 1$	About 80%
ON : OFF $=1: 1$	About 50%
ON : OFF $=1: 3$	About 35%

- Pick-up voltage change due to coil temperature rise (hot start)
In DC relays, after continuous passage of current in the coil, if the current is turned OFF, then immediately turned ON again, due to the temperature rise in the coil, the pick-up voltage will become somewhat higher. Also, it will be the same as using it in a higher temperature atmosphere. The resistance/temperature relationship for copper wire is about 0.4% for $1^{\circ} \mathrm{C}$, and with this ratio the coil resistance increases. That is, in order to operate of the relay, it is necessary that the voltage be higher than the pick-up voltage and the pick-up voltage rises in accordance with the increase in the resistance value. However, for some polarized relays, this rate of change is considerably smaller.

4. Coil Applied Voltage and Operate Time

In the case of AC operation, there is extensive variation in operate time depending upon the point in the phase at which the switch is turned ON for coil excitation, and it is expressed as a certain range, but for miniature types it is for the most part $1 / 2$ cycle. However, for the somewhat large type relay where
bounce is large, the operate time is 7 to 16 ms , with release time in the order of 9 to 18 ms . Also, in the case of DC operation, to the extent of large coil input, the operating time is rapid, but if it is too rapid, the "Form A" contact bounce time is extended.

Please be warned that load conditions (in particular when inrush current is large or load is close to the load rating) may cause the working life to shorten and slight welding.

5. Stray Circuits (Bypass Circuits)

In the case of sequence circuit construction, because of bypass flow or alternate routing, it is necessary to take care not to have erroneous operation or abnormal operation. To understand this condition while preparing sequence circuits, as shown in Figure 4, with 2 lines written as the power source lines, the upper line is always \oplus and the lower line
Θ (when the circuit is $A C$, the same thinking applies). Accordingly the \oplus side is necessarily the side for making contact connections (contacts for relays, timers and limit switches, etc.), and the Θ side is the load circuit side (relay coil, timer coil,
magnet coil, solenoid coil, motor, lamp, etc.).

Figure 4 Example of a vertically written sequence circuit

Figure 5 shows an example of stray circuits. In Figure 5 (a), with contacts A, B, and C closed, after relays R_{1}, R_{2}, and R_{3} operate, if contacts B and C open, there is a series circuit through A, R_{1}, R_{2}, and R_{3}, and the relays will hum and
sometimes not be restored to the drop out condition.
The connections shown in Figure 5 (b) are correctly made. In addition, with regard to the DC circuit, because it is
simple by means of a diode to prevent stray circuits, proper application should be made.

Figure 5 Stray circuits

6. Gradual Increase of Coil Impressed Voltage and Suicide Circuit

When the voltage impressed on the coil is increased slowly, the relay transferring operation is unstable, the contact pressure drops, contact bounce increases, and an unstable condition of contact occurs. This method of applying voltage to the coil should not be used, and consideration should be given to the method of impressing voltage on the coil (use of switching circuit). Also, in the
case of latching relays, using self "Form B" contacts, the method of self coil circuit for complete interruption is used, but because of the possibility of trouble developing, care should be taken.
The circuit shown in Figure 6 causes a timing and sequential operation using a reed type relay, but this is not a good example with mixture of gradual increase of impressed voltage for the coil and a
sucide circuit. In the timing portion for relay R_{1}, when the timing times out, chattering occurs causing trouble. In the initial test (trial production), it shows favorable operation, but as the number of operations increases, contact blackening (carbonization) plus the chattering of the relay creates instability in performance.

Figure 6 "Not a good example": A timing and sequential operation using a reed type relay

7. Phase Synchronization in AC Load Switching

If switching of the relay contacts is synchronized with the phase of the AC power, reduced electrical life, welded contacts, or a locking phenomenon (incomplete release) due to contact
material transfer may occur. Therefore, check the relay while it is operating in the actual system. When driving relays with timers, micro computers and thyristors,
etc., there may be synchronization with the power supply phase.

8. Erroneous Operation due to Inductive Interference

For long wire runs, when the line for the control circuit and the line for electric power use a single conduit, induction voltage, caused by induction from the power line, will be applied to the operation coil regardless of whether or not the control signal is off. In this case
the relay and timer may not revert. Therefore, when wiring spans a long distance please remember that along with inductive interference, connection failure may be caused by a problem with distribution capacity or the device might break down due to the influence of
externally caused surges, such as that caused by lightning.

General Application Guidelines

9. Long Term Current Carrying

A circuit designed for non-excitation when left running is desirable for circuits (circuits for emergency lamps, alarm devices and error inspection that, for example, revert only during malfunction and output warnings with form B contacts) that will be carrying a current
continuously for long periods without relay switching operation.
Continuous, long-term current to the coil will facilitate deterioration of coil insulation and characteristics due to heating of the coil itself.

For circuits such as these, please use a magnetic-hold type latching relay. If you must use a single stable relay, use a sealed type relay that is not easily affected by ambient conditions and provide a failsafe circuit design that considers the possibility of contact failure or disconnection.

10.Usage with Infrequent Switching

Please carry out periodic contact conductivity inspections when the frequency of switching is once or fewer times per month. When no switching of
the contacts occurs for long periods, organic membrane may form on the contact surfaces and lead to contact instability.

11.Regarding Electrolytic Corrosion of Coils

n the case of comparatively high voltage coil circuits, when such relays are used in high temperature and high humidity atmospheres or with continuous passage of current, the corrosion can be said to be the result of the occurrence of electrolytic corrosion. Because of the possibility of open circuits occurring, attention should be given to the following points.

- The \oplus side of the power source should be connected to the chassis. (Refer to Figure 8) (Common to all relays)

Figure 8 Judgement: Good

- In the case where unavoidably the \oplus side is grounded, or in the case where grounding is not possible.

Insert the contacts (or switch) in the \oplus side of the power source. (Refer to Figure 9) (Common to all relays)

- When a grounding is not required, connect the ground terminal to the \oplus side of the coil. (Refer to Figure 10) (NF and NR with ground terminal)

- When the \oplus side of the power source is grounded, always avoid interting the contacts (and switches) in the \oplus side.
(Refer to Figure 11) (Common to all relays)

Figure 11 Judgement: No good

- In the case of relays provided with a ground terminal, when the ground terminal is not considered effective, not making a connection to ground plays an important role as a method for preventing electrolytic corrosion.

Note: The designation on the drawing indicates the insertion of insulation between the iron core and the chassis. In relays where a ground terminal is provided, the iron core can be grounded directly to the chassis, but in consideration of electrolytic corrosion, it is more expedient not to make the connection.

[3] PRECAUTIONS REGARDING CONTACT

- Contact

The contacts are the most important elements of relay construction. Contact performance conspicuously influenced by contact material, and voltage and current values applied to the contacts (in particular, the voltage and current
waveforms at the time of application and release), the type of load, frequency of switching, ambient atmosphere, form of contact, contact switching speed, and of bounce.
Because of contact transfer, welding, abnormal wear, increase in contact
resistance, and the various other damages which bring about unsuitable operation, the following items require full investigation.
*We recommend that you verify with one of our sales offices

1. Basic Precautions Regarding Contact

- Voltage, AC and DC

When there is inductance included in the circuit, a rather high counter emf is generated as a contact circuit voltage, and since, to the extent of the value of that voltage, the energy applied to the contacts causes damage with consequent wear of the contacts, and transfer of the contacts, it is necessary to
exercise care with regard to control capacity. In the case of DC, there is no zero current point such as there is with AC, and accordingly, once a cathode arc has been generated, because it is difficult to quench that arc, the extended time of the arc is a major cause. In addition, due to the direction of the current being fixed, the phenomenon of contact shift, as noted separately below, occurs in relation
to the contact wear. Ordinarily, the approximate control capacity is mentioned in catalogs or similar data sheets, but this alone is not sufficient. With special contact circuits, for the individual case, the maker either estimates from the past experience or makes test on each occasion. Also, in catalogs and similar data sheets, the control capacity that is mentioned is
limited to resistive load, but there is a broad meaning indicated for that class of relay, and ordinarily it is proper to think of current capacity as that for 125 V AC circuits.

Minimum applicable loads are given in the catalog; however, these are only provided as a guide to the lower limit that the relay is able to switch and are not guaranteed values. The level of reliability of these values depends on switching
frequency, ambient conditions, change in the desired contact resistance, and the absolute value. Please use relays with AgPd contacts when minute analog load control or contact resistance no higher than $100 \mathrm{~m} \Omega$ is desired (for measurement and wireless applications, etc.).

- Current

The current at both the closing and opening time of the contact circuit exerts
important influence. For example, when the load is either a motor or a lamp, to the extent of the inrush current at the time of closing the circuit, wear of the contacts, and the amount of contact transfer increase, and contact welding and contact transfer make contact separation impossible.

2. Characteristics of Common Contact Materials

Characteristics of contact materials are
given below. Refer to them when
selecting a relay.

Contact Material	$\begin{gathered} \mathrm{Ag} \\ \text { (silver) } \end{gathered}$	Electrical conductivity and thermal conductivity are the highest of all metals. Exhibits low contact resistance, is inexpensive and widely used. A disadvantage is it easily develops a sulfide film in a sulfide atmosphere. Care is required at low voltage and low current levels.
	AgSnO_{2} (silver-tin)	Exhibits superior welding resistance characteristics equal or better than AgCdO. Like silver, it easily develops a sulfide film in a sulfide atmosphere.
	AgW (silver-tungsten)	Hardness and melting point are high, arc resistance is excellent, and it is highly resistant to material transfer. However, high contact pressure is required. Furthermore, contact resistance is relatively high and resistance to corrosion is poor. Also, there are constraints on processing and mounting to contact springs.
	AgNi (silver-nickel)	Equals the electrical conductivity of silver. Excellent arc resistance.
	AgPd (silver-palladium)	At standard temperature, good corrosion resistance and good sulfidation resistance. However, in dry circuits, organic gases adhere and it easily develops a polymer. Gold clad is used to prevent polymer buildup. Expensive.
Surface Finish	Rh plating (rhodium)	Combines perfect corrosion resistance and hardness. As plated contacts, used for relatively light loads. In an organic gas atmosphere, care is required as polymers may develop. Therefore, it is used in hermetic sealed relays (reed relays, etc.) . Expensive.
	Au clad (gold clad)	Au with its excellent corrosion resistance is pressure welded onto a base metal. Special characteristics are uniform thickness and the nonexistence of pinholes. Greatly effective especially for low level loads under relatively adverse atmospheres. Often difficult to implement clad contacts in existing relays due to design and installation.
	Au plating (gold plating)	Similar effect to Au clad. Depending on the plating process used, supervision is important as there is the possibility of pinholes and cracks. Relatively easy to implement gold plating in existing relays.
	Au flash plating (gold thin-film plating) 0.1 to $0.5 \mu \mathrm{~m}$	Purpose is to protect the contact base metal during storage of the switch or device with built-in switch. However, a certain degree of contact stability can be obtained even when switching loads.

3. Contact Protection

- Counter EMF

When switching inductive loads with a DC relay such as relay sequence circuits, DC motors, DC clutches, and DC solenoids, it is always important to absorb surges (e.g. with a diode) to protect the contacts.
When these inductive loads are switched off, a counter emf of several hundred to several thousand volts develops which can severely damage contacts and greatly shorten life. If the current in these loads is relatively small at around 1A or less, the counter emf will cause the ignition of a glow or arc discharge. The discharge decomposes organic matter
contained in the air and causes black deposits (oxides, carbides) to develop on the contacts. This may result in contact failure.

Figure 12 Example of counter emf and actual measurement

In Figure 12 (a), a counter emf ($\mathrm{e}=-\mathrm{L}$ di/ dt) with a steep waveform is generated
across the coil with the polarity shown in Figure 12 (b) at the instant the inductive load is switched off. The counter emf passes through the power supply line and reaches both contacts.
Generally, the critical dielectric breakdown voltage at standard temperature and pressure in air is about 200 to 300 volts. Therefore, if the counter emf exceeds this, discharge occurs at the contacts to dissipate the energy $\left(1 / 2 \mathrm{Li}^{2}\right)$ stored in the coil. For this reason, it is desirable to absorb the counter emf so that it is 200 V or less.

- Material transfer phenomenon

Material transfer of contacts occurs when one contact melts or boils and the contact material transfers to the other contact. As the number of switching operations increases, uneven contact surfaces develop such as those shown in Figure 13. After a while, the uneven contacts
lock as if they were welded together. This often occurs in circuits where sparks are produced at the moment the contacts "make" such as when the DC current is large for DC inductive or capacitive loads or when the inrush current is large (several amperes or several tens of amperes).

Contact protection circuits and contact materials resistant to material transfer such as $\mathrm{AgSnO}_{2}, \mathrm{AgW}$ or AgCu are used as countermeasures. Generally, a concave formation appears on the cathode and a convex formation appears on the anode. For DC capacitive loads (several amperes to several tens of
amperes), it is always necessary to conduct actual confirmation tests.

- Contact protection circuit

Use of contact protective devices or protection circuits can suppress the counter emf to a low level. However, note
that incorrect use will result in an adverse effect. Typical contact protection circuits are given in the table below.
(G: Good, NG: No Good, C: Conditional)

- Avoid using the protection circuits shown in the figures on the right.
Although DC inductive loads are usually more difficult to switch than resistive loads, use of the proper protection circuit will raise the characteristics to that for resistive loads.

- Mounting the protective device

In the actual circuit, it is necessary to locate the protective device (diode, resistor, capacitor, varistor, etc.) in the immediate vicinity of the load or contact. If located too far away, the effectiveness of the protective device may diminish. As a guide, the distance should be within 50 cm .

- Abnormal corrosion during high frequency switching of DC loads (spark generation)
If, for example, a DC valve or clutch is switched at a high frequency, a bluegreen corrosion may develop. This occurs from the reaction with nitrogen and oxygen in the air when sparks (arc discharge) are generated during

4. Cautions on Use Related to Contacts

- Connection of load and contacts

Connect the load to one side of the power supply as shown in Figure 14 (a).
Connect the contacts to the other side.

This prevents high voltages from developing between contacts. If contacts are connected to both side of the power supply as shown in Figure 14 (b), there is
a risk of shorting the power supply when relatively close contacts short.

(a) Good example

(b) Bad example

Figure 14

- Dummy Resistor

Since voltage levels at the contacts used in low current circuits (dry circuits) are
low, poor conduction is often the result. One method to increase reliability is to add a dummy resistor in parallel with the
load to intentionally raise the load current reaching the contacts.

- Avoid circuits where shorts occur between Form A and B contacts

1) The clearance between form A and B contacts in compact control components is small. The occurrence of shorts due to
2) Even if the three N.C., N.O., and COM contacts are connected so that they short, a circuit must never be designed to allow the possibility of burning or generating an overcurrent.
3) A forward and reverse motor rotation circuit using switching of form A and B contacts must never be designed.

Figure 15 Bad example of Form A and B use

- Shorts between different electrodes

Although there is a tendency to select miniature control components because of the trend toward miniaturizing electrical control units, care must be taken when selecting the type of relay in circuits where different voltages are applied between electrodes in a multi-pole relay, especially when switching two different power supply circuits. This is not a problem that can be determined from sequence circuit diagrams. The construction of the control component itself must be examined and sufficient margin of safety must be provided especially in creepage between electrodes, space distance, presence of barrier, etc.

General Application Guidelines

- Type of load and inrush current

The type of load and its inrush current characteristics, together with the switching frequency, are important factors which cause contact welding.

Type of load	Inrush current
Resistive load	Steady state current
Solenoid load	10 to 20 times the steady state current
Motor load	5 to 10 times the steady state current
Incandescent lamp load	10 to 15 times the steady state current
Mercury lamp load	Approx. 3 times the steady state current
Sodium vapor lamp load	1 to 3 times the steady state current
Capacitive load	20 to 40 times the steady state current
Transformer load	5 to 15 times the steady state current

Load Inrush Current Wave and Time

Particularly for loads with inrush currents, measure the steady state and inrush current. Then select a relay which provides an ample margin of safety. The table on the right shows the relationship
between typical loads and their inrush currents.

Also, verify the actual polarity used since, depending on the relay, electrical life is affected by the polarity of COM and NO.

- When using long wires

If long wires (100 to 300 m) are to be used in a relay contact circuit, inrush current may become a problem due to the stray capacitance existing between wires. Add
a resistor (approx. 10 to 50Ω) in series with the contacts.

- Phase synchronization in switching AC loads
If switching of the relay contacts is synchronized with the phase of the AC power, reduced electrical life, welded
contacts, or a locking phenomenon (incomplete release) due to contact material transfer may occur. Therefore, check the relay while it is operating in the actual system. When driving relays with
timers, micro computers and thyristors, etc., there may be synchronization with the power supply phase.

- Electrical life at high temperatures

Verify at the actual load since electrical life may be affected by use at high temperatures.

[4] PRECAUTIONS REGARDING LATCHING RELAYS

- Latching relays are shipped from the factory in the reset state. A shock to the relay during shipping or installation may cause it to change to the set state. Therefore, it is recommended that the relay be used in a circuit which initializes the relay to the required state (set or reset) whenever the power is turned on.
- Avoid impressing voltages to the set coil and reset coil at the same time.
- Connect a diode as shown since latching may be compromised when the relay is used in the following circuits.
- If set coils or reset coils are to be connected together in parallel, connect a diode in series to each coil. Figure 16 (a), (b)
- Also, if the set coil of a relay and the reset coil of another relay are connected in parallel, connect a
diode to the coils in series. Figure 16 (c)
- If the set coil or reset coil is to be connected in parallel with an inductive load (e.g. another electromagnetic relay coil, motor, transformer, etc.), connect a diode to the set coil or reset coil in series. Figure 16 (d)

Figure 16

- Use a diode having an ample margin of safety for repeated DC reverse voltage and peak reverse voltage applications and having an average rectified current greater than or equal to the coil current.
- Avoid applications in which conditions include frequent surges to the power supply.
- Avoid using the following circuit since
self-excitation at the contacts will inhibit

General Application Guidelines

the normal keep state.

- Four-terminal latching relay

In the 2-coil latching type circuit as shown below, one terminal at one end of the set coil and one terminal at one end of the reset coil are connected in common and voltages of the same polarity are applied to the other side for the set and reset operations. In this type of circuit, short 2 terminals of the relay as noted in the right
table. This helps to keep the insulation high between the two winding.

- Minimum pulse width

As a guide, make the minimum pulse width in order to set or reset a latching relay at least 5 times the set time or reset time of each product and apply a rectangular-wave rated voltage. Also, please verify operation. Please inquire if you cannot obtain a pulse width of at least 5 times the set (reset) time. Also, please inquire regarding capacitor drive.

Relay Type		Terminal Nos.
DS	1c	-
	2c	$15 \& 16$
	4c	$*$
NC	Flat	$5 \& 6$
	Slim	$3 \& 4$
ST		${ }^{*}$
SP		$2 \& 4$
Notes:		

Notes:

1. DS4c and ST relays are constructed so that the set coil and reset coil are separated for high insulation resistance.
2. DSP, TQ, TN, S relays are not applicable due to polarity.

- Two Coil Latch Induction Voltage

Each coil in a 2-coil latch relay is wound with a set coil and a reset coil on the same iron cores. Accordingly, induction voltage is generated on the reverse side coil when voltage is applied and shut off to each coil. Although the amount of induction voltage is about the same as the rated relay voltage, you must be careful of the reverse bias voltage when driving transistors.

[5] HANDLING CAUTIONS FOR TUBE PACKAGING

Some types of relays are supplied in tube packaging. If you remove any relays from the tube packaging, be sure to slide the stop plug at one end to hold the remaining relays firmly together so they would not move in the tube. Failing to do this may lead to the appearance and/or performance being damaged.

[6] AMBIENT ENVIRONMENT

1. Ambient Temperature and Atmosphere

Be sure the ambient temperature at the installation does not exceed the value listed in the catalog. Furthermore, environmentally sealed types (plastic sealed type) should be considered for applications in an atmosphere with dust, sulfur gases $\left(\mathrm{SO}_{2}, \mathrm{H}_{2} \mathrm{~S}\right)$, or organic gases.

2. Silicone Atmosphere

Silicone-based substances (silicone rubber, silicone oil, silicone-based coating material, silicone caulking compound, etc.) emit volatile silicone gas. Note that when silicone is used near relay, switching the contacts in the presence of its gas causes silicone to adhere to the contacts and may result in contact failure (in plastic sealed types, too).
In this case, use a substitute that is not silicone-based.

3. NOx Generation

When a relay is used in an atmosphere high in humidity to switch a load which easily produces an arc, the NOx created by the arc and the water absorbed from outside the relay combine to produce nitric acid. This corrodes the internal metal parts and adversely affects operation.
Avoid use at an ambient humidity of $85 \% \mathrm{RH}$ or higher (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$). If use at high humidity is unavoidable, consult us.

4. Vibration and Shock

If a relay and magnetic switch are mounted next to each other on a single plate, the relay contacts may separate momentarily from the shock produced when the magnetic switch is operated and result in faulty operation.
Countermeasures include mounting them on separate plates, using a rubber sheet to absorb the shock, and changing the direction of the shock to a perpendicular angle.
Also, if the relay will be subject to continual vibration (trains, etc.), do not use it with a socket. We recommend that you solder directly to the relay terminals.

5. Influence of External Magnetic Fields

Permanent magnets are used in reed relays and polarized relays, and their movable parts are constructed of ferrous materials. For this reason, when a magnet or permanent magnet in any other large relay, transformer, or speaker
is located nearby, the relay characteristics may change and faulty operations may result. The influence depends on the strength of the magnetic field and it should be checked at the installation.

6. Usage, Storage, and Transport Conditions

During usage, storage, or transportation, avoid locations subject to direct sunlight and maintain normal temperature, humidity, and pressure conditions.
The allowable specifications for environments suitable for usage, storage, and transportation are given below.

- Temperature

The allowable temperature range differs for each relay, so refer to the relay's individual specifications.
In addition, when transporting or storing relays while they are tube packaged, there are cases when the temperature may differ from the allowable range.
In this situation, be sure to consult the individual specifications.

- Humidity

5 to 85 \% R.H.

- Pressure

86 to 106 kPa
The humidity range varies with the temperature. Use within the range indicated in the graph.

(The allowable temperature depends on the switch.)

- Condensation will occur inside the switch if there is a sudden change in ambient temperature when used in an atmosphere of high temperature and high humidity. This is particularly likely to happen when being transported by ship, so please be careful of the atmosphere when shipping. Condensation is the phenomenon whereby steam condenses to cause water droplets that adhere to the switch when an atmosphere of high temperature and humidity rapidly
changes from a high to low temperature or when the switch is quickly moved from a low humidity location to one of high temperature and humidity. Please be careful because condensation can cause adverse conditions such as deterioration of insulation, coil cutoff, and rust.
- Condensation or other moisture may freeze on the switch when the temperatures is lower than $0^{\circ} \mathrm{C} 32^{\circ} \mathrm{F}$. This causes problems such as sticking of movable parts or operational time lags.
- The plastic becomes brittle if the switch is exposed to a low temperature, low humidity environment for long periods of time.
- Storage for extended periods of time (including transportation periods) at high temperatures or high humidity levels or in atmospheres with organic gases or sulfide gases may cause a sulfide film or oxide film to form on the surfaces of the contacts and/or it may interfere with the functions. Check out the atmosphere in which the units are to be stored and transported.
- In terms of the packing format used, make every effort to keep the effects of moisture, organic gases and sulfide gases to the absolute minimum.
- Since the SMD type is sensitive to humidity it is packaged with tightly sealed anti-humidity packaging. However, when storing, please be careful of the following.
- Please use promptly once the antihumidity pack is opened (Signal relay: with in 3 days, Max. $30^{\circ} \mathrm{C}$ $86^{\circ} \mathrm{F} / 60 \% R \mathrm{R}$). If left with the pack open, the relay will absorb moisture which will cause thermal stress when reflow mounting and thus cause the case to expand. As a result, the seal may break.
- When storing for a long period after opening the anti-humidity pack, you must take measures to prevent humidity, for example, by storing in the open location of a promptly resealed anti-humidity pack after it is used or in a humidity-controlled desicator. You may also store it in an anti-humidity bag to which silica gel has been added.
- To avoid incorrect handling of our moisture-sensitive products, Panasonic affixes a cautionary label to the vacuum-sealed bag in which the products are delivered.
- Note:

Please note that the products must be mounted within the time limit specified on the bag. The time limit given on the bag varies for the
different kinds of surface-mount terminal type products.
7. Vibration, Impact and Pressure when Shipping

When shipping, if strong vibration, impact or heavy weight is applied to a device in
which a relay is installed, functional damage may occur. Therefore, please package in a way, using shock absorbing material, etc., so that the allowable range for vibration and impact is not exceeded.

[7] ENVIRONMENTALLY SEALED TYPE RELAYS

Sealed type (plastic sealed type, etc.) relays are available. They are effective when problems arise during PC board mounting (e.g. automatic soldering and cleaning). They also, of course, feature excellent corrosion resistance. Note the cautions below regarding the features and use of environmentally sealed type relays to avoid problems when using them in applications.

1. Operating Environment

Plastic sealed type relays are not suited for use in environments that especially require air tightness. Although there is no problem if they are used at sea level, avoid atmospheric pressures beyond $96 \pm 10 \mathrm{kPa}$. Also avoid using them in an atmosphere containing flammable or explosive gases.

2. Cleaning

When cleaning a printed circuit board after soldering, we recommend using alcohol based cleaning fluids. Please avoid ultrasonic cleaning. The ultrasonic energy from this type of cleaning may cause coil line breakage and light sticking of contacts.

[8] MOUNTING CONSIDERATIONS

1. Top View and Bottom View

Relays used for PC boards, especially the flat type relays, have their top or bottom surface indicated in the terminal wiring diagrams.

Relay with terminals viewed from the bottom (terminals cannot be seen from the top)

Relay with terminals viewed from the top (all terminals can be seen from the top) Note during PC board pattern design (NL , NC)

2. Mounting Direction

Mounting direction is important for optimum relay characteristics.

- Shock resistance

It is ideal to mount the relay so that the movement of the contacts and movable parts is perpendicular to the direction of vibration or shock. Especially note that the vibration and shock resistance of Form B contacts while the coil is not excited is greatly affected by the mounting direction of the relay.

- Contact reliability

Mounting the relay so the surfaces of its contacts (fixed contacts or movable contacts) are vertical prevents dirt and dust as well as scattered contact material (produced due to large loads from which arcs are generated) and powdered metal from adhering to them.

Furthermore, it is not desirable to switch both a large load and a low level load with a single relay. The scattered contact material produced when switching the large load adheres to the contacts when switching the low level load and may cause contact failure. Therefore, avoid mounting the relay with its low level load contacts located below the large load contacts.

3. Adjacent Mounting

When many relays are mounted close together, abnormally high temperatures may result from the combined heat generated. Mount relays with sufficient spacing between them to prevent heat buildup.
This also applies when a large number of boards mounted with relays are installed as in a card rack. Be sure the ambient
temperature of the relay does not exceed the value listed in the catalog.

- Influence of adjacent mounting of polarized relays
When polarized relays are mounted close together, their characteristics change. Since the affect of adjacent mounting differs according to the type of relay, refer to the data for the particular type.

4. Panel Mounting

- Do not remove the cover. It has a special function. (It will not come off under normal handling.)
- When installing please use washers to prevent damage and deformation. Please keep the tightening torque to within 0.49 to $68.6 \mathrm{~N} \cdot \mathrm{~m}$ (5 to $7 \mathrm{kgf} \cdot \mathrm{cm}$). Also, please use a spring washer to prevent it from coming loose.

5. Tab Terminals

As a guide, use a quick connect mounting pressure of 40 to $70 \mathrm{~N}\{4$ to 7 kgf for relays with tab terminals.

[9] METHOD OF MOUNTING AND LEAD WIRES CONNECTION

1. Mounting Method

The direction of mounting is not specifically designated, but to the extent possible, the direction of contact movement should be such that vibration and shock will not be applied.

When a terminal socket is used

After drilling the mounting holes, the terminal socket should be mounted making certain the mounting screws are not loose. DIN standard sockets are available for one-touch mounting on DIN rail of 35 mm 1.378 inch width.

When reversible terminal sockets are used

- The reversible terminal sockets (HC, HL socket) are for one-touch mounting (A panel thickness of 1 to 2 mm .039 to .079 inch should be used.)

- The socket should be pushed through the opening in the mounting panel until the projections on the side of the
mounting bracket extend out over the back surface.

- When all four of the projections are visible from the back side of the mounting panel, the mounting is completed and the socket is fastened.
- To remove the socket, the projections on the side of the mounting bracket should be pushed inward and at the same time the body of the socket should be pushed lightly from the back side. The socket can then be removed from the panel.

2. Connection of Lead Wires

- When making the connections, depending upon the size of load, the wire cross-section should be at least as
large as the values shown in the table below.

Permissible current (A)	Cross-section $\left(\mathrm{mm}^{2}\right)$
2	0.2
3	0.3
5	0.5
7.5	0.75
12.5	1.25
15	2
20	2
30	3.5

- When the terminal socket uses screw fastening connections, either pressure terminals or other means should be used to make secure fastening of the wire.
- To prevent damage and deformity, please use a torque within the following range when tightening the push screw block of the terminal socket.

Screw	Torque
M4.5	1.47 to $1.666 \mathrm{~N} \cdot \mathrm{~m}$ $(15$ to $17 \mathrm{kgf} \cdot \mathrm{cm})$
M4	1.176 to $1.37 \mathrm{~N} \cdot \mathrm{~m}$ $(12$ to $14 \mathrm{kgf} \cdot \mathrm{cm})$
M3.5	0.784 to $0.98 \mathrm{~N} \cdot \mathrm{~m} \mathrm{(8}$ to $10 \mathrm{kgf} \cdot \mathrm{cm})$
M3	0.49 to $0.69 \mathrm{~N} \cdot \mathrm{~m}(5$ to $7 \mathrm{kgf} \cdot \mathrm{cm})$

[10]CAUTIONS FOR USE-CHECK LIST

Item	To check
	1)Is the correct rated voltage applied? 2)Is the applied coil voltage within the allowable continuous voltage limit? 3)Is the ripple in the coil voltage within the allowable level? 4) For voltage applied to a polarized coil, is polarity observed?
5) When hot start is required, is the increase in coil resistance resulting from coil temperature rise taken into account in	
setting coil voltage?	
6) Is the coil voltage free from momentary drop caused by load current?	
(Pay special attention for self-holding relays.)	

General Application Guidelines

Item	To check
Load (Relay contacts)	1)Is the load rated within the contact ratings? 2) Does the load exceed the contacts' minimum switching capacity? 3) Special attention is required for contact welding when the load is a lamp, motor, solenoid, or electromagnetic contractor. Was the relay tested with a real load? 4)A DC load may cause contact lock-up due to large contact transfer. Was the relay tested with a real load? 5)For an inductive load, is a surge absorber used across the contacts? 6) When an inductive load causes heavy arc discharge across the relay contacts, the contacts may be corroded by chemical reaction with nitrogen in the atmosphere. Was the relay tested with a real load? 7)Platinum contacts may generate brown powder due to a catalyzer effect or vibration energy. Was the relay tested with a real load? 8)Is the contact switching frequency below the specification? 9) When there are more than two sets of contacts (2T) in a relay, metallic powder shed from one set of contacts may cause a contact failure on the other set (particularly for light loads). Was the relay tested in a real load? 10)A delay capacitor used across relay contacts may cause contact welding. Was the relay tested with a real load? 11)For an AC relay, a large contact bounce may cause contact welding. Was the relay tested in a real circuit or with a real load? 12)A high voltage may be induced at transformer load. Was the relay tested with a real load?
Circuit Design	1)Does circuit design take into account electrolytic corrosion of the coil? 2) Are transistors and other circuit components protected rom counter electromotive force that develops across the relay coil? 3)Is the circuit designed so the relay coil is left deenergized while the relay is inactive for long period of time? 4)Is the relay operated within the ratings approved by the relevant international standard (if compliance is required)? 5)Is the circuit protected from malfunction when the relay's activation and/or deactivation time varies considerably? 6) Is the circuit protected from malfunctions that might result from relay contact bounce? 7) Is the circuit protected from malfunction when a high-sensitivity latching type relay is to be used? 8) When there are two or more sets of contacts (2T) in a relay, arc discharges from load switching may cause short circuits across the two or more sets of contacts. Is the circuit designed to suppress such arc discharges? 9) Item 8 above also requires special attention when loads are supplied from separate power sources. 10)Does the post-installation insulation distance comply with the requirement of the relevant international standard or the Electrical Appliance and Material Control Law? 11)Is the circuit protected from malfunction when the relay is to be driven by transistors? 12)When the SCR is used for on/off control, the relay activation tends to synchronize with the line frequency, resulting in an extremely shortened life. Was the relay tested in a real circuit or with a real load? 13)Does the PC board design take into account use of on-board relay? 14)RF signals may leak across relay's open contacts. Check for adequate contact isolation and use RF relays as needed
Operating Environment	1)Is the ambient temperature in the allowable operating temperature range? 2)Is the humidity in the allowable humidity range? 3)Is the operating atmosphere free from organic and sulfide gases? 4)Is the operating atmosphere free from silicone gas? Depending on the load type, silicone gas may cause a black substance to from on the contacts, leading to contact failure. 5)Is the operating atmosphere free from excessive airborne dust? 6)Is the relay protected from oil and water splashes? 7)Is the relay protected from vibration and impact which may cause poor contact with the socket? 8) Is ambient vibration and impact below the level allowable for the relay? 9)Is the relay free from mechanical resonance after it is installed in position? 10)Is insulation coating applied to the relay along with the PC board? Depending on the load type, a black substance may form to cause contact failure.

Item	To check
Installation and Connection	1)Is the relay protected from solder chips and flux when it is manually soldered? 2)Are preparations for flux application and automatic soldering complete? 3)Is the PC board cleaning process designed to minimize adverse affects to the relays? 4)Are adequate separations provided between polarized or reed relays to prevent magnetic coupling? 5)Are the relay terminals free from stress in the socket? 6)Polarized relay's characteristics may be affected by strong external magnetic field. Are the relays installed away from such fields? 7) If very long leads (100 to 300 meters) are used to connect the load, the stray capacity existing across the leads may cause the inrush current. Was the relay tested with a real load? 8) Unless otherwise specified, all relay terminals should be soldered at $250^{\circ} \mathrm{C} 482^{\circ} \mathrm{F}$ within 5 sec . or at $350^{\circ} \mathrm{C}$ within 3 sec . 9)A badly warped PC board can cause stress to the relay terminals which may lead to degraded relay characteristics. 10)Glass shot should not be used to clean the PC board of solder flux. This may cause relay malfunction due to glass powder becoming lodged in the relay's internal structure. 11)Relays should always be used with their plastic shields installed, or degraded relay performance may result. 12)Do not cut away any relay terminal as the stress may cause degraded relay performance.
Storage and Transport	1)Is the relay subject to freezing or condensation (especially when shipping)? 2)Is the temperature in the allowable temperature range? 3)Is the humidity in the allowable humidity range? 4)Is the storing atmosphere free from organic and sulfide gases? 5)Is the storing atmosphere free from excessive airborne dust? 6)Is the relay protected from oil and water splashes? 7)Is the relay subject to the application of heavy weight? 8)When shipping does vibration and impact exceed the allowable range?

[1] WHAT IS RELIABILITY?

1. Reliability in a Narrow Sense of the Term

In the industrial world, reliability is an index of how long a particular product serves without failure.

2. Reliability in a Broad Sense of the Term

Every product has a finite service lifetime. This means that no product can continue normal service infinitely. When a product has broken down, the user may throw it
away or repair it. The reliability of repairable products is recognized as "reliability in a broad sense of the term". For repairable products, their serviceability or maintainability is another problem. In addition, reliability of product design is becoming a serious concern for the manufacturing industry. In short, reliability has three senses: i.e. reliability of the product itself, serviceability of the product, and reliability of product design.

3. Intrinsic Reliability and Reliability of Use

Reliability is "built" into products. This is referred to as intrinsic reliability which consists mainly of reliability in the narrow sense.
Product reliability at the user's site is called "reliability of use", which consists mainly of reliability in the broad sense. In the relay industry, reliability of use has a significance in aspects of servicing.

[2] RELIABILITY MEASURES

The following list contains some of the
most popular reliability measures:
Reliability measure
Sample representation
Degree of reliability $R(T)$
MTBF
MTTF
Failure rate λ
Safe life B_{10}

(b) MTTF

1. Degree of Reliability

Degree of reliability represents percentage ratio of reliability. For example, if none of 10 light bulbs has failed for 100 hours, the degree of reliability defined in, 100 hours of time is $10 / 10=100 \%$. If only three bulbs remained alive, the degree of reliability is $3 / 10=30 \%$.
The JIS Z8115 standard defines the degree of reliability as follows:
The probability at which a system, equipment, or part provides the specified functions over the intended duration under the specified conditions.

2. MTBF

MTBF is an acronym of mean time between failures. It indicates the mean time period in which a system, equipment, or part operates normally between two incidences of repair. MTBF only applies to repairable products.

MTBF tells how long a product can be used without the need for repair.
Sometimes MTBF is used to represent the service lifetime before failure.

3. MTTF

MTTF is an acronym of mean time to failure. It indicates the mean time period until a product becomes faulty MTTF normally applies to unrepairable products such as parts and materials.
The relay is one of such objective of MTTF.

4. Failure Rate

Failure rate includes mean failure rate and momentary failure rate.
Mean failure rate is defined as follows:
Mean failure rate = Total failure count/ total operating hours
In general, failure rate refers to momentary failure rate. This represents the probability at which a system, equipment, or part, which has continued normal operation to a certain point of time, becomes faulty in the subsequent specified time period.
Failure rate is often represented in the unit of percent/hours. For parts with low failure rates, "failure unit (Fit) $=10^{-9} /$ hour" is often used instead of failure rate. Percent/count is normally used for relays.

5. Safe Life

Safe life is an inverse of degree of reliability. It is given as value B which makes the following equation true:
$1-\mathrm{R}(\mathrm{B})=t \%$
In general, " $B[1-R(B)]=10 \%$ " is more often used. In some cases this
represents a more practical value of reliability than MTTF.

[3] FAILURE

1. What is Failure?

Failure is defined as a state of system, equipment, or component in which part of all of its functions are impaired or lost.

2. Bathtub Curve

Product's failure rate throughout its lifetime is depicted as a bathtub curve, as shown below. Failure rate is high at the beginning and end of its service lifetime.
(I) Initial failure period

The high failure rate in the initial failure period is derived from latent design errors, process errors, and many other causes. Initial failures are screened at manufacturer's site through burn-in process. This process is called debugging, performing aging or screening.
(II) Accidental failure period

The initial failure period is followed by a long period with low, stable failure rate. In this period, called accidental failure period, failures occurs at random along the time axis. While zero accidental failure rate is desirable, this is actually not practical in the real world.
(III) Wear-out failure period

In the final stage of the product's service lifetime comes the wear-out failure period, in which the life of the product expires due to wear of fatigue. Preventive
maintenance is effective for this type of failure. The timing of a relay's wear-out failure can be predicted with a certain accuracy from the past record of uses. The use of a relay is intended only in the accidental failure period, and this period virtually represents the service lifetime of the relay.

3. Weibull Analysis

Weibull analysis is often used for classifying a product's failure patterns and to determine its lifetime. Weibull distribution is expressed by the following equation:

$$
f(x)=\frac{m}{\alpha}(\chi-\gamma)^{m-1} e-\frac{(\chi-\gamma)^{m}}{\alpha}
$$

m : Figure parameter
α : Measurement parameter
γ : Position parameter

APPLICATIONS OF RELAYS IN ELECTRONIC CIRCUITS

[1] RELAY DRIVE BY MEANS OF A TRANSISTOR

1. Connection Method

If the relay is transistor driven, we recommend using it with a collector connection.

The voltage impressed on the relay is always full rated voltage, and in the OFF time, the voltage is completely zero for avoidance of trouble in use.

(Care) Emitter connection When the circumstances make the use of this connection unavoidable, if the voltage is not completely impressed on the relay, the transistor does not conduct completely and operation is uncertain.

(Care) Parallel connection When the power consumed by the complete circuit becomes large, consideration of the relay voltage is necessary.

2. Countermeasures for Surge Breakdown Voltage of Relay Control Transistor

If the coil current is suddenly interrupted, a sudden high voltage pulse is developed in the coil. If this voltage exceeds the breakdown voltage of the transistor, the transistor will be degraded, and this will lead to damage. It is absolutely necessary to connect a diode in the circuit as a means of preventing damage from the counter emf.

As suitable ratings for this diode, the current should be equivalent to the average rectified current to the coil, and
the reverse blocking voltage should be about 3 times the value of the power source voltage.
Connection of a diode is an excellent way to prevent voltage surges, but there will be a considerable time delay when the relay is open. If you need to reduce this time delay you can connect between the transistor's collector and emitter a Zener diode that will make the Zener voltage
somewhat higher than the supply voltage.

the rated voltage in a short time and also to drop the voltage in a short time.
3. Snap Action
(Characteristic of relay with voltage rise and fall of voltage)

Unlike the characteristic when voltage is impressed slowly on the relay coil, this is the case where it is necessary to impress

4. Schmidt Circuit (Snap Action Circuit)

(Wave rectifying circuit)

When the input signal does not produce a snap action, ordinarily a Schmidt circuit is used to produce safe snap action.

Characteristic points

- The common emitter resistor Re must have a value sufficiently small

Applications of Relays in Electronic Circuits

compared with the resistance of the relay coil.

- Due to the relay coil current, the difference in the voltage at point P when T_{2} is conducting and at point P when Tr_{1} is conducting creates hysteresis in the detection capability of Schmidt circuit, and care must be taken in setting the values.
- When there is chattering in the input signal because of waveform oscillation, an CR time constant circuit should be inserted in the stage before the

5. Avoid Darlington Connections

(High amplification)
This circuit is a trap into which it is easy to fall when dealing with high circuit

Schmidt trigger circuit. (However, the response speed drops.)

technology. This does not mean that it is immediately connected to the defect, but it is linked to troubles that occur after long periods of use and with many units in operation.

6. Residual Coil Voltage

In switching applications where a semiconductor (transistor, UJT, etc.) is connected to the coil, a residual voltage is retained at the relay coil which may cause incomplete restoration and faulty operation. By using DC coils, there may be a reduction in; the danger of incomplete restoration, the contact pressure, and the vibration resistance. This is because the drop-out voltage is 10% or more of the rated voltage, a low value compared to that for AC coil, and also there is a tendency to increase the life by lowering the drop-out voltage. When the signal from the transistor's collector is taken and used to drive another circuit as shown in the figure on the right, a minute dark current flows to the relay even if the transistor is off. This may cause the problems described above.

Connection to the next stage through

 collector

Applications of Relays in Electronic Circuits

[2] RELAY DRIVE BY MEANS OF SCR

1. Ordinary Drive Method

For SCR drive, it is necessary to take particular care with regard to gate sensitivity and erroneous operation due to noise.

Igt : There is no problem even with more then 3 ti the related current.
Rgk: $1 \mathrm{~K} \Omega$ must be connected.
R, C : This is for prevention of ignition error due to sudden rise in the power source or to noise. (dv/dt countermeasure)
2. Caution points regarding ON/OFF control circuits
(When used for temperature or similar control circuits)

When the relay contacts close simultaneously with an AC single phase power source, because the electrical life of the contacts suffers extreme shortening, care is necessary.

- When the relay is turned ON and OFF using a SCR, the SCR serves as a half wave power source as it is, and there are ample cases where the SCR is easily restored.
- In this manner the relay operation and restoration timing are easily synchronized with the power source frequency, and the timing of the load switching also is easily synchronized.
- When the load for the temperature control is a high current load such as a heater, the switching can occur only at peak values and it can occur only at zero phase values as a phenomenon of this type of control. (Depending upon the sensitivity and response speed of the relay)
- Accordingly, either an extremely long life or an extremely short life results with wide variation, and it is necessary to take care with the initial device quality check.

[3] RELAY DRIVE FROM EXTERNAL CONTACTS

Relays for PC board use have high sensitivity and high speed response characteristics, and because they respond sufficiently to chattering and bouncing, it is necessary to take care in their drive.

When the frequency of use is low, with the delay in response time caused by a condenser, it is possible to absorb the chattering and bouncing.
(However, it is not possible to use only a condenser. A resistor should also be used with the capacitor.)

[4] LED SERIES AND PARALLEL CONNECTIONS

Power consuption:
In common with relay (Good) Defective LED:
Relay does not operate (No Good)
Low voltage circuit:
With LED, 1.5V down (No good)
No. of parts: (Good)

2) R in parallel with LED

Power consuption:
In common with relay (Good)
Defective LED:
Relay operate (Good)
Low voltage cicuit:
With LED, 1.5V down (No good)
No. of parts: R1 (Care)
3) In parallel connection with relay

Power consumption:
Current limiting resistor R2 (Care)
Defective LED:
Relay operate stable (Good)
Low voltage circuit: (Good)
No. of parts: R2 (Care)

Applications of Relays in Electronic Circuits

[5] ELECTRONIC CIRCUIT DRIVE BY MEANS OF A RELAY

1. Chatterless Electronic Circuit

Even though a chatterless characteristic is a feature of relays, this is to the fullest extent a chatterless electrical circuit, much the same as a mercury relay. To meet the requirement for such circuits as the input to a binary counter, there is an electronic chatterless method in which chattering is absolutely not permissible. Even if chattering develops on one side, either the N.O. side contacts or the N.C. side contacts, the flip flop does not reverse, and the counter circuit can be fed pulsed without a miss. (However, bouncing from the N.O. side to N.C. side must be absolutely avoided.)

2. Triac Drive

When an electronic circuit using a direct drive from a triac, the electronic circuit will not be isolated from the power circuit, and because of this, troubles due to erroneous operation and damage can develop easily. The introduction of a relay drive is the most economical and most effective solution. (Photo coupler and pulse transformer circuits are complicated.)
Also, compared to switching a direct load with a relay, long life and reduced arc noise can be achieved.
When a zero cross switching characteristic is necessary, a solid state relay (SSR) should be used.

Applications of Relays in Electronic Circuits

2. Prevention of Voltage Drop Due to

 Rush CurrentIn the circuit shown in Figure 19, rush current flows from the lamp or capacitor. The instant the contacts close, the voltage drops and the relay releases or chatters. In this case it is necessary to raise the transformer's capacity or add a smoothing circuit.
Figure 20 shows an example of the modified circuit.
Figure 21 shows a battery-powered version.

Figure 19

Figure 20

Figure 21

[7] PC BOARD DESIGN CONSIDERATIONS

1. Pattern Layout for Relays

Since relays affect electronic circuits by generating noise, the following points should be noted.
Keep relays away from semiconductor devices. Design the pattern traces for shortest lengths. Place the surge absorber (diode, etc.) near the relay coil.

Avoid routing pattern traces susceptible to noise (such as for audio signals) underneath the relay coil section. Avoid through-holes in places which cannot be seen from the top (e.g. at the base of the relay). Solder flowing up through such a hole may cause damage such as a
broken seal. Even for the same circuit, pattern design considerations which minimize the influence of the on/off operations of the relay coil and lamp on other electronic circuits are necessary.

Relay coil currents consist only of A1 and B1.
Electronic circuit currents consist only of A2 and B2. A simple design consideration can change the safety of the operation.

2. Hole and land diameter

The hole diameter and land are made with the hole slightly larger than the lead wire so that the component may be inserted easily. Also, when soldering, the solder will build up in an eyelet condition, increasing the mounting strength.

The standard dimensions for the hole
diameter and land are shown in the table.
Standard dimensions for hole and land diameter
mm inch

Standard hole diameter	Tolerance	Land diameter
0.8 .031		2.0 to 3.0 .079 to 0.118
1.0 .039		$\pm 0.1 \pm .039$

Remarks

1. The hole diameter is made 0.2 to 0.5 mm .008 to .020 inch larger than the lead diameter. However, if the jet method (wave type, jet type) of soldering is used, because of the fear of solder passing through to the component side, it is more suitable to make the hole diameter equal to the lead diameter +0.2 mm .
2. The land diameter should be 2 to 3 times the hole diameter.
3. Do not put more than 1 lead in one hole.

3. Expansion and shrinkage of copperclad laminates

Because copperclad laminates have a longitudinal and lateral direction, the manner of punching fabrication and layout must be observed with care. The expansion and shrinkage in the longitudinal direction due to heat is $1 / 15$ to $1 / 2$ that in the lateral, and accordingly, after the punching fabrication, the distortion in the longitudinal direction will be $1 / 15$ to $1 / 2$ that of the lateral direction. The mechanical strength in the longitudinal direction is 10 to 15% greater than that in the lateral direction. Because of this difference between the longitudinal and lateral directions, when products having long configurations are to be fabricated, the lengthwise direction of the configuration should be made in the longitudinal direction, and PC boards having a connector section should be
made with the connector along the longitudinal side.

Example: As shown is the drawing below, the 150 mm 5.906 inch direction is taken as the longitudina direction

Also, as shown in the drawing below, when the pattern has a connector section, the direction is taken as shown by the arrow in the longitudinal direction

4. When it is necessary to use hand soldering for one part of a component after dip soldering has been done

By providing a narrow slot in the circular part of the foil pattern, the slot will prevent the hole from being plugged with solder.

5. When the PC board itself is used as a connector

- The edge should be beveled. (This prevents peeling of the foil when the board is inserted into its socket.)
- When only a single side is used as the connector blade, if there is distortion in the PC board, contact will be defective.

$$
\text { Bevel of radius } \quad \text { (Care) } \quad \text { (Good) }
$$

Applications of Relays in Electronic Circuits

6. PC Board Reference Data

This data has been derived from samples of this company's products. Use this data as a reference when designing PC boards.

- Conductor width

The allowable current for the conductor was determined from the safety aspect and the effect on the performance of the conductor due to the rise in saturation temperature when current is flowing.
(The narrower the conductor width and the thinner the copper foil, the larger the

Figure 22

Figure 25

- Space between conductors

Figure 27 shows the relationship between the spacing between conductors and the destruction voltage. This destruction voltage is not the destruction voltage of the PC board; it is the flash over voltage (insulation breakdown voltage of the space between circuits.) Coating the surface of the conductor with an insulating resin such as a solder resist increases the flash over voltage, but because of the pin holes of the solder resist, it is necessary to consider the conductor destruction voltage without the solder resist. In fact, it is necessary to add an ample safety factor when determining the spacing between conductors. Table shows an example of a design for the spacing between conductors. (Taken from the JIS C5010 standards.) However, when the product is covered by the electrical products control law, UL standards or other safety standards, it is necessary to conform to
temperature rise.) For example, too high a rise in temperature causes degradation of the characteristic and color changes of the laminate. In general, the allowable current of the conductor is determined so that the rise is temperature is less than $10^{\circ} \mathrm{C}$. It is necessary to design the conductor width from this allowable conductor current.
Figure 22, Figure 23, Figure 24 show the relationship between the current and the

Figure 23

Figure 26
the regulations.

Figure 27
conductor width for each rise in temperature for different copper foils. It is also necessary to give consideration to preventing abnormal currents from exceeding the destruction current of the conductor.
Figure 25 shows the relationship between the conductor width and the destruction current.

Figure 24

Example of conductor spacing design

Maximum DC and AC Voltage Between Conductors (V)	Minimum Conductor Spacing (mm inch)
0 to 50	0.381 .015
51 to 150	0.635 .025
151 to 300	1.27 .050
301 to 500	2.54 .100
500 or more	Calculated at $0.00508 \mathrm{~mm} / \mathrm{V}$

RELAY SOLDERING AND CLEANING GUIDELINES

In keeping with making devices compact, it is becoming more common to weld the relay to a PC board along with the semiconductors instead of using the previous plug-in type in which relays were plugged into sockets. With this style, loss of function may occur because
of seepage into the relay of flux, which is applied to the PC board. Therefore, the following precautions are provided for soldering a relay onto a PC board.
Please refer to them during installation in order to avoid problems.

The type of protective structure will determine suitability for automatic soldering or automatic cleaning. Please review the parts on construction and characteristics. See "Configuration and Construction" on page 582.

1. Mounting of relay

- Avoid bending the terminals to make the relay self-clinching. Relay
performance cannot be guaranteed if the terminals are bent. Self-clinching terminal types are available depending on the type of relay.
- Correctly drill the PC board according to the given PC board pattern illustration.
- Stick packaging is also available for automatic mounting, depending on the type of relay. (Be sure that the relays
don't rattle.) Interference may occur internally if the gripping force of the tab of the surface mounting machine is too great. This could impair relay performance.

Bad example
2. Flux application

- Adjust the position of the PC board so that flux does not overflow onto the top of it. This must be observed especially for dust-cover type relays.
- Use rosin-based non-corrosive flux.
- If the PC board is pressed down into a flux-soaked sponge as shown on the right, the flux can easily penetrate a dust-cover type relay. Never use this method. Note that if the PC board is
pressed down hard enough, flux may even penetrate a flux-resistant type relay.

3. Preheating

- Be sure to preheat before using automatic soldering. For dust-cover type relays and flux-resistant type relays, preheating acts to prevent the penetration of flux into the relay when soldering. Solderability also improves.
- Preheat according to the following conditions.

Temperature	$120^{\circ} \mathrm{C} 248^{\circ} \mathrm{F}$ or less
Time	Within approx. 2 minutes

- Note that long exposure to high temperatures (e.g. due to a malfunctioning unit) may affect relay characteristics.

4. Soldering

- Automatic soldering
- Flow solder is the optimum method for soldering.
- Adjust the level of solder so that it does not overflow onto the top of the PC board.
- Unless otherwise specified, solder under the following conditions depending on the type of relay.

Solder temperature	$260^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C} 500^{\circ} \mathrm{F} \pm 41^{\circ} \mathrm{F}$
Soldering time	Within approx. 6 seconds
- Please take caution with multi-layer	
boards. Relay performance may	

degrade due to the high thermal capacity of these boards.

- Hand soldering

Keep the tip of the soldering iron clean.

Soldering Iron	30 W to 60 W
Iron Tip Temperature	$350^{\circ} \mathrm{C} 662^{\circ} \mathrm{F}$
Soldering Time	Within approx. 3 seconds

Relay Soldering and Cleaning Guidelines

5. Cooling

- Automatic soldering
- Immediate air cooling is recommend to prevent deterioration of the relay and surrounding parts due of soldering heat.
- Although the environmentally sealed type relay (plastic sealed type, etc.) can be cleaned, avoid immersing the relay into cold liquid (such as cleaning solvent) immediately after soldering. Doing so may deteriorate the sealing performance.
- Hand soldering

Do not clean dust-cover type relays and flux-resistant type relays by immersion. Even if only the bottom surface of the PC board is cleaned (e.g. with a brush), careless cleaning may cause cleaning solvent to penetrate the relay.

- Plastic sealed type relays can be cleaned by immersion. Use a Freon- or alcohol-based cleaning solvent. Use of other cleaning solvents (e.g. Trichlene,
chloroethene, thinner, benzyl alcohol, gasoline) may damage the relay case.
- Cleaning with the boiling method is recommended. Avoid ultrasonic cleaning on relays. Use of ultrasonic cleaning may cause breaks in the coil or slight sticking of the contacts due to the ultrasonic energy.
- Do not cut the terminals. When terminals are cut, breaking of coil wire and slight sticking of the contacts may occur due to vibration of the cutter.

7. Coating

- If the PC board is to be coated to prevent the insulation of the PC board from deteriorating due to corrosive gases and high temperatures, note the following.
- Do not coat dust-cover type relays and flux-resistant type relays, since the coating material may penetrate the relay and cause contact failure. Or, mount the relay after coating.
- If the relay and all components (e.g. ICs) are to be coated, be sure to carefully check the flexibility of the
coating material. The solder may peel off from thermal stress.
- Depending on the type, some coating materials may have an adverse affect on relays. Furthermore, solvents (e.g. xylene, toluene, MEK, I.P.A.) may damage the case or chemically dissolve the epoxy and break the seal. Select coating materials carefully.
- If the relay and all components (e.g ICs) are to be coated, be sure to carefully check the flexibility of the coating material. The solder may peel off from thermal stress.

Type	Suitability for Relays	Features
Epoxy-base	Good	• Good electrical insulation. • Although slightly difficult to apply, does not affect relay contacts.
Urethane-base	Care	• Good electrical insulation, easy to apply. • Solvent may damage case. Check before use.
Silicone-base	No Good	• Silicone gas becomes the cause of contact failure. Do not use the silicone-base type.

SMT SOLDERING GUIDELINES

CAUTIONS FOR SURFACE MOUNT RELAY INSTALLATION

To meet the market demand for downsizing to smaller, lighter, and thinner products, PC boards also need to proceed from Insertion mounting to
surface mounting technology. To meet this need, we offer a line of surface mount relays. The following describes some cautions required for surface
mount relay installation to prevent malfunction and incorrect operation.

[1] What is a Surface Mount Relay?

1. From IMT to SMT

Conventional insertion mount technology (IMT) with some 30 years of history is now being replaced with surface mount technology (SMT).
Solid-state components such as resistors, ICs, and diodes can withstand
high heat stresses from reflow soldering because they use no mechanical parts. In contrast, the conventional electromechanical relays consisting of solenoid coils, springs, and armatures are very sensitive to thermal stress from reflow soldering.
-Insertion Mount Technology (IMT) vs. Surface Mount Technology (SMT)

Insertion Mounting Technology (IMT)	Components' leads are inserted into lead holes drilled into the PC board and are soldered to copper pads on the other side of the board using flow-soldering techniques.	Components are placed on copper pads precoated with paste solder and the board assembly is heated to solder the components on the pads (reflow soldering).
Surface Mount Technolog (SMT)	PC board	

2. Features and Effects

Features	Effects
- Allows high density mounting	

- Components can be installed on both sides of a board
- Ceramic PC boards can be used
- Compatible with automatic placement by robots
- Drilling for lead holes is not required
- Compact system designs are possible due to high density mounting
- High heat resistance
- Anti-gas measures

The surface mount relay is manufactured with the following advanced technologies:

| Effects |
| :---: | :---: |
| System downsizing |

- Heat-resistance encapsulation technique
- Gas analysis
- Reliability assessment
- Precision molding technique for heatresistant materials

3. Examples of SMT Applications

The following describes some examples of typical SMT applications:

- Infrared Reflow Soldering (IRS)

IRS is the most popular reflow soldering technology now available for surface mounting. It uses a sheath heater or infrared lamp as its heat source. PC board assemblies are continuously soldered as they are transferred through a tunnel furnace comprised of a preheating, heating, and cooling-stages.

- Vapor Phase Soldering (VPS)

With VPS technology, PCB assemblies are carried through a special inactive solvent, such as Fluorinert FC-70, that has been heated to a vapor state. As the saturated vapor condenses on the PC board surface, the resulting evaporation heat provides the energy for reflow soldering.

- Belt conveyer reflow furnace

As PCB assemblies are transferred on a thin, heat-resistant belt conveyer, they are soldered by the heat from hotplates placed begeath the conveyer belt.

- Double Wave Soldering (DWS)

Components are glued to the PC board surface. The board assembly is transferred through a molten solder fountain (with the component side facing down), and the components are soldered to the board.

- Other Technologies

Other reflow soldering technologies include those utilizing lasers, hot air, and pulse heaters.

SMT Soldering Guidelines

[2] Cautions for installation

- Mounting pads on PC boards must be designed to absorb placement errors while taking account of solderability and insulation. Refer to the suggested mounting pad layout in the application data for the required relay product.
- Paste solder may be applied on the board with screen printing or dispenser techniques. For either method, the paste solder must be coated to appropriate thickness and shapes to achieve good solder wetting and adequate insulation.

placement processes. We also offer tape packaging at customer request.

Holding Pressure
Direction A: Less than 9.8 N (less than $1,000 \mathrm{gf}$)
Direction B: Less than 9.8 N (less than $1,000 \mathrm{gf}$ Direction C: Less than 9.8 N (less than 1,000 gf)

- Manual soldering
- Soldering iron tip temperature: $350^{\circ} \mathrm{C}$
- Soldering iron wattage: 30 to 60 watts
- Soldering time: Less than 3 sec .
- Others

When a soldering technique other than above is to be used (hot air, hotplate, laser, or pulse heater technique), carefully investigate the suitability of the technique.

Note

The soldering temperature profile indicates the pad temperature. In some cases, the ambient temperature may be greatly increased. Check for the specific mounting condition.

- The surface mount relays are solvent washable. Use alcohol or an equivalent solvent for cleaning.
- Boiled cleaning is approved for surface mount relays. Ultrasonic cleaning may cause coil damage or light contact sticking.

Global Network

Europe
Asia Pacific
China
Japan

Panasonic Electric Works Europe AG

Rudolf-Diesel-Ring 2
83607 Holzkirchen
Tel. +49 (0) 8024 648-0
Fax +49(0)8024 648-111
info-de@eu.pewg.panasonic.com
www.panasonic-electric-works.de

Technologiezentren:
Gera
Karlsruhe

Vertriebs- und Servicebüros:

Düsseldorf	Mannheim
Essen	Minden
Freiburg	Nürnberg
Gießen	Waiblingen
Lüneburg	

Unsere Handelsvertretung in Österreich: Panasonic Electric Works Austria GmbH

Josef Madersperger Straße 2
A - 2362 Biedermannsdorf Tel. +43(0)223626846 Fax +43(0)223646133
info-at@eu.pewg.panasonic.com www.panasonic-electric-works.at

Panasonic Electric Works Schweiz AG

Grundstrasse 8
CH-6343 Rotkreuz
Tel. +41 (0) 417997050
Fax +41 (0) 417997055
info-ch@eu.pewg.panasonic.com
www.panasonic-electric-works.ch

Vertriebs- und Servicebüros:

Oberösterreich / Salzburg
Steiermark / Kärnten
Tirol / Vorarlberg

Panasonic

[^0]: Note: 1 coil latching type are manufactured by lot upon receipt of order.
 Reverse polarity types available (add suffix-R)

[^1]: Standard packing: Tube: 50 pcs.; Case: 500 pcs.

[^2]: ＊Pulse drive（JIS C 5442－1996）

[^3]: Standard packing: Tube: 50 pcs.; Case: 2,000 pcs.

[^4]: Standard packing: Tube: 40 pcs.; Case: 1,000 pcs.

[^5]: *Pulse drive (JIS C 5442-1996)

[^6]: Standard packing: Tube: 50 pcs.; Case: 1,000 pcs.

[^7]: Notes: *1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load. (SX relays are available for low level load switching [10V DC, 10 mA max. level])

[^8]: Contact arrangement
 2: 2 Form C
 Surface-mount availability
 Nil: Standard PC board terminal type or self-clinching terminal type
 SA: SA type
 SL: SL type
 SS: SS type

[^9]: Standard packing：Tube： 40 pcs．；Case：1，000 pcs

[^10]: *Pulse drive (JIS C 5442-1986)
 *Only for surge breakdown voltage of $2,500 \mathrm{~V}$.

[^11]: *1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load. (AgPd contact type or SX relays are available for low level load switching [10V DC, 10 mA max. level])
 *2Refer to "6. Usage, Storage and Transport Conditions" in AMBIENT ENVIRONMENT (page 599).

[^12]: Notes: 1. *48 V coil type: Single side stable only

[^13]: Note: Insert contact arrangement, e.g.1a, 1a1b, 2a, in for contact form required.

[^14]: * Pulse, direction of measurement: Terminal is downward.

[^15]: Standard packing: Tube: 20 pcs.; Case: 200 pcs.

[^16]: Standard packing: Tube: 50 pcs.; Case: 500 pcs.

[^17]: *1This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load *2Wave is standard shock voltage of $\pm 1.2 \times 50 \mu$ s according to JEC-212-1981.
 *3Refer to "6. Usage, Storage and Transport Conditions" in AMBIENT ENVIRONMENT (page 599).

[^18]: Note: *10A type only

[^19]: *When using a DC power supply use one that has a leeway of at least 150% current capacity.

[^20]: Note: UL/CSA, VDE, SEV type is standard.

[^21]: Notes: UL/CSA approved type is standard.

[^22]: Note: UL/CSA approved type is standard.

[^23]: Standard packing: Carton: 20 pcs.; Case: 200 pcs.

[^24]: Notes: Other specifications are same as standard types.
 *The upper operation ambient temperature limit is the maximum temperature that can satisfy the coil temperature rise value. Refer to " 6 . Usage, Storage and Transport Conditions" in AMBIENT ENVIRONMENT (page 599).

[^25]: Note: For a 4-pole relay with DIN rail terminal socket, use two 2-pole types side by side

[^26]: Note: HJ relays conform to UL, C-UL and TÜV as standard

[^27]: With LED indicator type
 Coil voltage: $12,24 \mathrm{~V}$ AC $12,24,48 \mathrm{~V}$ DC
 With neon lamp type
 Coil voltage: $100,115,200,220,240$ V AC 100, 110 V DC

[^28]: Note: Socket and terminal socket conform to UL, CSA as standard.

[^29]: \#1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.

[^30]: ** Holding voltage should be $60 \% \mathrm{~V}$ of nominal voltage

[^31]: \#1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.

 ## Remarks

 * Specifications will vary with foreign standards certification ratings.
 ${ }^{* 1}$ Measurement at same location as "Initial breakdown voltage" section
 ${ }^{*}$ 2 Detection current: 10 mA
 ${ }^{*} 3$ Ware is standard shock voltage of $\pm 1.2 \times 50 \mu$ s according to JEC-212-1981.
 ${ }^{*}$ Excluding contact bounce time
 ${ }^{*}$ Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$
 ${ }^{*}$ Half-wave pulse of sine wave: 6 ms
 ${ }^{* 7}$ Detection time: 10 us
 ${ }^{* 8}$ Refer to " 6 . Usage, Storage and Transport Conditions" in AMBIENT ENVIRONMENT (page 599).

[^32]: Note: UL, C-UL and VDE approved type is standard.

[^33]: Note: UL/C-UL, T†V, SEMKO approved type is standard

[^34]: ${ }^{* 1}$ Pick-up and drop-out voltages increase approximately 0.4% for each $1^{\circ} \mathrm{C} 33.8^{\circ} \mathrm{F}$ where the standard temperature is $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$. Therefore, when using the relay where the ambient temperature is high, please take into consideration the rise in pick-up voltage due to ambient temperature and determine a coil nominal voltage that is within the maximum allowable voltage range.

[^35]: Notes: *1 Pulse drive (JIS C 5442)

[^36]: Note: UL/C-UL/VDE approved type is standard.

[^37]: Standard packing: Tube: 100 pcs.; Case: 500 pcs.

[^38]: Note: Standard packing; Carton: 1 pc. Case: 5 pcs

[^39]: * + COM type is available

[^40]: * + COM type is available

[^41]: Note: Standard packing; Carton: 50 pcs. Case 1,000 pcs.

[^42]: Standard packing: 50 pcs . in an inner package; 500 pcs . in an outer package

[^43]: \#1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.

[^44]: Packing quantity; Carton: 50 pcs. Case: 200 pcs.

[^45]: * Other usable voltage range types are also available. Please contact us for details.

[^46]: Standard packing; Carton (tape and reel): 200 pcs.; Case: 600 pcs.

[^47]: Note: Other pick-up voltage types are also available. Please contact us for details.

[^48]: * Intervals between terminals is measured at A surface level.

[^49]: * Coil temperature rise of sealed types are same as data of the dust cover type.

[^50]: \#1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.

